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Abstract

We address Independent Component Analysis (ICA) of piecewise stationary and
nonGaussian signals and propose a novel ICA algorithm called Block EFICA that
is based on this generalized model of signals. The method is a further extension of
the popular nonGaussianity-based FastICA algorithm and of its recently optimized
variant called EFICA. In contrast to these methods, Block EFICA is developed to
effectively exploit varying distribution of signals, thus, also their varying variance in
time (nonstationarity) or, more precisely, in time-intervals (piecewise stationarity).
In theory, the accuracy of the method asymptotically approaches Cramér-Rao lower
bound (CRLB) under common assumptions when variance of the signals is constant.
On the other hand, the performance is practically close to the CLRB even when
variance of the signals is changing. This is demonstrated by comparing our algorithm
with various methods that are asymptotically efficient within ICA models based
either on the nonGaussianity or the nonstationarity. The benefit of our algorithm
is demonstrated by examples with real-world audio signals.
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1 Introduction

The instantaneous linear mixture model is the basic configuration considered
in Blind Source Separation (BSS) [1]. The relation between unobserved original
signals and observed measured signals is here given by equation

X = AS, (1)

where X and S are matrices with N columns, each of which represents samples
of the measured and the original signals, respectively. We will consider the
regular case, thus, the number of rows of X and S is the same and equal to d,
and the mixing matrix A is a d× d regular matrix.

Estimating the mixing matrix A or equivalently the original signals S from
the data X is the general task of BSS. To solve this problem, a principle giving
some assumption about the original signals should be introduced. The most
popular one is based on the assumption of their statistical independence, which
is used by a certain class of models that fall within a popular BSS discipline
called Independent Component Analysis (ICA) [2].

Since Comon’s pioneering paper [3], numerous successful algorithms have been
proposed using basic models based either on nonGaussianity [4–6], nonsta-
tionarity [7–9] or spectral diversity (coloration) [10,11] of the original signals.
Later, various improvements of the earlier methods were developed [12]. The
most recent algorithms provide fast and reliable solutions while attaining the
best possible accuracy fundamentally limited by the respective Cramér-Rao
Lower bound (CRLB) [13,16,17].

While methods assuming nonGaussianity of signals require computation of
higher-order statistics (HOS), the methods using nonstationarity or spectral
diversity usually need second-order statistics (SOS) only, which provides faster
implementations usually through joint approximate diagonalization of a set of
matrices; see e.g. [18,14,17,19]. On the other hand, each approach cannot sep-
arate sources if the respective assumptions are not met, which means certain
limitations. For instance, the nonstationarity-based methods cannot separate
signals having the same dynamics. In this respect, the nonGaussianity-based
methods are popular thanks to their widest application area, e.g. in telecom-
munications, biomedical signal processing, or speech and audio processing.

Since real signals may often exhibit both non-Gaussianity, nonstationarity or
temporal structure, there are attempts to derive methods that combine two or
more models to enhance the application area and to improve the performance
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[20,21]. However, the theoretical background of combined models is much more
complex. Most methods therefore rely on various heuristically chosen criteria
[22–24] or decision-driven combinations of basic algorithms [20,25], rather than
optimizing the performance in a straightforward way through the theory.

This paper focuses on the model combining the nonGaussianity and the non-
stationarity assumptions through the so-called piecewise stationary model.
The optimum solution of this model was discussed in [26], but few methods
were proposed for finding it. The fully general framework was considered by
Pham in [27]. He proposed an algorithm, from here on named as NSNG, that
performs (quasi)-maximum likelihood estimation (MLE), which yields excel-
lent performance in theory. However, in our experimental tests [28], we have
observed cases of instability and misconvergence of NSNG. Specifically, the
algorithm seems to work well in simple scenarios, e.g., where “few” signals
are separated and their properties perfectly fit the model. By contrast, the
method failed with non-negligible probability in more difficult examples or
when separating real-world signals such as EEG data or real audio mixtures.

To provide a reliable algorithm with lower computational burden and compa-
rable performance with that of NSNG, we here introduce a further extension
of the very popular FastICA algorithm [5], which was originally developed for
nonGaussian signals. The method is called Block EFICA 1 as it is an extension
of the EFICA algorithm [16] (a theoretically optimized FastICA variant for
nonGaussian signals) for piecewise stationary signals.

The paper is organized as follows. The following section introduces the piece-
wise stationary model and basic notations used throughout the paper. Section
3 surveys Cramér-Rao bounds that were derived for several levels of general-
izations of the basic nonGaussianity-based ICA model. The proposal of the
Block EFICA algorithm is given in Section 4 after short descriptions of its for-
goers: FastICA [5] and EFICA [16]. Section 5 provides performance analysis
of behavior of FastICA under the assumption of piecewise stationary signals,
and introduces optimized selection of important parameters of Block EFICA
to achieve the best performance. Finally, experimental results demonstrat-
ing performance of the Block EFICA in comparison with other methods are
presented by Section 6.

1 The primary version of Block EFICA introduced in [28] was referred to as Ex-
tended EFICA.
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2 Piecewise stationary model

The basic ICA model exploiting nonGaussianity of the sources is defined by

x = As, (2)

where s = [s1, . . . , sd]
T is a vector of independent random variables (RVs) 2 ,

and each of them represents one of the unknown original signals. In practice,
this means that the data matrices X and S consist of N i.i.d. realizations of
x and s, respectively, whose relation is given through the transform A. The
very assumption of independence of s1, . . . , sd is used for finding the demixing
transform A−1, which can be achieved only up to an indeterminable order,
scales, and signs of its rows.

Compared to the basic ICA model (2), the piecewise stationary model consists
in that the samples of the original signals need not be identically distributed.
The probability density function (pdf) fk(x) of sk thus may be different at
each time instant/interval.

However, to allow practical estimation of signal statistics on data blocks, we
will assume that there are M blocks of S of the same integer length N/M ,
where, within each block, the distribution of the signals is unchanging. There-
fore, we will use the superscript (I) to denote quantities, RVs or functions that
are related to the I-th block. For instance, this means that for each block of
data X, say for the I-th block X(I), it holds X(I) = AS(I), which corresponds
to N/M i.i.d. realizations according to model

x(I) = As(I), (3)

where x(I) and s(I) are vectors of corresponding RVs.

A particular case of the piecewise stationary model, which will be called Block
Gaussian model [14], is when all the distributions of all RVs in (3) are Gaus-
sian. This means that all signals are white and Gaussian within each block,
and the piecewise stationarity consists only in that their variances vary block-
by-block.

2 For simplicity, all RVs considered in the paper are assumed to have zero mean
and finite variance.
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3 Cramér-Rao Lower Bounds for Independent Component Analy-
sis

We discuss several bounds that limit the accuracy achievable by blind separa-
tion. Such limitation may be given by the Cramér-Rao lower bound (CRLB)
that is related to the theoretical model of the original signals. In other words,
the bound is different for different models requiring various assumptions about
the original signals, whereby the separation principles are determined. Al-
though the bounds presented here may all be derived as particular cases of
the bound given for the most general piecewise stationary model, for conve-
nience, we start the description with the basic ICA bound and then generalize
it gradually.

