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Abstract. Whereas most blind source separation (BSS) and blind mix-
ture identification (BMI) investigations concern linear mixtures (instan-
taneous or not), various recent works extended BSS and BMI to nonlinear
mixing models. They especially focused on two types of models, namely
linear-quadratic ones (including their bilinear and quadratic versions,
and some polynomial extensions) and post-nonlinear ones. These works
are particularly motivated by the associated application fields, which
include remote sensing, processing of scanned images (show-through
effect) and design of smart chemical and gas sensor arrays. In this paper,
we provide an overview of the above two types of mixing models and of
the associated BSS and/or BMI methods and applications.

Keywords: Blind source separation · Blind mixture identification ·
Linear-quadratic mixing model · Post-nonlinear mixing model · Survey

1 Introduction

Blind source separation (BSS) methods aim at estimating a set of source sig-
nals from a set of observed signals which are mixtures of these source signals
[17]. It has been shown that, if the mixing function applied to the source signals
is completely unknown, the BSS problem (or its ICA solution) leads to unac-
ceptable indeterminacies. Therefore, in most investigations the mixing function
is requested to belong to a known class and only the values of its parameters
are to be estimated. Many of these works are restricted to the simplest class of
mixtures, namely linear ones (instantaneous or not) [17]. However, various more
advanced studies dealing with nonlinear mixtures have also been reported. Two
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nonlinear mixing models have especially been considered. The first one con-
sists of linear-quadratic (LQ) mixtures (and, to some extent, polynomial ones).
It forms a natural extension of linear mixtures, by also including second-order
(and possibly higher-order) terms. It may thus first be seen as a generic model,
to be used as an approximation (truncated polynomial series) of various, possi-
bly unknown, models faced in practical applications. Moreover, LQ mixing has
been shown to actually occur in some applications. It has thus mainly been used
for unmixing of remote sensing data [32,40,46–49], processing of scanned images
involving the show-through effect [5,27,45,50] and analysis of gas sensor array
data [10]. The other main nonlinear mixing model is the post-nonlinear (PNL)
one. In this case, the mixing process comprises an initial linear mixing stage fol-
lowed by a set of component-wise nonlinear functions. Therefore, such a model
is useful in applications where the first stage of the mixing process is of linear
nature but the sensors then exhibit a nonlinear response, due to saturation or
more complex nonlinear transducer phenomena. The main field of application
for PNL models is the design of smart chemical sensor arrays [11,12,25]. PNL
models were also applied in the context of remote sensing data [6].

In this paper, we provide an overview of the two above-defined nonlinear
mixing models and associated BSS and/or blind mixture identification (BMI)
methods reported so far. We first define both mixing models in Sect. 2. We then
present BSS/BMI methods for LQ mixtures in Sect. 3, and methods for PNL
mixtures in Sect. 4. To conclude, related topics are briefly discussed in Sect. 5.

2 Considered Nonlinear Mixing Models

Considering continuous-valued signals which depend on a discrete variable n,
the scalar form of the LQ (memoryless, or instantaneous) mixing model reads

xi(n) =
M∑

j=1

aijsj(n) +
M∑

j=1

M∑

k=j

bijksj(n)sk(n) ∀ i ∈ {1, . . . , P} (1)

where xi(n) are the values of the P observed mixed signals for the sample index
n and sj(n) are the values of the M unknown source signals which yield these
observations, whereas aij and bijk are respectively the linear and quadratic mix-
ing coefficients (with unknown values in the blind case) which define the consid-
ered source-to-observation transform. The specific version of this model which
contains no second-order auto-terms (i.e. bijk = 0 when k = j) is called the
bilinear mixing model. It corresponds to replacing the second sum in (1) by∑M−1

j=1

∑M
k=j+1 (additional constant terms are considered in [5]). Similarly, the

quadratic version of this model is obtained when all coefficients aij are zero.
A first matrix form of that model (1) reads

x(n) = As(n) + Bp(n) (2)

where the source and observation vectors are

s(n) = [s1(n), . . . , sM (n)]T , x(n) = [x1(n), . . . , xP (n)]T , (3)
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where T stands for transpose and matrix A consists of the mixing coefficients
aij . The column vector p(n) is composed of all source products sj(n)sk(n) of
(1), i.e. with 1 ≤ j ≤ k ≤ M , arranged in a fixed, arbitrarily selected, order
(see e.g. [49] for the natural order). The matrix B is composed of all entries bijk
arranged so that i is the row index of B and the columns of B are indexed by
(j, k) and arranged in the same order as the source products sj(n)sk(n) in p(n).

