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Abstract

Two major approaches for Blind Source Separation (BSS) are respectively based on the maximum likelihood (ML)
principle and mutual information (MI) minimization. They have been mainly studied for simple linear mixtures. We
here show that they additionally involve indirect functional dependencies for general nonlinear mixtures. Moreover,
the notations commonly employed by the BSS community in calculations performed for these methods may become
misleading when using them for nonlinear mixtures, due to the above-mentioned dependencies. In this paper, we
first explain this phenomenon for arbitrary nonlinear mixing models. We then accordingly correct two previously
published methods for specific nonlinear mixtures, where indirect dependencies were mistakenly ignored. This paper
therefore opens the way to the application of the ML and MI BSSmethods to many specific mixing models, by
providing general tools to address such mixtures and explicitly showing how to apply these tools to practical cases.

Keywords: independent component analysis, maximum likelihood, information theory, mutual information, indirect
functional dependencies, nonlinear mixture

1. Introduction1

Blind source separation (BSS) consists in restoring a vector s(t) of N unknown source signals from a vectorx(t)
of P observed signals (here withP = N), which are derived froms(t) through an unknown mixing functiong, i.e. [5],
[12]

x(t) = g(s(t)). (1)

The main class of methods which has been proposed to this end is based on the assumed statistical independence2

of the source signals and is called Independent Component Analysis (ICA). Various principles have been reported3

for performing ICA1. This especially includes the maximum likelihood (ML) approach. ML-based ICA is attractive,4

because it takes advantage of the general good statistical properties of ML estimation, beyond the specific scope of5

ICA [5], [12]. The ML approach for ICA was mainly developed for linear instantaneous mixtures. It was especially6

introduced by Gaeta and Lacoume [9], and Pham and Garat [14].Other linear instantaneous ICA methods were7

developed by using information theoretic criteria, mainlyby minimizing the mutual information (MI) of the estimated8

sources [4]. Although they were initially based on different signal processing tools, these ML and MI approaches9

turned out to yield similar methods.10

More recently, several authors extended the ML and MI approaches2 to some specific classes of nonlinear mixtures11

(see especially [6],[8],[10],[16] ; see also [17] for a moregeneral framework, or [1] for a method which is not dedicated12

∗Corresponding author. Phone:+33 5 61 33 28 24, fax:+33 5 61 33 28 40.
Email addresses:ydeville@ast.obs-mip.fr (Yannick Deville),shosseini@ast.obs-mip.fr (Shahram Hosseini),

alain.deville@univ-provence.fr (Alain Deville)
1For linear instantanous mixtures, various ICA-related methods were proposed, in addition to the ML and MI approaches which are considered

hereafter. Several of these other ICA-related approaches are based on second-order or higher-order moments or cumulants: see e.g. COM2/ICA
[4], JADE [3], SOBI [2] and the kurtosis-based version of FastICA [11].

2Apart from ML and MI, various other BSS approaches were also proposed for nonlinear mixtures: see e.g. the overviews in [5], [13].
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to a specific class of mixtures). This extension requires some care, because the considered cost functions contain13

indirect dependencies, and the notations used for ML and MI by the BSS community may become ambiguous, or14

even lead to false interpretation, fornonlinearmixtures. This paper aims at clarifying this point for general nonlinear15

mixing models, and at correcting associated errors which appeared in part of the studies that were previously reported16

for some specific nonlinear mixing models.17

The remainder of this paper is therefore organized as follows. In Section 2, we detail the effect of indirect depen-18

dencies when using the ML approach for general (possibly nonlinear) mixing models. Then, in Section 3, we show19

that this phenomenon disappears for linear mixtures, and weexplain how it must be taken into account to correct a20

previously reported method for linear-quadratic mixtures. The MI approach yields similar phenomena and is therefore21

then addressed somewhat more briefly: first, in Section 4, we show how to handle indirect dependencies in the MI22

approach for general mixtures ; then, in Section 5, we correct a previously reported method for specific mixtures, and23

we comment about linear mixtures as a spin-off. Conclusions are drawn from this investigation in Section 6.24

