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ABSTRACT

In this paper, we provide an overview of the connections that
were developed, during the current second quantum revolu-
tion, between information processing (IP) and machine learn-
ing (ML) in the classical (i.e. non-quantum) framework on the
one hand, and several aspects of quantum physics on the other
hand, namely properties involved in quantum theory and prac-
tical implementations leading to quantum computers. More-
over, we propose a taxonomy of the new fields resulting from
these connections, both at the general level of IP methods
and at the more specific level of data-driven, i.e. ML, meth-
ods. We thus consider quantum-inspired (or quantum-like),
quantum-assisted (or quantum-enhanced), quantum-executed
and quantum-targeted IP and ML methods.

Index Terms— quantum-inspired information processing
/ machine learning, quantum-assisted information processing
/ machine learning, quantum-targeted information processing
/ machine learning, quantum computer, remote sensing (Earth
observation) applications

1. DEFINITION OF THE TOPIC OF THIS PAPER

Whereas the first quantum revolution was focused on quan-
tum physics itself, the second quantum revolution [1, 2]
is especially exploring the connections between quantum
physics and information processing, in particular inspired
by Feynman’s seminal work [3] (see also e.g. [4, 5] for
comments about early works from Feynman, Benioff and
Deutsch). These connections include several aspects, es-
pecially depending whether one focuses on (i) using theo-
retical quantum physics concepts to extend general-purpose
classical (i.e. non-quantum) processing methods, (ii) using
quantum hardware to achieve higher computing speed than
classical general-purpose processing systems, or (iii) manu-
facturing quantum hardware and using classical (i.e., again,
non-quantum, but possibly original) processing methods in
this framework.

We therefore stress that the quantum part of such hybrid,
i.e. “classical plus quantum”, configurations may be (i) ei-
ther only a means of the considered investigation, when this
investigation is dedicated to general-purpose information pro-
cessing, or (ii) the main target of this investigation, when the
latter investigation is dedicated to the development of a given
quantum system and it uses specific information processing
methods to this end.

Moreover, in any of the above-mentioned cases, a pro-
cessing method may either perform a predefined data trans-
form or may first learn (from training data) the transform to
be eventually used. The latter configuration corresponds to
a so-called machine learning1 approach, or data-driven ap-
proach.

The articles published so far most often focus on only one
specific problem within one of the above-defined classes, or
they only address one of these classes. The present paper
therefore mainly aims at providing a taxonomy of these quite
different classes of problems. Moreover, not only do we high-
light the terminology that was already introduced for part of
these problems in the literature, but we also extend it so as to
cover all considered situations. Part of the cited papers deal
with remote sensing, in the sense “Earth observation”. The
considered types of quantum methods are likely to become
of high importance in this application field, due to the large
amount of data to be manipulated in these applications, as
discussed e.g. in [6, 7].

The classes of problems suggested above are successively
explored in Section 2, moving from configurations that have
a weak emphasis on quantum hardware to those that put a
strong emphasis on it.

1We here employ the term “machine learning” in its usual sense, that is,
focusing on the considered algorithms, whose main feature is their above-
mentioned ability to learn the transform they perform, from training data. In
the classical framework, the physical system, i.e. “machine”, on which these
algorithms are implemented (and which thus learns how to behave) is usually
a standard computer, although more specific hardware such as robots may
also be considered.
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2. A TAXONOMY OF INVESTIGATIONS THAT
INCLUDE CLASSICAL AND QUANTUM ASPECTS

2.1. Quantum-inspired (or quantum-like) information
processing and machine learning

The first class of approaches to be considered is based on tak-
ing advantage of quantum theory, that is, of properties met
in quantum physics, so as to derive new processing methods
to be executed on classical, i.e. non-quantum2, computers.
This type of approaches is therefore referred to as “quantum-
inspired information processing” (QIIP). In particular, this in-
cludes “quantum-inspired machine learning” (QIML) meth-
ods. As briefly stated above, the term “machine learning”
typically refers to processing methods that first use a set of
data points in order to learn a function (that maps a given
type of input data onto another type of output data) and that
then apply that learned function to new data. That makes
them able to perform such general-purpose processing tasks
as classification or regression. For a more detailed discussion
of these tasks and of the connections between classical and
quantum machine learning, the reader may e.g. refer to [8].
In the classical framework, classification methods have been
used to identify the nature of a wide variety of “objects”, such
as handwritten characters [8], materials that form the surface
of Earth, phonemes that compose speech, structures in medi-
cal images. Besides, quantum approaches for classification in
Earth observation problems are reported e.g. in [6, 7].