In general, CRLB is defined for an unbiased estimator of some (multivariate)
parameter θ, which is being estimated from a data vector x that has the
probability density fx|θ(x|θ). CRLB is the lower bound for the covariance

matrix of any unbiased estimator θ̂ of θ, i.e.,

covθ θ̂ = Eθ[(θ̂ − θ)(θ̂ − θ)T ]. (4)

If the following Fisher information matrix (FIM) and its inverse exist

F = Eθ

 1

f 2
x|θ(x|θ)

∂fx|θ(x|θ)
∂θ

(
∂fx|θ(x|θ)

∂θ

)T , (5)

under the regularity conditions [29] it holds that

covθ θ̂ ≥ F−1 = CRLB[θ],

where the matrix inequality means that the matrix covθ θ̂ − F−1 is positive
semidefinite.

In case of the instantaneous linear mixture X = AS, the parameters intended
for the estimation are the elements of A−1. Let W be an unbiased estimator of
A−1. Instead of considering CRLB of W, it is useful to derive the bound for the
so-called gain matrix G = WA. Without loss of generality, the indeterminacies
of order, signs, and scales of the original signals can be assumed to be resolved.
G should then be close to the identity, and the variances of its non-diagonal
elements, var[Gk`] k 6= `, reflect mean value of residual interference between
the separated signals WX. Such a criterion, which is commonly used in signal
processing, reflects well the accuracy of the estimator W.

The CRLB for the basic ICA model (2) has been well known since the ’90s
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[30,31]. We will denote the bound by CRLB1, and it is given by

CRLB1[Gk`] =
1

N

κ`
κkκ` − 1

k 6= `, (6)

where κk = E[ψ2
k(x)] with ψk(x) = −f ′k(x)/fk(x) being the score function

of the probability density function (pdf) fk(x) of the k-th RV sk. Here sk is
assumed to have unit variance, thus, note that κs are defined for unit-variance
score functions.

The bound for the piecewise stationary model (3) with constant (unit) variance
signals, denoted by CRLB2, is given by [28]

CRLB2[Gk`] =
1

N

κ`
κk κ` − 1

k 6= `, (7)

where κk
def.
= 1

M

∑M
I=1 κ

(I)
k .

Now we introduce the most general bound, i.e., for the piecewise stationary
model (3) where the variance of the signals is not assumed to be constant.

Let σ2(I)
k be the variance of s

(I)
k , k = 1, . . . , d, I = 1, . . . ,M , but κ

(I)
k is still

defined for pdf f
(I)
k (·) normalized so as to correspond to RV normalized to unit

variance. Then, the bound could be written in the form

CRLB3[Gk`] =
1

N

Bk`

Ak`Bk` − 1
k 6= `, (8)

where

Ak` =
1

M

M∑
I=1

σ2(I)
`

σ2(I)
k

κ
(I)
k (9)

Bk` =
1

M

M∑
I=1

σ2(I)
k

σ2(I)
`

κ
(I)
` . (10)

This result was previously derived, e.g., in [26]. In Appendix A, we provide a
simple derivation of the bound using the derivation of FIM from [32].

For the sake of completeness, we introduce the CRLB for the Block Gaussian
model, i.e. when all distributions of signals are Gaussian. The bound easily
follows from (8) by taking κ

(I)
k = 1 in (9) and (10). We will denote this bound

by CRLB4.
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Fig. 1. Flow of the Block EFICA algorithm.

4 Block EFICA Algorithm

We here describe our novel algorithm that is an extension of its previous
variants FastICA and EFICA. First, the underlying methods are reminded in
short as they were proposed for solving the model (2). Second, the building
block of the proposed algorithm is given, which is a straightforward extension
of the one-unit FastICA algorithm to the piecewise stationary signals. Finally,
we introduce the proposed algorithm.

4.1 FastICA and EFICA Algorithms

The FastICA algorithm [5] was originally derived as a method for solving the
basic ICA problem (2). It is based on optimization of a contrast function

c(wk) = E[G(wT
k z)], (11)

subject to the vector wT
k , whose optimum value is the k-th row of de-mixing

transform. The function G(·), which applies element-wise, is a properly chosen
nonlinear function whose derivative will be denoted by g(·). The vector z
is derived by transforming signals x so that the components of z are not
correlated and have unit variance. After this preprocessing, which is commonly
referred to as sphering, it holds that E[zzT ] = I.

The optimization of c(wk) is based on the iteration

w+
k ← E[zg(wk

Tz)]−wkE[g′(wk
Tz)]. (12)

In practice, i.e. when working with a finite number of signal samples, the
theoretical expectations are replaced by respective sample means, thus the
resulting de-mixing vectors/matrices are respective estimates thereof.

The original FastICA was developed in two basic versions: the one-unit and
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the symmetric one. While the one-unit FastICA completes each iteration by
normalizing the vector w+

k , the symmetric FastICA computes d iterations (12)
in parallel and does a symmetric orthogonalization 3 of [w+

1 , . . . ,w
+
d ]T to yield

all rows of the demixing matrix, whose practical estimate will be denoted by
Ŵ.

The theoretical (asymptotic) performance [32] of the one-unit FastICA is char-
acterized by

var[G1U
k` ] ≈ 1

N
V 1U
k` , k 6= `, (13)

where G1U = ŴA is the gain matrix, each of its rows corresponds to the
estimation of one demixing vector, and V 1U

k` = γk

τ2
k

with

µk =E[sk g(sk)] γk =βk − µ2
k

νk =E[g′(sk)] τk =νk − µk (14)

βk =E[g2(sk)]

In case that the expectations do not exist it may signify either bad choice
of the function G(·) or zero leading term in the asymptotic expansion of the
variance (13). It is a well known feature in ICA that the optimum choice of
G(·) comes up to g(·) being the score function of sk, ψk(·) [13,31].

Among other things, this knowledge is taken into account by the recently
published EFICA algorithm [16], which is designed to attain the best possi-
ble performance limited by (6). The method proceeds in three steps: (1) It
preestimates all the original signals by means of the symmetric FastICA with
the test of saddle points [32], (2) for each k = 1, . . . , d, it adaptively chooses

a nonlinearity g
def.
= gk that approximates the score function ψk(·), and (3) it

does fine-tunings and a refinement.

The fine-tunings consist in further one-unit FastICA iterations for each signal
separately, using the nonlinearities found in step 2. The resulting de-mixing
vectors from the fine-tunings w+

1 , . . . ,w
+
d are then optimally combined by the

refinement.

The refinement utilizes optimum weights computed according to

ck` =


V 1U

k`

V 1U
`k

+1
, k 6= `,

1, k = `.
(15)

We remark that we use slightly different definition of the weights from that in
[16] since it is handier for forthcoming description of the Block EFICA. The

3 We use the well-established term “symmetric orthogonalization” although “sym-
metric orthonormalization” would be more accurate.