2. Maximum likelihood approach for general mixtures25

2.1. Separation criterion26

We here consider a general mixing functiong, i.e. we only assume that it is bijective and memoryless: theobserved
vector at timet, i.e. x(t), only depends on the source vector at the same time, i.e.s(t). Moreover, each source signal
is assumed to be independent and identically distributed (i.i.d.), as usual in the ML approach. In this framework, the
original mixing model (1) may be reformulated by only considering a single timet and by using the corresponding
random source vectorS and random observed vectorX, which reads

X = g(S). (2)

The joint probability density functions (pdf) of these vectors are respectively denoted asfS and fX. The pdf fS is fixed
(and possibly unknown). Since we assume that the mixing function g is bijective, we have

fX(x) =
fS(s)
|Jg(s)|

(3)

wheres= g−1(x) andJg(s) is the Jacobian ofg, i.e. the determinant of the Jacobian matrix∂g
∂s, whose element (i, j) is

equal to∂gj

∂si
[12]. Taking the logarithm of (3), and assuming the sources to be mutually statistically independent, we

obtain

ln fX(x) =
N

∑

i=1

ln fSi (si) − ln |Jg(s)| (4)

wheresi are the components ofsand fSi (si) are the marginal source pdf.27

The mixing functiong is assumed to belong to a given class of functions and to have aset of parameters, whose
values are unknown. Similarly, the separating system used to restore the sources from the observations corresponds to
a functionh belonging to a given class, and its parameter values must be selected so as to achieveh = g−1 (examples
are provided below in Section 3). Eq. (1) then yields

s(t) = h(x(t)). (5)

The ML approach may be used to estimate either the parametersof g or those ofh. The set of parameters of the
considered function, i.e. ofg or h, is denoted asθ = [θ1, . . . , θK ]T hereafter, whereT stands for transpose. Whenθ
consists of the parameters ofg, Eq. (1) focuses on the signals (i.e. sources and observations), and it hides the fact that
the observations also depend onθ. This additional dependency can be made explicit, by rewriting (1) as

x(t) = g(s(t), θ). (6)

Similarly, whenθ consists of the parameters ofh, Eq. (5) may be rewritten as

s(t) = h(x(t), θ). (7)
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Eq. (7) thus explicitly shows that the separating system outputs (which are equal to the source values in the considered28

configuration, whereh = g−1) are functions of the observations and of the vectorθ of parameters of the separating29

system. Therefore, for a given observed vectorx(t), Eq. (7) shows that the source vectors(t) may be considered as30

a function ofθ. This topic is addressed in more detail further in this paper(see especially paragraph after Eq. (19)),31

because we show below that expressions (6) and (7) of the mixing and separating models are better suited than (1)32

and (5) to the ML approach considered in this paper.33

Given M samples of the observed vectorX, the ML estimator ofθ is obtained as the valuêθML of θ which
maximizes the joint pdf of all these observations, called the likelihood, which is equal to

L = fX(x1(1), . . . , xN(1), · · · , x1(M), . . . , xN(M)) (8)

wherex j(m) is the value of them-th sample of thej-th observation. Since we assumed that the source signals are i.i.d.
and the mixing model is memoryless, each observed signal is also i.i.d, so that

L =

M
∏

m=1

fX(x1(m), . . . , xN(m)) (9)

and lnL =

M
∑

m=1

ln fX(x1(m), . . . , xN(m)). (10)

Maximizing L is equivalent to maximizing the (normalized) log-likelihoodL = 1
M ln L. Thanks to (10),L may be

denoted as
L = Et[ln fX(x1(t), . . . , xN(t))], (11)

using the temporal averaging operator over the set of available data, which is denoted asEt[.]. Eq. (4) then yields

L =

N
∑

i=1

Et[ln fSi (si(t))] − Et[ln |Jg(s(t))|]. (12)

2.2. Gradient of log-likelihood34

Determining the value ofθwhich maximizesL involves each of the derivatives ofLwith respect to one component35