The above type of approach is also referred to as “quantum-
like learning” (meaning “quantum-like machine learning” or
QLML ; QLIP could be defined accordingly) in [9], where it
is stated: “Machine learning has a lot to adopt from quan-
tum mechanics, and this statement is not restricted to actual
quantum computing implementations of learning algorithms.
Applying principles from quantum mechanics to design al-
gorithms for classical computers is also a successful field of
inquiry. We refer to these methods as quantum-like learning.”
Typical applications of QIML are then also provided in [9].

Another type of generic information processing tasks is
referred to as (global) optimization, including both continu-
ous and discrete optimization: see e.g. the survey of quantum-

2The terminology “classical computer” and “quantum computer” refers to
the final use that is made of the considered computer. Classical and quantum
computers are thus quite different in the sense that classical digital comput-
ers essentially perform data manipulation by using numbers represented in
base 2, hence as series of 0 and 1, whereas quantum computers manipulate
quantum states, hence with associated quantum properties that have no coun-
terpart in the classical world.

However, now consider the intimate operation of the above-mentioned
“classical computers”, i.e. at the level of the transistors currently used to
implement such computers. At that intimate level, the opposition between
classical and quantum computers is not so strong as it is in their above-
mentioned final use, because the behavior of the transistors used as the el-
ementary building blocks of classical computers is governed by the rules of
quantum physics. This intimate feature is disregarded hereafter, when using
the terms “classical computer” and “quantum computer”: only their final use
is considered.

inspired metaheurisitics in [10]. For decades, some optimiza-
tion methods have been developed by taking advantage of
classical physics properties. This e.g. gave rise to simu-
lated annealing methods [11]. This type of idea is now being
applied to quantum physics properties, e.g. using the tun-
nel effect [12, 13]. This especially yields quantum anneal-
ing methods, that are discussed in more detail in [14] (see
also e.g. [13, 15, 5]). If only using the considered proper-
ties, derived from quantum physics theory, and implementing
the resulting algorithms on a system that only uses classical
computation, one obtains a quantum-inspired approach that
may be referred to as a quantum annealing simulator or em-
ulator. By the way, the term “simulator” should be used with
care in discussions about “quantum computing” in general,
because the term “quantum simulation” is also used with a
much more specific meaning (say, simulating molecules), as
discussed in more detail in Section 2.2. Beyond the above
quantum annealing simulators, quantum annealing is often
used with associated quantum hardware means, thus leading
to the quantum-assisted approach described in Section 2.2.

A general-purpose open source software environment is
available for QIML, with extensions for quantum-assisted ap-
proaches. It is called TensorFlow Quantum and it is claimed
to allow one “to simulate [quantum processing units] while
designing, training, and testing hybrid quantum-classical
models, and eventually run the quantum portions of these
models on actual quantum processors as they come online”
[16]. It was e.g. used for an application to Earth observa-
tion in [6], to perform classification with a quantum-classical
convolutional neural network.

2.2. Quantum-assisted (or quantum-enhanced) informa-
tion processing and machine learning

The second considered type of approaches also aims at defin-
ing processing systems on which one can execute general-
purpose algorithms, such as the above-mentioned ones. How-
ever, unlike in the first type of approaches, the second type
exploits quantum hardware to run these algorithms. A major
motivation for this approach is to improve computing speed.
This is based on the fact that quantum computing has been
shown to potentially yield huge gains in computing speed for
some processing tasks, as compared with classical comput-
ing (see e.g. [4]). As suggested above, this includes quantum
annealing methods [5], especially because the D-Wave com-
pany manufactures hardware quantum processing units based
on quantum annealing. For an overview of these quantum
computers, the reader may refer to [15].