8



modification simply consists in normalizing the vectors w+
1 , . . . ,w

+
d , which

was not done in [16]; see [33] for details. The weights are used to form matrix

W+
k = [ck1w

+
1 /‖w+

1 ‖, . . . , ckdw+
d /‖w+

d ‖]T . (16)

The k-th row of symmetrically orthogonalized version of W+
k , i.e. of (W+

k W+
k
T

)−1/2W+
k ,

yields the final estimate of wk. This is done for each k = 1, . . . , d separately,
which relaxes the orthogonality constraint [31] introduced by the symmetric
FastICA.

The asymptotic performance of EFICA is given by

var[GEF
k` ] ≈ 1

N

V 1U
k` (V 1U

`k + 1)

V 1U
k` + V 1U

`k + 1
, k 6= `. (17)

The particular case when gk = ψk reveals superior property of EFICA. It
holds, then, that βk = νk = κk, µk = 1, and V 1U

k` = 1/(κk − 1). Substituting
this into (17) gives

var[GEF
k` ] ≈ 1

N

κ`
κkκ` − 1

, k 6= `.

Compared to the CRLB1 given by (6), the asymptotic efficiency of EFICA in
the framework of the basic ICA model (2) follows.

4.2 One-unit FastICA for Piecewise Stationary Signals

To take into account the piecewise stationary model, we introduce a new
definition of the contrast function (11), which is

c(wk) = λ
(1)
k E[G

(1)
k (wT

k z(1))] + . . . · · ·+ λ
(M)
k E[G

(M)
k (wT

k z(M))], (18)

whereG
(1)
k , . . . , G

(M)
k are properly chosen nonlinear functions, and λ

(1)
k , . . . , λ

(M)
k

denote some weights.

It should be noted that this contrast cannot be viewed as the contrast (11) with

G(·) being a linear combination of G
(1)
k , . . . , G

(M)
k , because each expectation in

(18) depends on different distributions from corresponding block of the signals.
Also, an important fact is that each term in (18) is a valid contrast function
itself. Since the mixing matrix is the same in all blocks, (18) is a valid contrast
function as well. In other words, all the contrasts represented by the terms in
(18) have the same optimum points.

One-unit FastICA using the contrast function (18), from here on referred to as
block one-unit FastICA, works in the way that it applies a different nonlinearity
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g(·) on each block of signals. Thus, the iteration (12) changes to

w+
k ← λ

(1)
k

(
E[z(1)g

(1)
k (wk

Tz(1))]−wkE[g
(1)
k

′
(wk

Tz(1))]
)

+ . . .

· · ·+ λ
(M)
k

(
E[z(M)g

(M)
k (wk

Tz(M))]−wkE[g
(M)
k

′
(wk

Tz(M))]
)
, (19)

and the expectations are replaced by sample means in practice.

As can be seen, the original one-unit FastICA is, when setting λ
(I)
k = 1/M and

g
(I)
k = g, for all I = 1, . . . ,M , a particular case of the block version introduced

here. Theoretical conclusions derived later in this paper, therefore, yield an
insight into behavior of the original FastICA (and also of other variants of
FastICA) when distributions of signals are different from one block to the
other.

4.3 Proposed Block EFICA Algorithm

The Block EFICA algorithm takes into account the piecewise stationarity of
signals. The approach consists of the following three steps that are similar to
those in the original EFICA up to the difference that consists in linking the
choice of nonlinearities with the fine-tuning into a common step due to higher
precision. Also a different approach for the choice of nonlinear functions is
used, because variance of signals in blocks need not be equal to one as assumed
by the approach used in EFICA.

BEF1 Separation by the symmetric FastICA with the test of saddle points in
order to obtain a preestimate of the demixing matrix Ŵ.

BEF2 Fine-tuning of each row of Ŵ by means of the block one-unit FastICA
(section 4.2). The weights and the nonlinearities in (19) are simultane-
ously updated as described below. The simplified version of the algorithm,
called Uniform Block EFICA, selects all the weights equal to an arbitrary
nonzero value.

BEF3 The refinement to get the most accurate and final estimate of the whole
demixing matrix.

A simplified illustration of the flow of Block EFICA is shown by Figure 1. In
the following, we provide more details on the steps of the algorithm.

The pre-estimation of the whole de-mixing matrix in BEF1 could be done by
any ICA method, which opens up possible variations of the Block EFICA.
Nevertheless, our selection, the Symmetric FastICA with the test of saddle
points, proves being suitable for wide variety of scenarios [16]. The method al-
lows fast and reliable separation of nonGaussian signals. Moreover, in practice
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it generally allows significant separation of piecewise stationary signals as well,
which follows from the fact that the Symmetric FastICA is a special variant of
the block one-unit FastICA introduced in the previous subsection. However,
it has limited accuracy due to the non-optimal choice of the nonlinearity that
is fixed for all signals and blocks, and also due to the orthogonality constraint
[31] introduced by the symmetric orthogonalization. Therefore, it is a suitable
initialization for the fine-tuning done by step BEF2.

In the fine-tunings (BEF2), the estimation of the k-th signal, k = 1, . . . , d, is
improved by starting the block one-unit FastICA using appropriately chosen
functions g

(I)
k (·) and the weights λ

(I)
k , I = 1, . . . ,M . Since the best choice

of g
(I)
k (·) is the score function ψ

(I)
k (·), we use the approximation by Pham’s

estimator from [13]. The details are given below in the extra subsection.

The choice of the weights λ
(I)
k has an influence on the performance of fine-

tunings as well. Since it should be analyzed first, the choice is given afterwards
in Section 5 by the expression (27). In that section, we also justify the intro-
duction of the Uniform Block EFICA algorithm, which sets all the weights to
a constant.

Finally, the refinement step is done in the similar way as in the original EFICA
[16]. The fine-tuned and normalized rows of the separating matrix resulting
from BEF2, w1, . . . ,wd, and the weights ck` are used to form matrix

W+
k = [ck1w1, . . . , ckdwd]

T .

Then, the k-th row of the matrix (W+
k W+

k
T

)−1/2W+
k yields the final estimate

of wk. The difference compared to EFICA is that the weights ck` should be
computed accordingly. Namely, (15) is in fact a function of the performance
achieved by the fine-tuning in EFICA, i.e., by that of the one-unit FastICA
given by (13). However, the fine-tuning in the Block EFICA is done by means
of the block one-unit FastICA algorithm, whose performance is different. The
performance is analyzed in Section 5, where the analytical expression (28) for
the weights follows.