θk of θ, while all its other components are constant. Each such derivative is denoteddLdθk
hereafter. The column vector36

composed of these derivatives is called the gradient ofLwith respect toθ and is denoteddLdθ hereafter. These notations37

are used for the sake of clarity: although the BSS community most often denotes this gradient as∂L
∂θ

and each of its38

components as∂L
∂θk

, we will not use the latter notations, because we will show that they may be misleading fornonlinear39

mixtures.40

The above gradient is first used to express a necessary condition for a valuêθML of θ to maximizeL. This condition
reads

dL
dθ

∣

∣

∣

∣

∣

θ=θ̂ML

= 0 (13)

or, in scalar form
dL
dθk

∣

∣

∣

∣

∣

θ=θ̂ML

= 0 ∀ k = 1, . . . ,K. (14)

This gradient is also used in the so-called gradient ascent algorithm, which is a simple procedure for numerically
optimizingθ so as to (locally) maximizeL, by means of the iterative adaptation rule

θ(n+ 1) = θ(n) + µ
dL
dθ

∣

∣

∣

∣

∣

θ=θ(n)
(15)

whereµ is a positive adaptation gain.41

Whereas the above description of the first steps of the ML approach is a rather conventional prerequisite of our
analysis, the next step consists in deriving the explicit expression of the above-defined gradient and deserves some
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care for nonlinear mixtures, as will now be shown. Eq. (12) isused to determine each derivativedL
dθk

, by taking into

account thatd ln |Jg|

dθk
= 1

Jg

dJg

dθk
, and by introducing the score functions of the sources3, defined as

ψSi
(u) = −

d ln fSi (u)

du
∀i = 1, . . . ,N. (16)

Eq. (12) thus yields

dL
dθk
= −

N
∑

i=1

Et[ψSi
(si)

dsi

dθk
] − Et[

1
Jg

dJg

dθk
] (17)

or, in column vector form

dL
dθ

= −Et[
ds
dθ
ψS (s)] − Et[

1
Jg

dJg

dθ
] (18)

where ψS (s) =
[

ψS1
(s1), . . . , ψSN

(sN)
]T

(19)

and ds
dθ is the matrix whose element (i, j) is equal todsj

dθi
.42

The calculation of the termdJg

dθk
of (17) then deserves care and led to an error in a previously published paper,43

as detailed in Section 3.2. One should realize that, when applying the ML approach to any BSS configuration, the44

log-likelihoodL is considered for the fixed set of observed vectors. The only independent variable in this approach is45

the column vectorθ of mixing or separating parameters to be estimated. The source vectors are dependent variables,46

here linked to the observations and toθ by (6) or (7). The overall variations of the log-likelihoodL with respect toθ47

result from two types of terms contained in the expression ofL, i.e. (i) the terms involvingθ itself and (ii) the terms48

involving the source signalss1, . . . , sN, which are here considered as functions ofθ and may therefore be denoted as49

s1(θ), . . . , sN(θ) for the sake of clarity. Similarly, the log-likelihood, which appears in the left-hand side of (12), may50

be denoted asL(θ, s1(θ), . . . , sN(θ)) for the sake of clarity. In order to determine the locationof the maximum of this51

log-likelihood, one should then consider thetotal derivatives ofL(θ, s1(θ), . . . , sN(θ)) with respect to each parameter52

θk. We therefore denoted these derivatives asdL
dθk

in (17). On the contrary, the notation withpartial derivatives, i.e.53

∂L
∂θk

, often used for these quantities in the BSS community may be misleading, as confirmed below.54

The above comment is of importance for the term
dJg

dθk
in (17) because, for general nonlinear mixing models, the

JacobianJg contains the above-defined two types of dependencies with respect toθk, i.e. (i) direct dependenciesdue
to the terms ofJg which explicitly containθk and (ii) indirect dependenciesdue to the terms ofJg which depend on
the source signals, which themselves depend onθk in the ML approach. We here have to consider thetotal derivative
dJg

dθk
, which takes into account both types of dependencies, and which therefore reads4

dJg

dθk
=
∂Jg

∂θk
+

N
∑

i=1

∂Jg

∂si

dsi

dθk
, (20)

3In practice, the pdf of the sources are most often unknown andtheir score functions are estimated, as explained e.g. in [12].
4Each derivative

dJg
dθk

is ”total” only with respect to the considered componentθk of θ, i.e. it takes into account all variations ofJg with
respect to that componentθk, while all other components ofθ are kept constant. For the sake of clarity, we could therefore denote that derivative
(

dJg
dθk

)

