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Abstract

Two major approaches for Blind Source Separation (BSS)espactively based on the maximum likelihood (ML)
principle and mutual information (MI) minimization. Theybe been mainly studied for simple linear mixtures. We
here show that they additionally involve indirect functependencies for general nonlinear mixtures. Moreover,
the notations commonly employed by the BSS community inudatmons performed for these methods may become
misleading when using them for nonlinear mixtures, due ®dhove-mentioned dependencies. In this paper, we
first explain this phenomenon for arbitrary nonlinear mgimodels. We then accordingly correct two previously
published methods for specific nonlinear mixtures, whedérétt dependencies were mistakenly ignored. This paper
therefore opens the way to the application of the ML and MI B&&hods to many specific mixing models, by
providing general tools to address such mixtures and exglghowing how to apply these tools to practical cases.

Keywords: independent component analysis, maximum likelihood rmfttion theory, mutual information, indirect
functional dependencies, nonlinear mixture

1. Introduction

Blind source separation (BSS) consists in restoring a vetpof N unknown source signals from a vecixt)

of P observed signals (here with= N), which are derived frons(t) through an unknown mixing functiag i.e. [5],
[12]

X(t) = g(s(t)). 1)

The main class of methods which has been proposed to thissdpalsed on the assumed statistical independence
of the source signals and is called Independent Componediygis (ICA). Various principles have been reported
for performing ICAL. This especially includes the maximum likelihood (ML) apach. ML-based ICA is attractive,
because it takes advantage of the general good statistmaépies of ML estimation, beyond the specific scope of
ICA [5], [12]. The ML approach for ICA was mainly developed finear instantaneous mixtures. It was especially
introduced by Gaeta and Lacoume [9], and Pham and Garat [@#jer linear instantaneous ICA methods were
developed by using information theoretic criteria, maioyyminimizing the mutual information (MI) of the estimated
sources [4]. Although they were initially based orffelient signal processing tools, these ML and MI approaches
turned out to yield similar methods.

More recently, several authors extended the ML and M| apgres to some specific classes of nonlinear mixtures
(see especially [6],[8],[10],[16] ; see also [17] for a mgeneral framework, or [1] for a method which is not dedicated

*Corresponding author. Phone33 5 61 33 28 24, fax+33 5 61 33 28 40.
Email addressesydeville@ast.obs-mip.fr (Yannick Deville),shosseini®@ast.obs-mip.fr (Shahram Hosseini),
alain.deville@univ-provence.fr (Alain Deville)
1For linear instantanous mixtures, various ICA-relatedhmés were proposed, in addition to the ML and MI approachesiwdre considered
hereafter. Several of these other ICA-related approacteebased on second-order or higher-order moments or cutsulaee e.g. COMECA
[4], JADE [3], SOBI [2] and the kurtosis-based version of @ [11].
2Apart from ML and MI, various other BSS approaches were atspgsed for nonlinear mixtures: see e.g. the overviewsli{13].
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to a specific class of mixtures). This extension requiresesoare, because the considered cost functions contain
indirect dependencies, and the notations used for ML andyWhb BSS community may become ambiguous, or
even lead to false interpretation, foonlinearmixtures. This paper aims at clarifying this point for gealeronlinear
mixing models, and at correcting associated errors whigleaped in part of the studies that were previously reported
for some specific nonlinear mixing models.

The remainder of this paper is therefore organized as faldw Section 2, we detail thétect of indirect depen-
dencies when using the ML approach for general (possiblyimear) mixing models. Then, in Section 3, we show
that this phenomenon disappears for linear mixtures, aneéxp&ain how it must be taken into account to correct a
previously reported method for linear-quadratic mixturélse Ml approach yields similar phenomena and is therefore
then addressed somewhat more briefly: first, in Section 4,hgev$ow to handle indirect dependencies in the MI
approach for general mixtures ; then, in Section 5, we coagreviously reported method for specific mixtures, and
we comment about linear mixtures as a spffi-€onclusions are drawn from this investigation in Section 6