4.4 Parametric Estimation of Score Functions

Parametric estimation of score functions is a well established problem in sta-
tistical theory [34]. The parametric estimator proposed in [13] is suited for
the problems tackled by ICA algorithms. It is defined as the minimizer of the
mean square distance between a score function ψ(·) and a linear combination
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of K basis functions h1(x), . . . , hK(x), i.e.,

min
θ1,...,θK

E

(ψ(x)−
K∑
i=1

θihi(x)

)2
 . (20)

The merit consists in the fact that E[ψ(x)h(x)] = E[h′(x)] for any function
h(x). Thanks to this, the minimization is possible without knowledge of ψ(·)
and is fast, because it only requires estimation of E[hi(x)hj(x)] and E[h′i(x)],
i, j = 1, . . . , K. The minimizer is then given by the solution of a set of K
linear equations.

In our implementation, we have decided for two (K = 2) basis functions:
h1(x) = x3, that is good for sub-Gaussian sources, and h2(x) = x/(1 + 6|x|)2

working well with super-Gaussian sources [37]. This choice turns out to be
appropriate for a wide class of distributions and offers a good trade-off between
accuracy, speed, and flexibility. For instance, when considering signals with
Generalized Gaussian distributions, the estimator (20) with our settings used
within EFICA yields comparable results with the adaptation originally used
thereby [35].

Another advantage of this estimator consists in computational savings: Once
the moments E[hi(x)hj(x)] and E[h′i(x)] are estimated, the results can be used
where corresponding moments occur, which is, e.g., in the iteration (19). The
burden due to the solution of minimizing equations is, for K = 2, negligible,
thus, the main slowing-down compared to the adaptation used in EFICA
consists in that two nonlinear functions h1 and h2 must be evaluated.

Here, we should point out that it is relevant to take into account the identity
function hi(x) = x for the third basis function in (20). Unlike in case of
the original FastICA/EFICA, this is meaningful in Block EFICA, because
each block z(I) of the sphered data z may not be sphered. Specifically, when
considering g(x) = αx + h(x) in (12) with an arbitrary α and a nonlinearity
h(x), the effect of the term αx is zeroed no matter how α is chosen since
E[zzT ] = I. It is not so in case of the “block-iteration” (19) due to non-sphered
blocks z(I).

Inclusion of the identity function into the score function estimator, in fact,
conveys direct utilization of second-order statistics of signals. The considera-
tion is worthwhile especially when separating signals with changing variance.
Therefore, we consider this as an option in the Block EFICA, which is slightly
more computationally expensive.
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4.5 Choice of the Number of Blocks

The correct number of blocks M in usually not known in practice. The goal
is to choose M such that the distribution of S may be regarded as constant
within each block. On the other hand, M should not be overestimated, because
overparametrization may cause higher estimation error. Luckily, Block EFICA
is not highly sensitive to this parameter, which is demonstrated by results
shown in Figure 4 in Section 6. It is shown that significant overestimations of
M as well as its underestimations do not decrease the performance seriously.

Usually, the choice of optimum M is done by taking into account characteris-
tics of signals to be separated. For example, when separating speech signals,
it is worth to select M such that the length of blocks corresponds to 20-25ms
where speech is almost stationary.

Blind selection of M may be based on estimation of residual inter-signal in-
terference (signal-to-interference ratio - SIR) using analytical expressions (29)
where corresponding statistics are estimated from separated signals. It is thus
possible to see the estimated SIR of separated signals as a function of M .
At the beginning, SIR usually improves with growing M , but for larger M
the growth is slower and slower. We would select M where the increase of
SIR becomes slow; see Figure 4. A similar approach but more computation-
ally demanding would be when Block EFICA was started with different Ms
taken from a reasonable range, and the optimum M or its effective value was
selected subject to the resulting estimate of SIR. Another possible approach
for automated choice of M can be found, e.g., in [36].

5 Performance Analysis

In this section, we analyze performance of the proposed Block EFICA algo-
rithm to reveal influence of its parameters on accuracy of separation. Opti-
mization of the theoretical performance subject to the parameters gives their
final definition, which also completes the description of the algorithm.

The starting point of the analysis is the derivation of the performance of
the block one-unit FastICA, which is achieved by the fine-tunings in BEF2.
We generalize the analysis of the original one-unit FastICA from [32] that
considers the basic ICA model (2) to the piecewise stationary model with M
blocks. The analysis yields the result summarized in the following proposition.

Proposition 1
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For k = 1, . . . , d and I = 1, . . . ,M , assume that

(i) the RVs s
(I)
k have zero mean and finite variance σ2(I)

k such that it holds
that (unit scale)

1

M

M∑
I=1

σ2(I)
k = 1,

(ii) the functions g
(I)
k are twice continuously differentiable,

(iii) the following expectations exist

µ
(I)
k = E[s

(I)
k g

(I)
k (s

(I)
k )]

ν
(I)
k = E[g

(I)
k

′
(s

(I)
k )]

β
(I)
k = E[g2(I)

k (s
(I)
k )],

(21)

and
(iv) the block one-unit FastICA algorithm is started from the correct demixing

matrix and stops after a single iteration (19).

Then, the normalized gain matrix elements N1/2GB1U
k` have asymptotically

Gaussian distribution N (0, V B1U
k` ), where

V B1U
k` =

βk` + α2
k`σ

2
k` − 2αk`µk`
τ 2
k

(22)

for k, ` = 1, . . . , d, k 6= `, provided that τ k 6= 0. Here,

µk = 1
M

∑M
I=1 λ

(I)
k µ

(I)
k

νk = 1
M

∑M
I=1 λ

(I)
k ν

(I)
k

τ k = νk − µk
βk` = 1

M

∑M
I=1(λ

(I)
k )2β

(I)
k σ2(I)

`

µk` = 1
M

∑M
I=1 λ

(I)
k µ

(I)
k σ2(I)

`

νk` = 1
M

∑M
I=1 λ

(I)
k ν

(I)
k σ2(I)

`

σ2
k` = 1

M

∑M
I=1 σ

2(I)
k σ2(I)

`

αk` = µk + (νk` − νk)/2.

(23)

Proof: See Appendix B.

The practical conclusion of this proposition is that the variance of the gain
matrix elements obtained from the block one-unit FastICA is approximately

var[GB1U
k` ] ≈ 1

N
V B1U
k` , k 6= `. (24)
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Consequently, the aim is to minimize V B1U
k` subject to free parameters (weights)

to achieve the best performance in practice. Note that M need not be neces-
sarily equal to a particular value. The proposition is valid if M is such that
distributions of signals are constant within each block.

As will be shown later, all the expectations (21), and consequently (23), are
important for computing optimum weights (λs and later the weights for the
refinement) needed to achieve the optimum performance. In practice, the ex-
pectations are estimated from estimated signals by sample means. Estimation
errors are therefore introduced into the weights. Then, the need is that the
weights are not much sensitive to the estimation errors so as not to worsen
the final performance of the algorithm in practice.

Here we arrive at the problem with the fully general piecewise stationary
model. We have found that the resulting formulas for the weights (not shown
here to simplify the text) are overparametrized, which causes the higher sensi-

tivity of the weights to the estimation errors of (21) and of the variances σ2(I)
k .