More generally speaking, various processing tasks emer-
ged because they have to be performed in newly introduced
quantum-inspired processing methods. In such methods, it is
natural not only to exploit quantum physical properties to ob-
tain algorithms that operate according to new rules, but also
to implement these algorithms (at least partly) on quantum
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hardware processing means. This not only yields a quantum-
inspired method, but also a so-called “quantum-assisted infor-
mation processing” (QAIP) method. The latter terminology
comes from the fact that various methods will not be fully
implemented on quantum hardware means but only partly,
i.e. these methods will be assisted by quantum hardware.
Using quantum hardware is more attractive only for some
of the processing subtasks to be performed in a given ap-
plication, because only these subtasks can exploit quantum
properties and hence yield the above-mentioned speed im-
provement. The above approaches include machine learn-
ing methods, that may be called “quantum-assisted machine
learning” (QAML) methods. QAIP methods are sometimes
also referred to as “quantum-enhanced information process-
ing” (QEnIP) methods, thus including “quantum-enhanced
machine learning” (QEnML) methods [17].

Some applications correspond to the limit case of this
QAIP framework, when one aims at implementing all the
considered application on quantum hardware means. If one
would like to distinguish this limit case from the overall QAIP
framework, we here propose to call this case “quantum-
executed information processing”, or QExIP, because pro-
cessing is then completely executed on quantum hardware.
This then includes the limit case of “quantum-executed ma-
chine learning”, or QExML, methods.

The above discussion especially applies to investigations
currently performed to create quantum versions of artificial
neural networks. For instance, [18] ultimately aims at im-
plemeting neural networks on systems based on quantum op-
tics, e.g. with inputs composed of single photon Fock states
(but the preliminary results reported in [18] itself were ob-
tained by means of numerical simulations running on a clas-
sical computer, thus restricting that investigation to QIML at
this stage).

Another major type of problems, where quantum com-
puting is important for handling processing tasks that are un-
tractable with classical computers, is so-called “quantum sim-
ulation” in the following sense: simulating the behaviour of,
e.g., a given molecule (i.e. finding the dynamics of its time
evolution), by accordingly tuning the Hamiltonian of an ac-
tual physical quantum system that has a different nature as
compared with the molecule of interest [13, 17, 19]. This ap-
proach is therefore a QAIP (or even QExIP) approach from
the point of view of its use of an actual physical quantum
system for performing computations (and we will reconsider
the same problem from the point of view of the molecule of
interest in Section 2.3).

Beyond the above somewhat focused examples, it should
be stressed that QAIP approaches are also attractive for vari-
ous general-purpose processing tasks that were already of in-
terest before the second quantum revolution took place. This
includes factoring integers [4] (which is of major importance
for cryptography [4]) or solving high-dimensional sets of lin-
ear equations (see e.g. [13] for comments about the Harrow,

Hasidim and Lloyd, or HHL, algorithm). Again, the moti-
vation for revisiting these processing tasks with quantum ap-
proaches is that the latter approaches potentially make it pos-
sible to perform these tasks at a much higher speed than with
classical computers.

2.3. Quantum-targeted information processing and ma-
chine learning

The third type of investigations considered in this paper also
involves a physical quantum “system” but, unlike in the ap-
proaches of Section 2.2, this system is here not considered as
a means (for executing an algorithm, which is then the topic
of interest) but as the main topic of the investigation. In other
words, this investigation is then targeted at the considered
quantum system, and we consider the case when this inves-
tigation includes information processing, or more specifically
a machine learning method. We therefore propose to call this
type of approaches “quantum-targeted information process-
ing” (QTIP), including “quantum-targeted machine learning”
(QTML) approaches. More precisely, the tasks to be per-
formed for the considered quantum system typically consist
of characterizing its behavior or expanding that system for
improving its performance. It is for performing these tasks
that information processing or machine learning is used in
these investigations.