2. Maximum likelihood approach for general mixtures

2.1. Separation criterion

We here consider a general mixing functipn.e. we only assume that it is bijective and memorylessotiserved
vector at timet, i.e. x(t), only depends on the source vector at the same timeg(t)e.Moreover, each source signal
is assumed to be independent and identically distributed.}i as usual in the ML approach. In this framework, the
original mixing model (1) may be reformulated by only coreidg a single time and by using the corresponding
random source vect@® and random observed vectdr which reads

X =9(S). (@)

The joint probability density functions (pdf) of these vt are respectively denoted gsand fy. The pdffs is fixed
(and possibly unknown). Since we assume that the mixingtieimg is bijective, we have

_ fs(9)
%= 39

3)

wheres = g~1(X) andJy(9) is the Jacobian df, i.e. the determinant of the Jacobian maggxwhose elemeniyj) is

equal to‘g%' [12]. Taking the logarithm of (3), and assuming the sourodse mutually statistically independent, we
obtain

N
In fx(X) = Z In fs,(s) — In|Jg(3)| 4)
i=1

wheres are the components sfand fs, (s) are the marginal source pdf.

The mixing functiong is assumed to belong to a given class of functions and to haeéaf parameters, whose
values are unknown. Similarly, the separating system usegistore the sources from the observations corresponds to
a functionh belonging to a given class, and its parameter values musilbeted so as to achieve= g~ (examples
are provided below in Section 3). Eq. (1) then yields

s(t) = h(x(t)). (5)

The ML approach may be used to estimate either the parantersr those ofh. The set of parameters of the
considered function, i.e. af or h, is denoted a8 = [6s,...,6«]" hereafter, wheré stands for transpose. Whén
consists of the parameters@fEq. (1) focuses on the signals (i.e. sources and obsengtiand it hides the fact that
the observations also depend®riThis additional dependency can be made explicit, by ravgifl) as

X(t) = g(s(b), 6). (6)
Similarly, whend consists of the parametersinfEq. (5) may be rewritten as
S(t) = h(x(t), 0). (7)

3
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Eq. (7) thus explicitly shows that the separating systemutst(which are equal to the source values in the considered
configuration, wherd = g1) are functions of the observations and of the veétof parameters of the separating
system. Therefore, for a given observed vectd), Eq. (7) shows that the source vecsft) may be considered as
a function off. This topic is addressed in more detail further in this pgpee especially paragraph after Eq. (19)),
because we show below that expressions (6) and (7) of thenghatid separating models are better suited than (1)
and (5) to the ML approach considered in this paper.

Given M samples of the observed vectdr the ML estimator of9 is obtained as the valugy. of 6 which
maximizes the joint pdf of all these observations, calleglikelihood, which is equal to

L = fx(xa(1),..., Xn(1), - - -, Xa(M), ..., Xxn(M)) (8)

wherex;(m) is the value of then-th sample of thg-th observation. Since we assumed that the source sigresils.dr
and the mixing model is memoryless, each observed sign&ddd.ad, so that

M

L= [ ] fxCam),.... xu(m) (9)
m';l

and InL = Zlnfx(xl(m),...,xN(m)). (10)
m=1

Maximizing L is equivalent to maximizing the (normalized) log-likeldw.L = % InL. Thanks to (10),L may be
denoted as
L = EIn fx(x¢(0), ..., xn(D)], (11)

using the temporal averaging operator over the set of dleildata, which is denoted &%[.]. Eq. (4) then yields

N
£= ) Elln fs ()] - Ein Jg(st)- (12)
i=1

2.2. Gradient of log-likelihood

Determining the value afwhich maximizes involves each of the derivatives gfwith respect to one component
0 of 6, while all its other components are constant. Each suclvatere is denotecg%k hereafter. The column vector
composed of these derivatives is called the gradiedl with respect t@ and is denote% hereafter. These notations
are used for the sake of clarity: although the BSS commundgsgtroften denotes this gradient% and each of its

components a%,f, we will not use the latter notations, because we will shat they may be misleading faonlinear
mixtures. A
The above gradient is first used to express a necessary iomnfdit a valuedy. of §to maximizeL. This condition

reads dar
= =0 13
do 6=0mL ( )
or, in scalar form
d—L =0 VYk=1,...,K (14)
dek 9:§ML