θ\{θk}
, to show that all components ofθ exceptθk are constant. However, this would decrease readability. Therefore, in all this paper we

omit the notation(.)θ\{θk}, but it should be kept in mind that each considered derivative with respect toθk is calculated with all other components
of θ constant. Then, in this framework, what we have to distinguish are: (i) the total derivative due to the variations ofθk and of all si , and (ii)
the partial derivative (i.e. with all components ofθ exceptθk fixed, and allsi fixed). We then have to use two different notations for these two

types of derivatives, such as
dJg
dθk

and
∂Jg
∂θk

in (20). These two types of notations are commonly used in theliterature for functions which depend
(i) on a single independent variable, i.e. time, and (ii) on other variables which themselves depend on time, such as coordinate variables: see e.g.
http://en.wikipedia.org/wiki /Total derivative or [15]. We here extend this concept to a configuration which involves several independent variables,
i.e. all componentsθk (and, again, other variables which themselves depend on theindependent variables, i.e. allsi ). We here keep the same
types of notations as in the standard case involving a singleindependent variable. The MI approach described in Section4 yields the same type of
comment.
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or, in column vector form
dJg

dθ
=
∂Jg

∂θ
+

ds
dθ

∂Jg

∂s
. (21)

The term
∂Jg

∂θk
of (20) is thepartial derivative ofJg with respect toθk, calculated by considering that the source signals55

si are constant. This clearly shows that the total derivative,which appears in the left-hand side of (20) and which is56

the quantity that we aim at determining here, should be denoted dJg

dθk
, as in the current paper: instead, if it was denoted57

∂Jg

∂θk
as is usually done in the BSS community, this would yield two problems. First, it would not be possible to write58

(20) as above, because the same notation would be used for itsleft-hand side and for only the first term of its overall59

right-hand side. Then, and more dangerously, starting fromthe inadequate notation
∂Jg

∂θk
for the overall quantity to be60

determined (i.e. left-hand side of (20)), one would be led tomistakenly interpret it as thepartial derivative ofJg with61

respect toθk, and to calculate it by considering that the source signals are constant. One would thus forget all other62

terms, i.e. all∂Jg

∂si

dsi
dθk

in the right-hand side of (20). This error was made in a previously published paper. In the next63

section, we therefore show how this error should be corrected and, more generally speaking, how the ML method may64

be applied to various mixing models5, including linear ones.65

3. Applications of maximum likelihood approach66

To apply the ML approach defined in Section 2 to a given mixing model, we now just have to determine the67

expressions of the JacobianJg of this mixture and of its total derivatives (20) with respect to the mixing or separating68

parametersθk. This then makes it possible to derive the expressions of thegradient components (17) associated with69

this mixing model, as all factorsdsi
dθk

required in (17) and (20) may be obtained as explained in the Appendix. This70

gradient may then e.g. be used in the gradient ascent algorithm (15). For the sake of clarity, we first briefly show how71

this approach is related to already known results for linearmixtures.72

3.1. Linear mixtures73

The simplest BSS configuration corresponds to linear instantaneous mixtures. The mixing model (2) then reads

X = AS, (22)

whereA is a square, supposedly invertible, unknown, mixing matrix. The ML method may be used to estimate the
inverse of this mixing matrix , i.e.B = A−1. The variables calledθk in the above discussion then consist of the
elements ofB. This matrixB is used as the separating system, in order to restore the sources by computing them
according to

y(t) = Bx(t). (23)

The Jacobian of any mixing model was defined above (after (3)). For the mixing model (22), it reads

Jg(s) = detAT =
1

detB
∀ s. (24)

Our main comment is that, for this specific case oflinear mixtures,Jg(s) does not dependon the source signalssi .