An even more compact model may be derived by stacking row-wise the vec-
tors s(n) and p(n) of sources and source products in an extended vector

s̃(n) =
[
s(n)
p(n)

]
(4)

whereas the corresponding matrices A and B are stacked column-wise in an
extended matrix

Ã = [A B] . (5)

The LQ mixing model (2) then yields

x(n) = Ãs̃(n). (6)

A third matrix-form model may eventually be derived by stacking column-
wise all available signal samples, with n ranging from 1 to N , in the matrices

S̃ = [s̃(1), . . . , s̃(N)], X = [x(1), . . . , x(N)]. (7)

The single-sample model (6) thus yields its overall matrix version

X = ÃS̃. (8)

Some LQ BSS methods are based on the “original sources” s1(n), . . . , sM (n)
contained in s(n), whereas other methods are based on the signals contained in
s̃(n), which are called the “extended sources” hereafter.

We also consider a second class of nonlinear mixing models known as post-
nonlinear (PNL) models, in which each observed mixture corresponds to a uni-
variate nonlinear function of a linear mixture of the sources. In its scalar form,
the PNL model is given by

xi(n) = fi

⎛

⎝
M∑

j=1

aijsj(n)

⎞

⎠ ∀ i ∈ {1, · · · , P} (9)

where aij and fi(·) denote the linear mixing coefficients and the univariate non-
linear functions, respectively. In the blind case, both aij and fi(·) are unknown.
However, one often assumes that fi(·) are strictly monotonic functions and, thus,
admit inverse functions.
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3 BSS/BMI Methods For Linear-Quadratic Mixtures

3.1 Independent Component Analysis (ICA) and Statistical
Methods

(A) Methods for i.i.d Sources: Various LQ BSS methods were developed for
i.i.d and mutually statistically independent sources, by exploiting the mutual
independence of the outputs of a separating system. A first class of such
methods is intended for the version of the LQ model which is determined with
respect to the original sources, i.e. such that P = M . Their separating systems
are nonlinear recurrent networks, which were described e.g. in [20,36] (and then
extended e.g. in [14,20,50], including to much broader classes of nonlinear mix-
tures than LQ ones). The first of these LQ BSS methods [36] may be seen as an
LQ extension of the linear Hérault-Jutten method, since it adapts the parameters
of the above nonlinear recurrent networks so as to achieve an approximation of
output independence, more precisely so as to cancel the (3,1) and (2,1) centered
output cross-moments. The second reported method [51] is the LQ extension of
Comon’s linear approach, since it adapts the above parameters so as to minimize
the mutual information of the network outputs, thus completely ensuring output
independence.

The above recurrent separating systems are attractive because they only
require one to know the analytical expression of the mixing model. On the
contrary, direct structures require one to know the analytical expression of
the inverse of the mixing model, which cannot be derived for nonlinear mix-
ing models, except in simple situations such as bilinear models with 2 original
sources [5,36]. However, nonlinear recurrent structures may yield some limita-
tions: (i) they may be unstable at equilibrium points of interest or they may even
lead to chaotic behavior [20] (see also [19–21] for extended networks which solve
such problems; such networks have therefore also been used in [7] as original
tools for solving nonlinear equations), (ii) they may have spurious equilibrium
points and (iii) they require one to iteratively compute each output vector.

The situation becomes simpler when the number of observations can be
increased up to the number of extended sources in s̃(n). The mixing model is
then determined and linear with respect to these extended sources, as shown by
(6) or (8). Especially, performing M linear combinations of all these observa-
tions, with adequate coefficient values, then makes it possible to restore all M
original sources. These coefficients may be adapted so as to enforce the statisti-
cal independence of the restored signals. In [26], this is achieved by a two-stage
procedure based on minimizing the mutual information of these restored signals.