This gradient is also used in the so-called gradient asdgotithm, which is a simple procedure for numerically
optimizingé so as to (locally) maximize, by means of the iterative adaptation rule

d

O(n+1)=6(n) +pu dL (15)

dé lo=a(r)

whereu is a positive adaptation gain.
Whereas the above description of the first steps of the ML@aagr is a rather conventional prerequisite of our

analysis, the next step consists in deriving the expligiregsion of the above-defined gradient and deserves some
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care for nonlinear mixtures, as will now be shown. Eqg. (12)dsed to determine each derivati%, by taking into
account tha%:g' =195 9nq by introducing the score functions of the soutcdsfined as

150
wsl(u)z—w Vi=1,...,N. (16)
Eqg. (12) thus yields o | n s
== Zl B ()51 ~ B3 5] (17)
or, in column vector form
& - mSne-E —Z—J; (18)
where y(s) = [wsl(sl),...,wsN ()] (19)

andg; dS is the matrix whose elemerit () is equal to t

The calculation of the ternﬁe—k of (17) then deserves care and led to an error in a previoushjighed paper,
as detailed in Section 3.2. One should realize that, whetyimgpthe ML approach to any BSS configuration, the
log-likelihood £ is considered for the fixed set of observed vectors. The enlgpendent variable in this approach is
the column vecto# of mixing or separating parameters to be estimated. Theceowgctors are dependent variables,
here linked to the observations anditby (6) or (7). The overall variations of the log-likelihodfiwith respect t@
result from two types of terms contained in the expressiog dfe. (i) the terms involving itself and (ii) the terms
involving the source signals, . .., sy, which are here considered as function® @ind may therefore be denoted as
s1(0), ..., sn(8) for the sake of clarity. Similarly, the log-likelihood, wdh appears in the left-hand side of (12), may
be denoted ag(0, s1(0), . . ., sn()) for the sake of clarity. In order to determine the locatajrihe maximum of this
log-likelihood, one should then consider tte¢al derivatives of£(6, s1(6), . . ., Sn(6)) with respect to each parameter
ek We therefore denoted these derivative%és’n (17). On the contrary, the notation wighartial derivatives, i.e.

09 , often used for these quantities in the BSS community mayibkeating, as confirmed below.

The above comment is of importance for the tenﬁ in (17) because, for general nonlinear mixing models, the

JacobianJy contains the above-defined two types of dependenues vapeot tady, i.e. (i) direct dependenciedue
to the terms of]y which explicitly containg, and (i) indirect dependenciedue to the terms odg which depend on
the source signals, which themselves depenéan the ML approach. We here have to considertthtal derivative
dy

TR , which takes into account both types of dependencies, aichwiierefore reads
k

dly 93y < g ds

= 2
(o[ 00 * 55 d@k ( O)

3In practice, the pdf of the sources are most often unknowrtfagid score functions are estimated, as explained e.g.2 [1
4Each derivativegTJE is "total” only with respect to the considered componeégptof 6, i.e. it takes into account all variations d§ with
respect to that componeét, while all other components @fare kept constant. For the sake of clarity, we could theeeflanote that derivative

(%) o to show that all components éfexceptdy are constant. However, this would decrease readabilityerdfthre, in all this paper we
6\{6k

omit the notation(.)s\g,;, but it should be kept in mind that each considered derigatiith respect t@ is calculated with all other components
of 6 constant. Then, in this framework, what we have to distisiyuare: (i) the total derivative due to the variationsgpfand of alls;, and (ii)

the partial derivative (i.e. with all components @Exceptdy fixed, and alls fixed). We then have to use twofl#irent notations for these two
types of derivatives, such ag@— and ng in (20). These two types of notations are commonly used ifitd@ture for functions which depend
(i) on a single independent vanable | e. time, and (ii) ¢meo variables which themselves depend on time, such aslicate variables: see e.g.
httpy/en.wikipedia.orgwiki/Total derivative or [15]. We here extend this concept to a confiiomawhich involves several independent variables,
i.e. all component# (and, again, other variables which themselves depend omdependent variables, i.e. a&l). We here keep the same
types of notations as in the standard case involving a sindkependent variable. The MI approach described in Sedtigields the same type of
comment.
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or, in column vector form
dJy BJg dsﬁ\]g

a9 - T d0os (1)

0J
The terma—eg of (20) is thepartial derivative ofJg with respect tdj, calculated by considering that the source signals
k

§ are constant. This clearly shows that the total derivatisdch appears in the left-hand side of (20) and which is
the quantity that we aim at determining here, should be dﬂi‘?éf as in the current paper: instead, if it was denoted

0J

6_6g as is usually done in the BSS community, this would yield twaltems. First, it would not be possible to write
k.