Therefore, to reduce the number of parameters, we introduce an important
simplification by assuming the same (unit) variance of signals in all blocks,
i.e.,

σ2(I)
k = 1, k = 1, . . . , d, I = 1, . . . ,M. (25)

Although the assumption restricts our theoretical conclusions to constant-
variance signals, we will show by simulations that the performance of the
method is not depressed in practice when the variance of signals is changing.
The main reason is that the expectations in (21) depend on the distribution

of signals and reflect thus the variance sufficiently, and the parameters σ2(I)
k

become redundant. This is yet more apparent when the identity function is
considered in the score function estimator. The variances are then involved in
the moments (21), because the functions g

(I)
k have the form g

(I)
k (x) = αx +

h
(I)
k (x), where h

(I)
k (x) is a combination of nonlinearities.

By using the constant-variance assumption, (22) simplifies to

V B1U
k` =

βk − µ2
k

τ 2
k

, k 6= `, (26)

where βk = 1
M

∑M
I=1(λ

(I)
k )2β

(I)
k . Now, we derive the optimal choice of λ

(1)
k , . . . , λ

(M)
k

by minimizing (26). The result is described by the following proposition.

Proposition 2

For a fixed k ∈ {1, . . . , d}, minimization of V B1U
k` given by (26) subject to
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λ
(1)
k , . . . , λ

(M)
k is achieved for all ` = 1, . . . , d, ` 6= k, when

λ
(J)
k =

1

M

 τ (J)
k

β
(J)
k

+ AkBk
µ

(J)
k

β
(J)
k

 , J = 1, . . . ,M, (27)

where

Ak =

 M∑
I=1

γ
(I)
k

β
(I)
k

−1

and

Bk =
M∑
I=1

µ
(I)
k τ

(I)
k

β
(I)
k

.

Proof: See Appendix C.

After knowing the performance achieved by the fine-tunings stage BEF2, the
final performance of the Block EFICA is given after the refinement step BEF3.
The refinement, in the original EFICA, utilizes weights ck` given by (15),
which, in fact, are functions of the performance achieved by the fine-tunings
characterized by V 1U

k` . Thanks to this relation, the weights that are optimal
for the Block EFICA are simply given when inserting V B1U

k` into (15) instead
of V 1U

k` .

Namely, the optimum weights ck` for the Block EFICA refinement are given
by

ck` =


V B1U

k`

V B1U
`k

+1
, k 6= `

1, k = `
. (28)

Similarly, the performance of the Block EFICA is analogous to (17), i.e., for
GBEF being the resulting gain matrix,

var[GBEF
k` ] ≈ 1

N

V B1U
k` (V B1U

`k + 1)

V B1U
k` + V B1U

`k + 1
, k 6= `. (29)

5.1 Optimal Performance

Here, we study the special case when the nonlinearities selected by the score
function estimator (20) equal the true score functions, i.e., g

(I)
k = ψ

(I)
k , for

k = 1, . . . , d, I = 1, . . . ,M .

Similarly to the equations above after (17), it holds that β
(I)
k = ν

(I)
k = κ

(I)
k ,

µ
(I)
k = 1, and τ

(I)
k = γ

(I)
k = κ

(I)
k − 1. Next, the formula for λs (27) simplifies

to a constant, namely, λ
(J)
k = 1/M , but we may consider all λs equal to one,
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because then βk = νk = κk and µk = 1. Now, the performance (26) becomes
equal to

V B1U
k` =

1

κk − 1
. (30)

Inserting (30) into (29) we get

var[GBEF
k` ] ≈ 1

N

κ`
κk κ` − 1

, k 6= `. (31)

As compared to the CRLB2 given by (7), it follows that the Block EFICA is
asymptotically efficient within the piecewise stationary model with constant
variance signals. Although this does not mean the asymptotic efficiency of
Block EFICA for the fully general model, we will show by simulations that its
performance is usually very close to the CRLB even when variances of signals
are not constant.

The uniformity of the weights (27) for the particular case studied here gives
rise to the Uniform Block EFICA, as defined in Section 4.3, because d ·M
parameters λ

(I)
k need not be estimated when g

(I)
k (·) are assumed to be the

score functions. This means further reduction of parameters, which may be
useful, for instance, when the number of blocks M is unknown and may be
overestimated.

6 Experimental Results

We have done several experiments simulating various scenarios to demonstrate
good performance and versatility of the proposed Block EFICA algorithm. In
comparisons, we select algorithms that are supposed to be the most compet-
itive for a given scenario. Thus, the original symmetric FastICA algorithm
[5] with the nonlinearity g(·) = tanh(·) and the original EFICA algorithm
[16,37] are considered as competitive methods within nonGaussianity-based
approaches. In several examples, we also consider the BGL algorithm from
[14] that is designed for Gaussian nonstationary signals.

The NSNG algorithm [27] stands for a method belonging to the same class of
algorithms as Block EFICA. As stated in Section 1, the method performs well
in simple examples with “few” signals, but it is considerably unstable in more
realistic scenarios. Therefore, we show its performance only in cases where the
method yields meaningful results.

A common criterion used in experiments is the Interference-to-Signal ratio
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Fig. 2. Mean interference-to-signal ratio of separated signals in the first experiment
computed over 100 Monte Carlo trials. Note that CRLB is not defined here, because,
in the mixture of twenty signals, some of them are distributed according to RVs
with Generalized Gaussian distribution with α ≤ 0.5, which have κ = +∞; see e.g.
Appendix B in [16].

(ISR), for the k-th separated signal defined as

ISRk =

∑d
`=1, ` 6=k G2

k`

G2
kk

, (32)

where G = WA is the gain matrix computed as the product of the separation
matrix W obtained by an algorithm and the known mixing matrix A. Prior
to the computation, the rows of G are permuted to avoid the indeterminacy
of their original order. Such permutation is naturally chosen to yield the best
value of the criterion.

For each experiment, we show the average computational loads of methods in
legends of corresponding figures. All simulations were running in MatlabTM

on a PC with 3GHz processor and 2GB of RAM.

6.1 Validation of the Analysis

The examples presented in this subsection aim at validating theoretical conclu-
sions derived in Section 5 and at demonstrating the performance of the Block
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EFICA in the framework of the piecewise stationary model with constant-
variance signals.

To this end, we compare the proposed Block EFICA with the original EFICA
algorithm, which performs efficiently when working with signals with Gen-
eralized Gaussian distributions [16] with parameter α, GGD(α), obeying the
basic ICA model (2). However, in the experiments presented here we con-
sider signals with varying distribution from one block to the other. Then, the
behavior of EFICA is explained by the analysis of Block EFICA: Using the
same nonlinear functions in all blocks, the functions cannot match the vary-
ing score functions nor the weight for fine-tunings and refinements, thus, the
performance of EFICA is suboptimal. The same holds for the other FastICA
variants.

In the first example, we separate twenty artificial signals of length N = 104

mixed by a random matrix. Each signal consists of four blocks of the same
length N/4. The first and the third blocks have Gaussian distribution, which
is equivalent with GGD(2), and the second and the fourth blocks have the
distribution GGD(α). The parameter α is fixed for each of twenty signals,
where its values are uniformly chosen from [0.1, 10]. The variance of all the
distributions is one, thus, the signals have constant variance.