Therefore, the total derivativedJg

dθk
in (20) is here only composed of the partial derivative∂Jg

∂θk
. This may be expressed

in a compact way, by gathering all these scalar derivatives in matrices [12], which yields

dJg

dB
=
∂Jg

∂B
. (25)

5The application of the ML approach to a specific nonlinear mixing model reported in [6] does not contain any explicitly false expression.
However, it is ambiguous because is does not detail all notations and expressions for derivatives. This ambiguity can beeasily solved by using the
approach described in the current paper.
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Therefore, for the specific case of linear mixtures, the distinction between total and partial derivatives is not an74

issue. This is probably the reason why this distinction has not been considered in detail up to now, since most75

BSS investigations were restricted to linear mixtures. We will now show that things become different for nonlinear76

mixtures, by considering a practical example.77

3.2. Linear-quadratic mixtures78

The configuration considered in [10] involves two observations which are linear-quadratic mixtures of two sources,
i.e.

x1 = s1 − l1s2 − q1s1s2 (26)

x2 = s2 − l2s1 − q2s1s2 (27)

wherel1, l2, q1, q2 are unknown mixing parameters. This model is a specific version of the additive-target mixtures
(ATM) which were defined in [7], together with associated separating structures. Here, we need not describe the
separating structure used in [10], because the ML approach of [10] that we want to address is used to estimate the
parameters of themixingmodel. Therefore, we here haveθ = [l1, l2, q1, q2]T . The JacobianJg of the mixing model is
derived from (26)-(27), which yield

Jg = 1− l1l2 − (q2 + l2q1)s1 − (q1 + l1q2)s2. (28)

We then aim at computing the gradient ofJg defined in (21). Its first term is derived from (28), which yields

∂Jg

∂θ
= −[ l2 + q2s2, l1 + q1s1, l2s1 + s2, s1 + l1s2]

T

. (29)

Similarly, (28) results in
∂Jg

∂s
= −[q2 + l2q1, q1 + l1q2]T . (30)

The factords
dθ to be used in (21) is then obtained from Eq. (A.5) derived in the appendix, where (26)-(27) yield

∂g
∂θ

=

[

−s2 0 −s1s2 0
0 −s1 0 −s1s2

]T

(31)

and
∂g
∂s

=

[

1− q1s2 −l2 − q2s2

−l1 − q1s1 1− q2s1

]

. (32)

Eq. (A.5) thus results in

ds
dθ
=

1
Jg

[

(1− q2s1)s2 (l1 + q1s1)s1 (1− q2s1)s1s2 (l1 + q1s1)s1s2

(l2 + q2s2)s2 (1− q1s2)s1 (l2 + q2s2)s1s2 (1− q1s2)s1s2

]T

. (33)

Using (29), (33) and (30), Eq. (21) eventually becomes

dJg

dθ
=





























−(l2 + q2s2) − (q2 + l2q1)(1− q2s1)s2/Jg − (q1 + l1q2)(l2 + q2s2)s2/Jg

−(l1 + q1s1)−(q2 + l2q1)(l1 + q1s1)s1/Jg − (q1 + l1q2)(1− q1s2)s1/Jg

−(l2s1 + s2) − (q2 + l2q1)(1− q2s1)s1s2/Jg − (q1 + l1q2)(l2 + q2s2)s1s2/Jg

−(l1s2 + s1)−(q2 + l2q1)(l1 + q1s1)s1s2/Jg − (q1 + l1q2)(1− q1s2)s1s2/Jg





























. (34)

This is the correct expression ofdJg

dθ , then used to derive the expression ofdL
dθ (see (18)). On the contrary, the set (29)79

of partial derivatives was mistakenly used in [10], as if it were the factordJg

dθ used in the expression ofdL
dθ (see (17) in80

[10]).81
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For the sake of completeness, we eventually provide the explicit expression ofdLdθ , defined in (18), which results
from (34) and (33) (and which therefore replaces (17) of [10]), i.e.

dL
dθ

= −Et[(ψS1
(s1)(1− q2s1)s2 + ψS2

(s2)(l2 + q2s2)s2

−(l2 + q2s2) − (q2 + l2q1)(1− q2s1)s2/Jg − (q1 + l1q2)(l2 + q2s2)s2/Jg)/Jg,

(ψS1
(s1)(l1 + q1s1)s1 + ψS2

(s2)(1− q1s2)s1

−(l1 + q1s1)−(q2 + l2q1)(l1 + q1s1)s1/Jg − (q1 + l1q2)(1− q1s2)s1/Jg)/Jg,

(ψS1
(s1)(1− q2s1)s1s2 + ψS2

(s2)(l2 + q2s2)s1s2

−(l2s1 + s2) − (q2 + l2q1)(1− q2s1)s1s2/Jg − (q1 + l1q2)(l2 + q2s2)s1s2/Jg)/Jg,

(ψS1
(s1)(l1 + q1s1)s1s2 + ψS2

(s2)(1− q1s2)s1s2

−(l1s2 + s1)−(q2 + l2q1)(l1 + q1s1)s1s2/Jg − (q1 + l1q2)(1− q1s2)s1s2/Jg))/Jg]
T

.