(20) as above, because the same notation would be used ligft-tand side and for only the first term of its overall

right-hand side. Then, and more dangerously, starting tf@mnadequate notanog— for the overall quantity to be

determined (i.e. left-hand side of (20)), one would be lethistakenly interpret it as thpartlal derivative ofJq with

respect tad, and to calculate it by considering that the source sign@sanstant. One would thus forget all other
terms, i.e. aII‘;Jg gj in the right-hand side of (20). This error was made in a presip published paper. In the next
section, we therefore show how this error should be corceatel, more generally speaking, how the ML method may

be applied to various mixing modé)sncluding linear ones.

3. Applications of maximum likelihood approach

To apply the ML approach defined in Section 2 to a given mixingdel, we now just have to determine the
expressions of the Jacobidgof this mixture and of its total derivatives (20) with resp&rthe mixing or separating
parametergy. This then makes it possible to derive the expressions afthdient components (17) associated with
this mixing model, as all l‘actorgj—k required in (17) and (20) may be obtained as explained in theeAdix. This
gradient may then e.g. be used in the gradient ascent digo(it5). For the sake of clarity, we first briefly show how
this approach is related to already known results for limeixtures.

3.1. Linear mixtures
The simplest BSS configuration corresponds to linear inateous mixtures. The mixing model (2) then reads

X = AS, (22)

whereA is a square, supposedly invertible, unknown, mixing matiike ML method may be used to estimate the
inverse of this mixing matrix , i.e.B = AL, The variables called in the above discussion then consist of the
elements oB. This matrixB is used as the separating system, in order to restore theesoby computing them
according to

y(t) = BX(). (23)
The Jacobian of any mixing model was defined above (after E8))the mixing model (22), it reads
1
- T _
Jy(s) = detA’ = JoiB Vs (24)

Our main comment is that, for this specific casdingar mixtures, Jy(s) does not dependn the source signals.
Therefore, the total derlvatlvée in (20) is here only composed of the partial denvatb\ge This may be expressed
in a compact way, by gatherlng all these scalar derivativesatrices [12], which yields

dly 4

5The application of the ML approach to a specific nonlinearingxmodel reported in [6] does not contain any explicitlystalexpression.
However, it is ambiguous because is does not detail allioind expressions for derivatives. This ambiguity caedsély solved by using the
approach described in the current paper.



74

75

76

78

79

80

81

Therefore, for the specific case of linear mixtures, theimtision between total and partial derivatives is not an
issue. This is probably the reason why this distinction haisheen considered in detail up to now, since most
BSS investigations were restricted to linear mixtures. Vile wow show that things becomefterent for nonlinear
mixtures, by considering a practical example.

3.2. Linear-quadratic mixtures

The configuration considered in [10] involves two obseagiwhich are linear-quadratic mixtures of two sources,
ie.

Xi=%-hs-qss (26)

Xo =S =251 - siS (27)
wherelq, |2, g1, gz are unknown mixing parameters. This model is a specific warsf the additive-target mixtures
(ATM) which were defined in [7], together with associated a@ping structures. Here, we need not describe the
separating structure used in [10], because the ML approaftOpthat we want to address is used to estimate the

parameters of thenixingmodel. Therefore, we here hage= [I1, |2, 41, gz] 7. The Jacobiad of the mixing model is
derived from (26)-(27), which yield

Jg = 1-l1l2 = (02 + 1201) 81 — (1 + 1102) . (28)

We then aim at computing the gradientlfdefined in (21). Its first term is derived from (28), which yisl

aJ T
a—eg=—[|2+CI252,|1+Q151,|251+52,51+|152] : (29)
Similarly, (28) results in
0J
6_: =[O + |21, O + 1102] . (30)

The factorg—j to be used in (21) is then obtained from Eq. (A.5) derived edppendix, where (26)-(27) yield