Still for mutually statistically independent and i.i.d sources, other reported
LQ BSS and extended methods are based on estimating the mixing model
(thus firstly achieving BMI). The first approach is based on maximizing the
likelihood of the observations [15,37,38,50]. These investigations deal with deter-
mined mixtures of original sources and use the above-defined recurrent separat-
ing networks. The link between BSS methods based on likelihood maximization
and mutual information minimization was established in [22] for nonlinear mix-
tures, including LQ ones.
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The second reported approach for estimating the mixing model consists in
starting from the relationships which define the observed signals with respect
to the source signals and mixing coefficients, and deriving resulting expressions
of some cumulants or moments of the observed signals with respect to those
of the source signals and to the mixing coefficients. Solving these equations for
known (estimated) values of the observation cumulants or moments then espe-
cially yields the values of the mixing coefficients (up to some indeterminacies).
This approach was applied to quadratic mixtures in [16]. Also using cumulants,
a quite different BMI method was proposed in [42] for complex-valued sources.

Finally, other LQ BSS methods for i.i.d sources jointly estimate the
sources and mixing model, whereas the above-defined methods put more
emphasis on one of these two types of unknowns of the BSS/BMI problem.
This joint approach especially includes LQ Bayesian methods [24,27]. Unlike
above-described approaches, Bayesian methods do not explicitly use a separat-
ing system and thus avoid the associated potential issues, mainly for determined
mixtures of original sources. However, the development of the use of Bayesian
methods is limited by the complexity of their implementation and their high
computational cost, as compared with the most popular ICA-related methods.

(B) Methods for Non-i.i.d Sources: Other LQ BSS methods have been
developed by considering non-i.i.d random source signals and exploiting their
autocorrelation (when each source is not independently distributed for different
samples n) and/or their non-stationarity (when each source is not identically
distributed for different samples). Both properties were used in the extension
of the above likelihood-based method proposed in [39]. Similarly, the above-
mentioned Bayesian approach [24,27] has been applied to autocorrelated sources.
A BMI method for LQ mixtures of autocorrelated and mutually independent
source signals was also proposed in [1], using a joint diagonalization of a set of
observation correlation matrices. Using similar tools, a method for extracting
source products was also presented in [33] for uncorrelated sources with distinct
autocorrelations.

3.2 Extensions of Nonnegative Matrix Factorization (NMF)

Although the considered observations (1) are nonlinear mixtures of the original
sources, the reformulated mixing model (8) shows that they are linear mixtures
of the associated extended sources and that, from the point of view of the lat-
ter sources, they follow the matrix-form mixing model encountered in linear
NMF. When Ã and S̃ (and thus X) are nonnegative, this allows one to develop
LQ BSS/BMI methods for jointly estimating them by extending linear NMF
methods, especially by adapting (estimates of) Ã and the linear part of S̃ so as
to minimize the Frobenius norm ||X − ÃS̃||F . Resulting gradient-based and/or
Hessian-based algorithms have more complex forms than for linear mixtures,
because they also involve derivatives of the second-order terms of S̃ with respect
to the original sources. Several such methods are detailed in [47] (which also
addresses polynomial mixtures) and [49] (the application of a standard NMF
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algorithm to the extended sources is also considered in [46,47]). A similar app-
roach, dedicated to the case when both the sources and mixing coefficients follow
bilinear models, is described in [32]. Besides, [45] deals with a very specific con-
figuration involving 2 mixtures of 2 original sources, with the same quadratic
contribution in both mixtures.

3.3 Sparse Component Analysis (SCA)

For linear mixtures, two major principles used in the literature for performing
SCA may be briefly defined as follows. The first one consists in minimizing a
sparsity-based cost function, such as the L0 norm of an “error term”. The second
one consists in taking advantage of zones (i.e. adjacent samples) in the sources
where only one source is active, i.e. non-zero. These two principles have been
extended to LQ mixtures, respectively in [28] and [18]. Besides, [40] describes an
approach which also takes advantage of small parts of the observed data where
only one “contribution” is non-zero, more precisely pixels which correspond to
only one pure material (i.e. pure pixels) in the considered application to unmixing
of remote sensing spectra. However, the proposed criterion is only guaranteed to
yield a necessary condition for detecting pure pixels.