Theoretical performance, marked in figures by “theory” in the legend, was es-
timated from separated signals using (26) and (29). Results of this experiment
corroborate validity of the analysis due to proximity of the theoretical results
with the empirical ones. They also demonstrate the improved performance
of the proposed method compared to EFICA thanks to considering different
distributions on the four blocks of signals. We do not demonstrate the per-
formance of the NSNG algorithm here, because its original implementation 4

is designed for sub-Gaussian signals only, and the method fails to converge in
this experiment.

To test a scenario with sub-Gaussian signals, we show in Figure 3 the perfor-
mance achieved by separation of ten signals composed of M = 10 blocks. The
k-th signal, k = 1, . . . , 10, is uniformly distributed (with variance one) in the
first k blocks and Gaussian elsewhere.

Similarly to the previous experiment, this example demonstrates the strongest
point of the Block EFICA, which consists in its ability to adapt to varying
signal distribution. The same performance was achieved by the NSNG algo-
rithm, and it performed yet better when smaller length of data was consid-
ered, which is likely thanks to lower number of parameters compared to Block
EFICA. However, also in this scenario, NSNG failed to converge in a few tri-

4 The implementation of the NSNG algorithm was obtained from web-site
http://www-lmc.imag.fr/SMS/SASI/bliss.html
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Fig. 3. Mean interference-to-signal ratio of ten signals of length N = 104 averaged
over 1000 Monte Carlo trials. The first k · N/10 samples of the k-th signal are
uniformly distributed, and the remainder is Gaussian.

als. To allow presentation of its performance, the trials where the divergence
occurred had to be skipped.
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Fig. 4. Average interference-to-signal ratio of ten sub-Gaussian signals achieved by
Block EFICA when changing the number of blocks M considered by the algorithm.

Figure 4 shows the overall performance averaged over all sources when chang-
ing the input parameter M in Block EFICA from 1 to 40. Although perfor-
mance is optimum for the correct value of M = 10, the deterioration of the
performance due to overestimation or underestimation of M is not high. For M
close to 1 the performance of Block EFICA approaches that of EFICA, which
is as expected. Certain local maxima can be observed for M being multiple of
10, which is thanks to fitting the boundaries of blocks exactly to the instants
where the distributions of signals are switched. Nevertheless, the negligible
improvement demonstrates lower importance of the correct fitting.

The theoretical performance computed using (29) monotonically grows with
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M . It therefore becomes slightly overoptimistic for higher values of M , be-
cause it does not take the practical effect of overparametrization into account.
Nevertheless, it may be used in order to choose an effective value of M .

6.2 Signals with Changing Variance

Since the proposed Block EFICA exploits the piecewise stationary modeling
concept, we test its ability to separate nonstationary signals with varying
variance. For that purpose, we design a simple experiment where a signal
having variable variance is separated from another signal that is stationary.
The first (nonstationary) signal has variances, respectively, equal to 1, σ, and
σ2 in the three consecutive blocks of the same length, and the second signal is
Gaussian having the constant variance equal to one. An example of the signals
for a particular value of the parameter σ, which is considered on interval (0, 1],
are shown in Figure 5.

0   2000 4000 6000 8000 10000
−5

0

5
signal #1

0   2000 4000 6000 8000 10000
−5

0

5

N

signal #2

Fig. 5. Illustration of the Gaussian signals of length N = 104 when the parameter
σ that controls the nonstationarity of the first signal equals 0.1.

We consider two situations that differ in selected distribution of the first non-
stationary signal. In the first setup, the distribution is Gaussian in all blocks.
Then, for σ close to one, where the two signals are almost stationary, the
mixture cannot be separated due to Gaussianity of the signals. In the second
setup, the distribution is Laplacian, which makes the mixture separable even
for σ close to one. The signals can be separated for both cases when σ is close
to zero. Then, the first signal is strongly nonstationary and has a different
variance-envelope than the second signal, which is the general requirement of
the BGL algorithm. Figure 6 shows results obtained for both settings of the
experiment.

The first scenario with Gaussian signals fits the Block Gaussian model. In
such a case, the theoretical performance of the BGL algorithm attains cor-

21



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

σ

(m
ea

n 
IS

R
)−

1  [d
B

]

signal #1

 

 

EFICA (0.06s)
Block EFICA (0.13s)
BGL (<0.01s)
CRLB

3
=CRLB

4

NSNG (0.21s)
Block EFICA (identity)

(a)

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

σ

(m
ea

n 
IS

R
)−

1  [d
B

]

 

 
signal #2

EFICA
Block EFICA
BGL
CRLB

3
=CRLB

4

NSNG
Block EFICA (identity)

(b)

0 0.2 0.4 0.6 0.8 1
30

35

40

45

50

55

60

65

70

75

80

σ

(m
ea

n 
IS

R
)−

1  [d
B

]

signal #1

 

 

EFICA (0.04s)
Block EFICA (0.13s)
BGL (<0.01s)
NSNG (0.19s)
CRLB

3

(c)

0 0.2 0.4 0.6 0.8 1
26

28

30

32

34

36

38

σ

(m
ea

n 
IS

R
)−

1  [d
B

]

signal #2

 

 

EFICA
Block EFICA
BGL
NSNG
CRLB

3

(d)

Fig. 6. Results of the experiment with nonstationary signals evaluated by the mean
Interference-to-Signal ratio that was computed from results of 1000 Monte Carlo
trials done for each value of the parameter σ. The figures (a) and (b) correspond to
the first scenario, where the distribution of signal #1 is Gaussian, while for (c) and
(d) the distribution is Laplacian.

responding Cramér-Rao bound, here, given by CRLB3 =CRLB4. Therefore,
its performance should be optimal, which is confirmed by the results shown
by Figures 6(a) and 6(b). Similar performance was achieved by the NSNG
algorithm without yielding any instability, which reveals its excellent ability
to utilize the nonstationarity of signals in simple examples such as the two-
dimensional one considered here.

The proposed Block EFICA algorithm achieves comparable results up to
σ ∈ [0.7, 1], where the Gaussian signals are almost stationary, which makes
them hardly distinguishable for nonGaussianity-based methods. Hence, the
breakdown of the performance is caused by failures of the initialization pro-
vided by the Symmetric FastICA in the first step BEF1. In our experiments
not shown here due to the space, we observed that if “good” initialization is
guaranteed, the final performance of Block EFICA is comparable with that of
the BGL algorithm. Therefore, Block EFICA may be initialized by another
method that performs well in this particular case. Nevertheless, our selection,
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the Symmetric FastICA with the test of saddle points, appears to be suitable
for most applications as discussed in Section 4.3.

The plots marked by “Block EFICA (identity)” demonstrate further improve-
ment of Block EFICA done via involving the identity function in the score
function estimator (see Section 4.4). The better performance shows that the
option allows a more effective exploitation of nonstationarity of signals.