.
99 _ [—Sz 0 -1 O } (31)

90 0 -ss 0 -s%

ag 1-hs -
d = = . 32
and s [—|1—Q151 1-s ] (32)
Eqg. (A.5) thus results in
ds_ 1] (1-s)s (i+ms)s (1-Gs)sis (h+qs)sis | (33)
do Jy| 2+ ®s)e 1-mx)s (R+ks)ss (1-nms)sas

Using (29), (33) and (30), Eq. (21) eventually becomes

—(l2 + G22) — (92 + 1202)(1 — G2S1)S2/ g — (Q1 + 1102) (12 + Q2S2) 2/ Jg
A | —(l1+ aqs)—(d2 + 1200)(11 + arS1)s1/ g — (o + 1102)(1 — G S2)S1/ Jg (34)
do | (281 + %) — (A2 + 1201) (1 — Q2S1)$192/ Jg — (1 + 1102) (12 + 282) 192/ g |
—(l152 + s1)—(a + 12010) (11 + 1) 152/ Jg — (Q1 + [102)(1 — 192)S1S2/ Jg

This is the correct expression %f then used to derive the expressior%éf(see (18)). On the contrary, the set (29)

of partial derivatives was mistakenly used in [10], as if &re& the factm% used in the expression % (see (17)in
[10p).
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For the sake of completeness, we eventually provide theaiixpkpression oi‘é—g, defined in (18), which results
from (34) and (33) (and which therefore replaces (17) of J1i03.

% = _Et[(‘/’sl(sl)(l — S1)S2 + ¥, (S2)(12 + 22) S
12+ 050) — (@ + 1) (L~ s — (T + )12 + 1552/ 3g) o
(wsl(sl)(ll +01S1)s1 + ¥, (S2)(1 - hS2) st
01+ S ~(Gp + L) + )5/ g — (A + o)L~ us)si/dg ) g,
(wsl(sl)(l — S1)S1S2 + ¥, () (2 + )51
1251+ ) — (G + L) (L GoS1)5150/%g — (@1 + 1) + o) $152/3g)
(wsl(sl)(ll +Q1S)91S + Y, ()1 - wp)91S

.
—(l1%2 + 1) (02 + 1200)(l1 + uS1)S192/ g — (A1 + 11G2) (1 - QlSZ)Slsz/\]g))/\]g] :
(35)

4. Mutual information minimization for general mixtures

The MI-based BSS approach leads to the same type of phenarasradove for nonlinear mixtures. We therefore
describe it more briefly hereafter, again for an arbitrafgdtive memoryless mixing functiog. The sources are
assumed to be mutually statistically independent andostaty, so that we omit the considered time inder all
signals hereafter. The separating system correspondsiactidnh, i.e. its output vectoy reads

y = h(x). (36)

h is assumed to belong to a given class of functions and to haeetard = [6y,...,0«]" of parameters, that we
aim at estimating so as to achiele= gX. The criterion used to this end here consists in minimizimg mutual
information, denotedi(Y), of the vectory of random variable¥; associated with the output signal samplesf the
separating system at timieDenotingH(.) marginal and joint dierential entropies, we have

N
1Y) = [Z H(Yi)] — H(Y). (37)
i=1
Moreover,H(Y) = —E{In fy(Y)}, whereE{.} stands for expectation. Eq. (36) and (37) therefore yield
N
I = [Z H(Y»J ~ H(X) - E(In |3} (38)
i=1

wherelJ;, is the Jacobighof the separating function, defined in the same way dg above.

In order to determine the value éfwhich minimizesl(Y), we consider the gradient ¢{Y) with respect to.
Its components read as follows, using [16] foffeiential entropy derivatives, and taking into account,thrathis
investigation, the observations are fixed a#(X) is therefore a constaht

SFor the sake of readability, we use the same notation,Jefor (i) the sample value of this Jacobian associated wighalisample values
yi (see e.g. (49)) and (ii) the random variable defined by thantjty when considered as a function of the random varialflgsee e.g. (38)).
To know whether we are considering the sample valué,air the associated random variable in an equation, one jsstcheheck whether that
equation involves the sample valugor the associated random variabls y

7One may therefore equivalently minimig{Y) = 1(Y) + H(X) instead ofi (Y), e.g. as in [8].%1() is then also expressed as in (39).