(35)

4. Mutual information minimization for general mixtures82

The MI-based BSS approach leads to the same type of phenomenon as above for nonlinear mixtures. We therefore
describe it more briefly hereafter, again for an arbitrary bijective memoryless mixing functiong. The sources are
assumed to be mutually statistically independent and stationary, so that we omit the considered time indext in all
signals hereafter. The separating system corresponds to a functionh, i.e. its output vectory reads

y = h(x). (36)

h is assumed to belong to a given class of functions and to have avectorθ = [θ1, . . . , θK ]T of parameters, that we
aim at estimating so as to achieveh = g−1. The criterion used to this end here consists in minimizing the mutual
information, denotedI (Y), of the vectorY of random variablesYi associated with the output signal samplesyi of the
separating system at timet. DenotingH(.) marginal and joint differential entropies, we have

I (Y) =















N
∑

i=1

H(Yi)















− H(Y). (37)

Moreover,H(Y) = −E{ln fY(Y)}, whereE{.} stands for expectation. Eq. (36) and (37) therefore yield

I (Y) =















N
∑

i=1

H(Yi)















− H(X) − E{ln |Jh|} (38)

whereJh is the Jacobian6 of the separating functionh, defined in the same way asJg above.83

In order to determine the value ofθ which minimizesI (Y), we consider the gradient ofI (Y) with respect toθ.84

Its components read as follows, using [16] for differential entropy derivatives, and taking into account that, in this85

investigation, the observations are fixed andH(X) is therefore a constant7
86

6For the sake of readability, we use the same notation, i.e.Jh, for (i) the sample value of this Jacobian associated with signal sample values
yi (see e.g. (49)) and (ii) the random variable defined by this quantity when considered as a function of the random variablesYi (see e.g. (38)).
To know whether we are considering the sample value ofJh or the associated random variable in an equation, one just has to check whether that
equation involves the sample valuesyi or the associated random variablesYi .

7One may therefore equivalently minimizeC(Y) = I(Y) + H(X) instead ofI(Y), e.g. as in [8].dC(Y)
dθk

is then also expressed as in (39).
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dI(Y)
dθk

=















N
∑

i=1

E{ψYi
(Yi)

dYi

dθk
}















− E{
1
Jh

dJh

dθk
} (39)

where ψYi
(u) = −

d ln fYi (u)

du
∀ i = 1, . . . ,N (40)

are the score functions of the outputs of the separating system, denotingfYi (.) the pdf of these signals. The termdJh
dθk

in (39) again deserves some care, becauseJh in general contains (i) direct dependencies with respect toθ and (ii)
dependencies with respect to the separating system outputsyi , which yield indirect dependencies with respect toθ.
We here have to consider thetotal derivative dJh

dθk
, which takes into account both types of dependencies, and which

therefore reads
dJh

dθk
=
∂Jh

∂θk
+

N
∑

i=1

∂Jh

∂yi

dyi

dθk
. (41)

In this expression,
∂Jh

∂θk
is thepartial derivative ofJh with respect toθk, calculated by considering that the signalsyi87

are constant (in addition to the fact that all components ofθ exceptθk are also constant).88

In [8], the variations ofJh with respect to allyi were forgotten, i.e.
∂Jh

∂θk
was used instead ofdJh

dθk
in (39). We show89

how to correct that error in the next section. That section also illustrates a general phenomenon: for many nonlinear90

mixing models, the analytical expressions of the inverse (i.e. separating) modelh and therefore of its JacobianJh91

cannot be derived. However, those forh−1 can (they are nothing but those forg, but expressed vs. the signals and92

separating coefficients involved inh, as illustrated below). The JacobianJh is then calculated asJh = (Jh−1)−1. That93

expression could also be used to directly simplify (38) and (39).94

The above presentation also shows that the ML and MI approaches are closely related for the considered general
mixing model: replacing sample temporal averaging by expectation in (12) (based on ergodicity and considering
M → +∞ ), and the unknown source signals by their estimates available as outputs of the separating system, the
log-likelihoodL is replaced by