The second scenario simulates the case when the original signals exhibit both
the nonGaussianity and the nonstationarity since the distribution of the first
signal is Laplacian. Here, the Block EFICA yields performance that is superior
to the other methods. The BGL algorithm suffers from stationarity of the
signals as σ is approaching one. Conversely, the original EFICA does not utilize
effectively their nonstationarity for σ close to zero. The implementation of the
NSNG algorithm lacks the ability to accurately estimate the score function of
the Laplacian distribution. It has significantly lower performance than EFICA
and Block EFICA, nevertheless, its ability to profit both from nonstationarity
and nonGaussianity is confirmed.

6.3 Separation of Noisy Instantaneous Mixtures of Speech Signals

In this example, we compare performances of algorithms in a noisy scenario.
Figure 7 shows results of separation of 10 speech signals randomly selected
from a database, each of length 5000 samples. The signals were mixed by a
random matrix, Gaussian noise was added to each mixed channel with the
variance corresponding to a given signal-to-noise ratio (input SNR), and the
mixture was separated and evaluated in terms of signal-to-interference-plus-
noise ratio (SINR). The experiment was designed according to the rules pro-
posed in [39].

Since speech signals often exhibit, beside non-stationarity and non-Gaussianity
also spectral diversity, we compare the performance of Block EFICA with the
SOBI-RO algorithm from [40] that utilizes the spectral diversity, and ThinICA
[11] using also their non-Gaussianity. As can be seen from the results, Block
EFICA is not sensitive to the additive noise as inherited from EFICA and
FastICA. The achieved SINR decreases smoothly with input SNR. In our
example, Block EFICA outperforms the compared algorithms, however, note
that the performance strongly depends on properties of the to-be separated
signals.
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Fig. 7. Results of separation of noisy mixtures of speech signals averaged over 100
independent trials.

6.4 Separation of Natural Convolutive Mixture of Speech Signals

To demonstrate strengths of Block EFICA on real-world data, we present an
example where a convolutive mixture of two speech signals recorded by two
microphones is separated. The mixture is separated using the procedure from
[38] as follows 5 . The first and the most important stage relies on an ICA
decomposition of a subspace spanned by delayed signals from microphones,
i.e.,

x1(n), x1(n− 1), . . . , x1(n−L+ 1), x2(n), x2(n− 1), . . . . . . , xd(n−L+ 1),
(33)

where L is the length of separating filters. Note that this way the convolutive
mixture problem is transformed into an instantaneous one, thus, we can apply
any ICA algorithm that is originally designed for instantaneous mixtures (in-
cluding Block EFICA). The algorithm thus yields independent components of
the subspace (33) that, in fact, correspond to outputs of d · L multiple-input
single-output filters of length L. The key objective is that each independent
component should contain a contribution of one original source only, which is,
in an ideal case, a filtered copy of the source.

The procedure from [38] continues by grouping the components into clusters
that correspond to the same original source. Finally, the clusters (the com-
ponents in the clusters) are used to reconstruct the original sources; see [38]
for further details. Anyway, the idea of this experiment comes from the fact
that the final results of the separation provide a benchmark for testing ability

5 The method from [38] is available at http://itakura.ite.tul.cz/zbynek/
tddeconv.htm.
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of different ICA methods for instantaneous mixtures to separate convolutive
audio mixtures, i.e., to yield such independent components that correspond
to particular original sources.

Figure 8(a) shows Lee’s data 6 containing real recordings of two speakers
(played over loudspeakers) simultaneously saying the digits from one to ten in
English and in Spanish, respectively. The loudspeakers were placed closely to
the microphones (60 cm), so direct-path signals and possibly early reflections
from the closest objects are much stronger than the other reverberations in
the recorded convolutive mixture. Hence, very short separating filters applied
through [38] (of the length L) may separate these signals efficiently.

Since the rhythms of the speech signals are similar and synchronized, there oc-
cur many short segments (say of length 6000 samples - the sampling frequency
is 16kHz) where the dynamics of the speech signals are very close. Owing to
possible changing mixing conditions (e.g. moving sources), the aim is to sep-
arate as short segments of signals as possible. However, the similar dynamics
of sources in short segments cause malfunctioning of nonstationarity-based
methods. From this point of view, the methods that use not only the non-
stationarity but also the nonGaussianity of speech are more flexible, because
they do not fail in such situations.

To demonstrate this, Figures 8(b) and 8(c) show results of separation with
L = 20 via BGL 7 and Block EFICA, respectively, when only using a short
segment of data for the mixture identification (learning data). Then, the re-
sulting separating filters are applied to the whole signals. Since the mixture is
here stationary (the loudspeakers and microphones remain in their positions
during the whole recording), the separated signals reveal ability of the ICA
methods to separate them using data from the given data segment only.

Since the dynamics of signals are too similar in the chosen segment, the
nonstationarity-based BGL algorithm yields poorly separated components of
(33), so that average SIR of the finally separated sources is 3.3dB 8 , while
the original SIR of the mixed signals is 3.4dB. By contrast, the Block EFICA
algorithm succeeded to separate the signals yielding average SIR of 12.2dB,
which means “good” result in this convolutive audio source separation task.

6 Lee’s data are available online at http://www.cnl.salk.edu/~tewon/
Blind/blind audio.html.
7 In fact, the method from [38] utilizes a fast variant of BGL named BG WEDGE.
The algorithm is based on a fast joint diagonalization algorithm with adaptive
weights proposed in [17].
8 The Signal-to-Interference ratio was evaluated by means of the BSS EVAL tool-
box from [46] that uses projections of signals to avoid indeterminacies due to arbi-
trary filtering of separated signals. Lee’s separated signals were used as the reference
“correct” signals.
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7 Conclusions

We have proposed the Block EFICA algorithm that effectively exploits both
the nonGaussianity and the nonstationarity of original signals to separate
them. The method efficiently solves the ICA task defined by the piecewise
stationary model. It yields comparable performance as methods only intended
for marginal cases: the nonGaussianity-based model or the Block Gaussian
model. Namely, it has about the same performance as the EFICA algorithm
if the separated signals are stationary and nonGaussian. In case of Gaussian
piecewise stationary signals, Block EFICA is not claimed to be optimum in
theory, but in our simulations we have shown that its performance may be
close to that of the BGL algorithm that performs optimally in this case.

In so doing, Block EFICA performs best in case of compound scenarios involv-
ing nonGaussian and nonstationary signals. The considered number of blocks
M need not be precisely determined, as the method is not highly sensitive to
it. Moreover, it yields equivalent performance with that of EFICA when M is
equal to one. Finally, Block EFICA provides an appealing alternative to the
theoretically optimum NSNG algorithm in terms of better stability and lower
computational complexity, especially, when applied to high-dimensional data
and, therefore, may be successfully applied to real-world BSS problems.