8
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diy) (v 1dd
vl [ZEwY, \OFms ) B3 g, (39)

i=1
where ¢, (U) = w Yi=1,...,N (40)

are the score functions of the outputs of the separatingsysienotingfy,(.) the pdf of these signals. The ter%ékl

in (39) again deserves some care, becalysi@ general contains (i) direct dependencies with respeétdad (ii)

dependencies with respect to the separating system outpuihich yield indirect dependencies with respectio

We here have to consider thetal derivativeg—jk“, which takes into account both types of dependencies, amnchwh

therefore reads

(9Jh o dy
d@k 69k IZ oY d@k (41)

. .0 . . o . S .
In this expressmna—eh is thepartial derivative ofJ, with respect taj, calculated by considering that the signgls
k

are constant (in addition to the fact that all componentsefceptyy are also constant).
0dn
In [8], the variations of),, with respect to all; were forgotten, i. eag was used instead (%& in (39). We show

how to correct that error in the next section. That sectico ailustrateska general phenomenon: for many nonlinear
mixing models, the analytical expressions of the inverse (separating) modél and therefore of its Jacobial
cannot be derived. However, those fort can (they are nothing but those fgr but expressed vs. the signals and
separating ca@icients involved irh, as illustrated below). The Jacobidnis then calculated a%, = (J,1)%. That
expression could also be used to directly simplify (38) a38).(

The above presentation also shows that the ML and MI appesaate closely related for the considered general
mixing model. replacing sample temporal averaging by etqigamn in (12) (based on ergodicity and considering
M — +o0 ), and the unknown source signals by their estimates avaikb outputs of the separating system, the
log-likelihood £ is replaced by

£2= 3 Eln (01— Elln i1 = = Y HOO + Elln 3y = 1Y) - HOO. (42)

i=1 i=1

Therefore, maximizing_; is equivalent to minimizing(Y), sinceH(X) is a constant.

5. Applications of mutual information minimization approa ch

5.1. Mixtures with power terms
The investigation in [8] concerns a specific nonlinear BS&@m which involves two observed signals, derived
from two source signals through the nonlinear function defias

s + aa(s)* (43)
S + A () (44)

wherea;, anday; are two unknown mixing cdicients and is a known integer.

The separating structure used in [8] to process such mixtwes derived from the structure for linear-quadratic
mixtures proposed e.g. in [7],[10]. It belongs to the gehelass of structures proposed in [7] for the ATM class
of mixing models, which includes the specific model (43))(4Bhe separating structure of [8] has internal adaptive
codficientsw;, andwp;, which here composé. For each timd, this structure determines the output vecgjoe
[y, ¥2]" from its current internal caicients and from the current observation vectorTo this end, it iteratively
updates its output according to

X1

X2

yi(n+ 1) X1 — Waa(ya(n))* (45)
Yan+1) = X —Wo(yr(n))F. (46)
9
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The convergence of this recurrence therefore correspandstate such that(n + 1) = yi(n) = y; fori € {1, 2}. Eq.
(45)-(46) then yield

Xt = Y1+ leyg (47)
X2 = Y2+ leyf (48)
which is the expression of the above-mentioned fundtidn This yields
I = J:—l Tl w : - (49)
— W1o2Wa1Yq YE
All partial derivatives ofJ, involved in (41) are then easily derived from (49) and read
114
[1— wiWorys Y512
0% _ Wyt ly 51
Oz 1- W12W21y1% _lylé_l]z
03 waawa(-1)yi s (52)
oy [1- W12W21yf_1yl§_1]2
03 _ Wiyl (k- Dy )
dy2 [1- W12W21y1% _1Y'§_1]2 .