L2 =

N
∑

i=1

E{ln fYi (Yi)} − E{ln |Jh−1 |} = −

N
∑

i=1

H(Yi) + E{ln |Jh|} = −I (Y) − H(X). (42)

Therefore, maximizingL2 is equivalent to minimizingI (Y), sinceH(X) is a constant.95

5. Applications of mutual information minimization approa ch96

5.1. Mixtures with power terms97

The investigation in [8] concerns a specific nonlinear BSS problem which involves two observed signals, derived
from two source signals through the nonlinear function defined as

x1 = s1 + a12(s2)k (43)

x2 = s2 + a21(s1)
1
k (44)

wherea12 anda21 are two unknown mixing coefficients andk is a known integer.98

The separating structure used in [8] to process such mixtures was derived from the structure for linear-quadratic
mixtures proposed e.g. in [7],[10]. It belongs to the general class of structures proposed in [7] for the ATM class
of mixing models, which includes the specific model (43)-(44). The separating structure of [8] has internal adaptive
coefficientsw12 andw21, which here composeθ. For each timet, this structure determines the output vectory =
[y1, y2]T from its current internal coefficients and from the current observation vectorx. To this end, it iteratively
updates its output according to

y1(n+ 1) = x1 − w12(y2(n))k (45)

y2(n+ 1) = x2 − w21(y1(n))
1
k . (46)
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The convergence of this recurrence therefore corresponds to a state such thatyi(n+ 1) = yi(n) = yi for i ∈ {1, 2}. Eq.
(45)-(46) then yield

x1 = y1 + w12y
k
2 (47)

x2 = y2 + w21y
1
k

1 (48)

which is the expression of the above-mentioned functionh−1. This yields

Jh =
1

Jh−1
=

1

1− w12w21y
1
k−1
1 yk−1

2

. (49)

All partial derivatives ofJh involved in (41) are then easily derived from (49) and read

∂Jh

∂w12
=

w21y
1
k−1
1 yk−1

2

[1 − w12w21y
1
k−1
1 yk−1

2 ]2
(50)

∂Jh

∂w21
=

w12y
1
k−1
1 yk−1

2

[1 − w12w21y
1
k−1
1 yk−1

2 ]2
(51)

∂Jh

∂y1
=

w12w21

(

1
k − 1

)

y
1
k−2
1 yk−1

2

[1 − w12w21y
1
k−1
1 yk−1

2 ]2
(52)

∂Jh

∂y2
=

w12w21y
1
k−1
1 (k− 1) yk−2

2

[1 − w12w21y
1
k−1
1 yk−1

2 ]2
. (53)

The last terms required in the complete expressions in (39) and (41) are all four derivativesdyi

dwkℓ
. Two of them are

obtained by computing the total derivatives of (47)-(48) with respect tow12 (for fixed observations) and solving the
resulting two linear equations indyi

dw12
(this is the same as in [8], but with total derivativenotations8). This yields

dy1

dw12
=

−yk
2

1− w12w21y
1
k−1
1 yk−1

2

(54)

dy2

dw12
=

w21
1
ky

1
k−1
1 yk

2

1− w12w21y
1
k−1
1 yk−1

2

. (55)

Similarly, computing the total derivatives of (47)-(48) with respect tow21 eventually yields

dy1

dw21
=

w12ky
1
k

1 yk−1
2

1− w12w21y
1
k−1
1 yk−1

2

(56)

dy2

dw21
=

−y
1
k

1

1− w12w21y
1
k−1
1 yk−1

2

. (57)