Appendix A - Derivation of CRLB3

In this Appendix, we provide a simple derivation of CRLB3 based on results
from [32] and the corrections [44].

We start from equation (36) of [32] that, for N = 1, gives the mn-th element
of the Fisher Information Matrix (FIM) 9 of an independent observation of
(2)

(FI)mn = δjuδvi + δjiδvuδvi(ηi − κi − 2) + δiuδvjκi, (34)

where m = (i − 1)d + j and n = (u − 1)d + v with i, j, u, v = 1, . . . , d,
ηi = E[s2

iψ
2
i (si)], and δji is the Kronecker’s delta. This result can be easily

extended for signals with general variance σ2
j = E[s2

j ] (page 1201 of [32], the
first column, the fourth line of the second item in the enumeration), which
gives

(FI)mn = δjuδvi + δjiδvuδvi(ηi −
σ2
v

σ2
i

κi − 2) + δiuδvj
σ2
v

σ2
i

κi, (35)

9 In the corrections [44], it is shown that the first term in (36) of [32] should be
removed. This means that, for N = 1, the relation is correct.
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where κi and ηi are defined for normalized pdfs of the sources in order to be
scale-invariant.

Now it follows that the FIM of an observation from the I-th block of the
piecewise stationary model (3) should have the block-dependent quantities
labelled by the superscript (I), and the FIM of all N independent observations
has the mn-th element equal to

(FI)mn = N

δjuδvi + δjiδvuδvi
1

M

M∑
I=1

η(I)
i −

σ2(I)
v

σ2(I)
i

κ
(I)
i − 2

+

+ δiuδvj
1

M

M∑
I=1

σ2(I)
v

σ2(I)
i

κ
(I)
i

. (36)

The structure of the FIM (36) is the same as in case of the basic ICA model
(2), i.e., it can be written in a form FI = P + Σ with P being a special
permutation matrix and Σ being diagonal

Σ =
1

M

M∑
I=1

diag

η(I)
1 − 2,

σ2(I)
2

σ2(I)
1

κ
(I)
1 , . . . ,

σ2(I)
d

σ2(I)
1

κ
(I)
1 ,

σ2(I)
1

σ2(I)
2

κ
(I)
2 , η

(I)
2 − 2,

σ2(I)
3

σ2(I)
2

κ
(I)
2 , . . . ,

σ2(I)
d

σ2(I)
2

κ
(I)
2 , . . . ,

σ2(I)
1

σ2(I)
d

κ
(I)
d , . . . ,

σ2(I)
d−1

σ2(I)
d

κ
(I)
d , η

(I)
d − 2

. (37)

Therefore, the inversion of FI can be derived using Appendix D of [32]; see
the simplification due to the corrections. Using appropriate substitutions ac-
cording to (90) in [32], the resulting CRLB3 given by (8) readily follows.

Appendix B - Proof of Proposition 1

We will follow the easiest way by generalizing proof of analogous proposition in
[32] (see the Appendix A therefrom). Similar notations will be used, namely, sk
will be N×1 vector of samples of the k-th original signal, i.e. the k-th row of S,
with the difference that the I-th block ofN/M samples is distributed according

to RV s
(I)
k . Owing to the indeterminacy of scale of original signals, the variances

of s
(I)
k can be assumed to be such that sk has unit scale (assumption (i) of the

proposition).

Next, the vector uk contains normalized elements of sk so that uk has the
second-order sample-moment exactly equal to one. The vectors zk and xk
denote samples of the respective signals. The nonlinearity g(·) used for the
k-th signal will be distinguished by the subscript k, i.e. gk(·). It applies to the
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vectors element-wise, so that function λ
(I)
k g

(I)
k (·) applies to the I-th block of

N/M elements.

Now, using the third assumption of the proposition 1 given by (21), equations
(40) and (41) from [32] change, respectively, to

N−1sTk gk(sk)
N→+∞−→ µk (38)

N−1g′Tk (sk)1N
N→+∞−→ νk (39)

Note that ν denotes the same expectations that are in [32] denoted by ρ. 1N
stands for N × 1 vector of ones.

Using this, all the following equations (42)-(64) in [32] change according to
the substitutions

µk ←µk (40)

ρk ←νk. (41)

The only exceptions are the equations (42), (45), and (62), which should be
revised due to different variance in blocks, and it gives, respectively,

N−1g′
T
k (sk)(s` � s`)

N→+∞−→ νk`, (42)

g′
T
k (u` � u`) =Nνk` + op(N), (43)

E[(gTk u`)
2] =Nβk`, (44)

where gk is the simplified notation of gk(uk). Recomputation of (65), (71),
and (75) in [32] using the above substitutions readily yields the result of the
proposition given by (22).

Appendix C - Proof of Proposition 2

The criterion (26) can be written in the form

V B1U
k` =

lTkΓklk

lTk tkt
T
k lk

(45)
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with

lk =[λ
(1)
k , . . . , λ

(M)
k ]T (46)

Γk =diag[β
(1)
k , . . . , β

(M)
k ]− 1

M
mkm

T
k (47)

mk =[µ
(1)
k , . . . , µ

(M)
k ]T (48)

tk =[τ
(1)
k , . . . , τ

(M)
k ]T (49)

τ
(I)
k =ν

(I)
k − µ

(I)
k (50)

The goal is to minimize (45) subject to elements of lk, which is equivalent
with maximizing

max
lk

lTk tkt
T
k lk

lTkΓklk
. (51)

Let yk = Γ
1/2
k lk, where the matrix Γ

1/2
k obeying Γ

1/2
k Γ

1/2
k = Γk exists thanks to

positive semidefiniteness of Γk (V B1U
k` denotes variance, which must be always

nonnegative). Since (45) is invariant subject to nonzero multiple of lk, we can
introduce a constraint ‖lk‖ = const., and (51) can be written in the form of
classical eigenvalue problem

max
‖yk‖=1

yTk Γ
−1/2
k tkt

T
kΓ
−1/2
k yk

yTk yk
. (52)

The rank of the matrix Γ
−1/2
k tkt

T
kΓ
−1/2
k is one, thus, the eigenvector corre-

sponding to the only nonzero eigenvalue, i.e. the solution of (52), is yk =

Γ
−1/2
k tk. Hence, lk that minimizes (45) is

lk = Γ−1
k tk. (53)

Using the matrix inversion lemma for computation of Γ−1
k , (27) follows.
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[32] P. Tichavský, Z. Koldovský, and E. Oja, “Performance Analysis of the FastICA
Algorithm and Cramér-Rao Bounds for Linear Independent Component
Analysis”, IEEE Trans. on Signal Processing, Vol. 54, No. 4, April 2006.
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Mixed signals

(a)

Separated signals by using the BGL algorithm

(b)

Separated signals by using the Block EFICA algorithm

(c)

Fig. 8. Results of separation of real-world convolutive mixture of two speech signals
recorded by two microphones. Respective ICA methods were applied to the subspace
generated by selected data segment of 6000 samples. The segment is delimited by
vertical lines in the graphs.
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