The last terms required in the complete expressions in (88)(41) are all four derlvatlvegj— Two of them are
obtained by computing the total derivatives of (47)-(48)hwiespect tawv;, (for fixed observatlons) and solving the
resulting two linear equations *&%ﬁ (this is the same as in [8], but with total derivativetations). This yields

dyi  _ Y5 (54)
dwio 1k-1
1— WiaWorys Vs
i1
dy, _ Waigyr Y5 (55)
dwio Lkl
1 - WiWoryf Y
Similarly, computing the total derivatives of (47)-(48)tivrespect tav,; eventually yields
dyr _ WleY;:_? ylé_l (56)
dwer 1 - WipWorys _lylﬁ_l
1
dy, _ -y (57)
dw Lkl
1— WiaWorys Vs

Gathering all above results directly yields the correctrespions of the total derivative&% in (41), then used to
derive the expressions of overall gradient compon%ﬁ%in (39), which are not detailed here for the sake of brevity.
On the contrary, the set of partial derivatives (50)-(51¥wa@stakenly used in [8], as if it were the factﬁ;}j of the
expression OEI"(TE (see (8) in [8]).

dy

8We here reconsider the approach of [8] in order to show whidtssteps should be corrected. Instead, for determinihdeaalvatives - TG !

an alternative approach consists in reformulating the agigeof the current paper, especially (A.5), for the BSS modthtudied here.
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5.2. Linear mixtures

When restricting oneself to 2 mixtures of 2 sources, the ifipezase of linear mixtures may be obtained as a
spin-df of the above investigation: Eq. (43)-(44) show that, wken1, the mixing model becomes linear. Besides,
as shown by (52)-(53), we then have

03,

= 0 58
v (58)
0Jn
= - 0 59
3y, (59)

In (41), the total denvanquj— is then equal to the partial denvatl\%— This clearly shows that, for the MI-based
method too, the problems due to the distinction betweerettves derivatives concemonlinearmixtures.

6. Conclusion

In the literature, the BSS methods based on ML and MI have besnly studied for linear mixtures up to now.
In this paper, we showed that these methods are more commiexohlinear mixtures, because they usually lead
one to calculate the analytical expressions of the devieatdf the cost functions on which these methods are based
(likelihood or information), and these functions involvalirect dependencies. Moreover, the notations commonly
employed by the BSS community in such calculations may beamisleading when using them for nonlinear mix-
tures, due to the above-mentioned dependencies. In ther,pae first described thefect of indirect dependencies
when using the ML and MI approaches for general (possiblyinear) mixing models. We also showed that this
effect disappears in the specific case of linear mixtures, wisithe reason why it has not been addressed in detail
up to now. We eventually focused on two specific nonlinearimgixnodels, for which two BSS methods were pre-
viously proposed. We showed that these methods containraniercause they did not take indirect dependencies
into account. We showed how to fix this error and we thus ddriye correct expressions of the gradient of the
considered cost functions. This paper therefore opens #yetavthe application of the ML and MI BSS methods to
many mixing models, by providing general tools to addresh suixtures and explicitly showing how to apply these
tools to practical cases.

Appendix A. Derivation of &

Let us first analyze the variations of all componentswahen a single parametéy is varied, for a fixed observed
vectorx. Denotingg; the components af, Eq. (6) here reads

gi(s 0) = x; = constant Yi=1,...,N. (A.1)

Eachgi(s 6) may be considered as a function which dependsiaooth directly, i.e. due t®@, and indirectly, i.e.
throughs. Considering the total derivative of this (constant) fiioctwith respect ta@y therefore yields

dg < dgds  dg -
[)Hk-’-;adegk_dgk_ Vi=1...,N (A.2)

from which we then deriV(gﬂ with respect to the other terms of (A.2). Gathering all thegpressions o% for

i=1,...,Ninthe row vectorgg, Eqg. (A.2) yields

09  dsdg
00 B déy 0s (A-3)

Where < is the Jacobian matrix of that we defined after (3), anﬁ— is the row vector composed of agE for

j = 1,...,N. Then gathering, as adjacent matrix rows, the row vec§§kr$orrespond|ng to all parametetg EQ.

(A.3) yields in matrix form

og  dsdg
00~ doas (A4)
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ds

whereg—gS is the matrix whose elemernit () is equal togg: -

Eq. (A.4) eventually yields

_1
ds _ @(@) . (A5)

do ~ a0\os

This makes it possible to deri\@ by only resorting to the partial derivatives of threxingmodelg, whose analytical
expression is assumed to be known, i.e. without usindriverse(i.e. separating) modél = g1, whose analytical
expression cannot be derived from thagdbr many nonlinear models.
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