Gathering all above results directly yields the correct expressions of the total derivativesdJh
dwkℓ

in (41), then used to99

derive the expressions of overall gradient componentsdI(Y)
dwkℓ

in (39), which are not detailed here for the sake of brevity.100

On the contrary, the set of partial derivatives (50)-(51) was mistakenly used in [8], as if it were the factordJh
dwkℓ

of the101

expression ofdI(Y)
dwkℓ

(see (8) in [8]).102

8We here reconsider the approach of [8] in order to show which of its steps should be corrected. Instead, for determining all derivatives dyi
dwkℓ

,
an alternative approach consists in reformulating the appendix of the current paper, especially (A.5), for the BSS method studied here.
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5.2. Linear mixtures103

When restricting oneself to 2 mixtures of 2 sources, the specific case of linear mixtures may be obtained as a
spin-off of the above investigation: Eq. (43)-(44) show that, whenk = 1, the mixing model becomes linear. Besides,
as shown by (52)-(53), we then have

∂Jh

∂y1
= 0 (58)

∂Jh

∂y2
= 0. (59)

In (41), the total derivativedJh
dwkℓ

is then equal to the partial derivative∂Jh
∂wkℓ

. This clearly shows that, for the MI-based104

method too, the problems due to the distinction between these two derivatives concernnonlinearmixtures.105

6. Conclusion106

In the literature, the BSS methods based on ML and MI have beenmainly studied for linear mixtures up to now.107

In this paper, we showed that these methods are more complex for nonlinear mixtures, because they usually lead108

one to calculate the analytical expressions of the derivatives of the cost functions on which these methods are based109

(likelihood or information), and these functions involve indirect dependencies. Moreover, the notations commonly110

employed by the BSS community in such calculations may become misleading when using them for nonlinear mix-111

tures, due to the above-mentioned dependencies. In this paper, we first described the effect of indirect dependencies112

when using the ML and MI approaches for general (possibly nonlinear) mixing models. We also showed that this113

effect disappears in the specific case of linear mixtures, whichis the reason why it has not been addressed in detail114

up to now. We eventually focused on two specific nonlinear mixing models, for which two BSS methods were pre-115

viously proposed. We showed that these methods contain an error because they did not take indirect dependencies116

into account. We showed how to fix this error and we thus derived the correct expressions of the gradient of the117

considered cost functions. This paper therefore opens the way to the application of the ML and MI BSS methods to118

many mixing models, by providing general tools to address such mixtures and explicitly showing how to apply these119

tools to practical cases.120

Appendix A. Derivation of ds
dθ121

Let us first analyze the variations of all components ofswhen a single parameterθk is varied, for a fixed observed
vectorx. Denotinggi the components ofg, Eq. (6) here reads

gi(s, θ) = xi = constant ∀ i = 1, . . . ,N. (A.1)

Eachgi(s, θ) may be considered as a function which depends onθk both directly, i.e. due toθ, and indirectly, i.e.
throughs. Considering the total derivative of this (constant) function with respect toθk therefore yields

∂gi

∂θk
+

N
∑

j=1

∂gi

∂sj

dsj

dθk
=

dgi

dθk
= 0 ∀ i = 1, . . . ,N (A.2)

from which we then derive∂gi

∂θk
with respect to the other terms of (A.2). Gathering all theseexpressions of∂gi

∂θk
for

i = 1, . . . ,N in the row vector∂g
∂θk

, Eq. (A.2) yields

∂g
∂θk
= −

ds
dθk

∂g
∂s

(A.3)

where ∂g
∂s is the Jacobian matrix ofg that we defined after (3), andds

dθk
is the row vector composed of alldsj

dθk
, for

j = 1, . . . ,N. Then gathering, as adjacent matrix rows, the row vectors∂g
∂θk

corresponding to all parametersθk, Eq.
(A.3) yields in matrix form

∂g
∂θ
= −

ds
dθ
∂g
∂s

(A.4)

11



whereds
dθ is the matrix whose element (i, j) is equal todsj

dθi
. Eq. (A.4) eventually yields

ds
dθ
= −

∂g
∂θ

(

∂g
∂s

)−1

. (A.5)

This makes it possible to deriveds
dθ by only resorting to the partial derivatives of themixingmodelg, whose analytical122

expression is assumed to be known, i.e. without using theinverse(i.e. separating) modelh = g−1, whose analytical123

expression cannot be derived from that ofg for many nonlinear models.124
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