A major type of information processing task that belongs
to this QTIP/QTML framework is quantum process tomogra-
phy, that may be defined as follows. A wide class of quantum
computer architectures consists of quantum gates, that are in-
terconnected so as to achieve the desired overall processing
function. Each such gate is thus selected so as to perform a
specific subfunction when designing the considered quantum
computer. However, the gates that are actually implemented
yield some discrepancies with respect to their desired behav-
ior. Their actual behavior should therefore be experimentally
characterized. Various algorithms have been developed to this
end. They constitute the quantum form of so-called system
identification algorithms [20] and they are often referred to
as quantum process tomography (QPT), as proposed in [21].
They have complementary features as compared with those of
various methods of Sections 2.1 and 2.2: (i) they are dedicated
to the specific QPT task required for analyzing the operation
of the quantum computer itself, as opposed to a final general-
purpose application task such as classification, (ii) they are
executed on classical processing means (although they aim at
analyzing quantum properties). They not only belong to the
general field of information processing but also to the subfield
of machine learning, in the sense that they are strongly based
on using data to learn a function, that is, the input/output
transform of the considered quantum gate. More precisely,
in their usual version, these algorithms derive that transform
from the known values imposed on the input of the gate and
from the associated values measured at its output, somewhat
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like in the generic regression task. This is the supervised (or
non-blind) version of QPT algorithms (see e.g. [20, 22, 23] ).
Besides, more advanced versions were introduced in [24] and
then developed in [25, 26]. They are based on unsupervised
(or blind) learning, i.e. they do not require one to know the
values taken by the input of the gate, but e.g. only some of
its statistical properties. They thus have the advantage of not
requesting the cumbersome repeated and accurate preparation
of fixed input quantum states, that are required in supervised
methods.

A related class of methods, but now aiming at expanding
the capabilities of quantum computers, consists of (especially
blind) quantum source separation methods. They were intro-
duced in [27] and then e.g. developed in [28, 29, 30, 8] (see
other references in [8]). These algorithms aim at restoring
quantum states after they have been altered. They may thus
be of interest for improving quantum memories [8].

Finally, the quantum simulation problem defined in Sec-
tion 2.2 here deserves additional comments, because it in-
volves two parts: the molecule of interest and the other type
of physical quantum system, used to analyze the behavior of
that molecule. This two-part configuration therefore not only
involves the QAIP aspect presented in Section 2.2 (because
of the computations performed on the other type of physi-
cal quantum system) but also QTIP: when focusing on the
molecule, that molecule is the quantum system of interest, and
its behavior is analyzed by some processing means (namely
the other type of physical quantum system).

3. DISCUSSION AND CONCLUSION

In this paper, we provided an overview of the connections
that were developed, during the current second quantum rev-
olution, between information processing and machine learn-
ing in the classical (i.e. non-quantum) framework on the one
hand, and several aspects of quantum physics on the other
hand, namely properties involved in quantum theory and prac-
tical implementations leading to quantum computers. More-
over, we proposed a taxonomy of the new fields resulting from
these connections.

All these domains are e.g. starting to impact the field of
remote sensing (i.e. Earth observation), because quantum-
inspired approaches will e.g. yield new classification algo-
rithms for performing thematic mapping, quantum-assisted
approaches will be required to process huge amounts of
data in a reasonable time frame on quantum computers, and
quantum-targeted approaches will first be used to guarantee
the operation of these quantum computers. Various applica-
tions of quantum-inspired and quantum-assisted approaches
to remote sensing were already reported in the literature and
some of them were cited above in this paper.

We hope that this overview may help newcomers in the
second quantum revolution find their way and select their
fields of interest, e.g. depending whether they mainly aim at

taking advantage of quantum-inspired and quantum-assisted
approaches to expand their information processing capabil-
ities, e.g. for remote sensing applications, or whether they
want to enter the field of quantum-targeted methods and ex-
pand it, thanks to their expertise in designing new processing
methods that they previously applied to the classical frame-
work.
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