4 BSS Methods for Post-nonlinear Mixtures

There are basically two approaches to develop BSS methods for the mixing model
expressed in (9). In the first one, which will be referred to as the joint approach,
the nonlinear functions fi(·) and the mixing matrix are jointly counterbalanced
by means of a single criterion. Alternatively, in the two-stage approach, an initial
stage aims at estimating the nonlinear functions fi(·) or their inverses. Once
these functions are estimated, the second stage simply becomes a linear BSS
problem. In the sequel, we shall review methods for the joint and the two-stage
approaches.

4.1 Joint Approaches

As in linear BSS, most of the works in PNL separation consider the determined
case (P = M) and an adaptation framework based on ICA. An important reason
for that comes from the theoretical results ensuring ICA-separability in PNL
models. Indeed, the seminal work of Taleb and Jutten [59] showed that, by
considering the following mirrored version of (9) as separating system

yi(n) =
P∑

j=1

wijgj(xj(n)) ∀ i ∈ {1, · · · , P}, (10)

where wij and gj(·) denote, respectively, the separating coefficients and the
inverting functions, the recovery of independent components y1(n), · · · , yP (n)
leads to source separation under conditions very close to those established for
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the linear case. Eventually, other works [3,8,61] extended [59] by providing more
rigorous and less restrictive proofs.

By relying on the ICA-separability of PNL models, several works, starting
from [59], proposed strategies to jointly adapt wij and gj(·) by minimizing mea-
sures of statistical dependence. Most of these works considered a gradient-based
framework for minimizing the mutual information [4,9,59] in the case of i.i.d
sources. However, in [43], a joint method based on mutual information was set
up to deal with non-i.i.d sources. It is also worth mentioning that alternative
criteria of statistical dependence can be considered, as, for instance, in [2].

In the mutual information approach, a first issue is the estimation of the score
functions of yi(n), which was addressed by several works of Pham (see [53], for
instance) — these works dealt with general BSS models but were fundamen-
tal to many PNL algorithms. A second issue is the risk of local convergence
to non-separating minima. In order to overcome this problem, several works
proposed learning algorithms based on meta-heuristics [23,56]. Finally, another
issue that must be handled in joint PNL ICA algorithms is the parametriza-
tion of the inverting functions gj(·). Indeed, since the ICA-separability results
for (10) require bijective pairs fj(·) and gj(·), one aims at defining parametric
functions gj(·) that are bijective but flexible enough to compensate fj(·). Possi-
ble solutions considered monotonic polynomials [23], splines [57], functions based
on quantiles [54] and monotonic neural networks [31].

As in linear and LQ mixtures, an important class of joint PNL methods are
obtained by formulating BSS as a Bayesian estimation problem. A Bayesian app-
roach provides a natural framework to take into account prior information that
can be expressed through a probabilistic modeling. On the other hand, the chal-
lenging aspect here is related to the practical resolution of the resulting inference
problem. In [35], the authors introduced a variational learning scheme in order to
perform inference. Alternatively, in [25], a Markov chain Monte Carlo (MCMC)
strategy was set up to deal with a special class of PNL models that arises in
chemical sensing applications. Such an approach has allowed the incorporation of
non-negative priors for the sources and the mixing coefficients [25]. More recently,
an MCMC-based Bayesian method was also proposed, but now for a special class
of PNL models related to hyperspectral imagery [6]. A Bayesian approach was
also considered for dealing with the underdetermined case (P < M) [63].

4.2 Two-Stage Approaches

The first two-stage PNL approach [8] addressed the separation of two bounded
sources under geometrical arguments. Indeed, since the scatter plot of bounded
PNL mixtures presents nonlinear borders, [8] proposed to identify gj(·) by recov-
ering signals g1(x1), g2(x2) that provide linear borders in the scatter plot. A
similar geometrical approach was proposed in [52] and was able to deal with the
case of more than two sources.

Another idea to identify gj(·) is to exploit prior information related to the
sparsity of the sources. This idea is similar to the geometrical approach—indeed,
when the sources are sparse, it becomes easier to identify the borders associated
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with the scatter plot of the mixtures. For instance, in [55], the authors proposed
a SCA-based scheme to identify gj(·) by assuming that there are, for each source
si(n), a temporal (or spatial) zone in which only si(n) is active — such an idea is
similar to that previously described for LQ mixtures. Similar SCA schemes were
also developed for dealing with the case of underdetermined PNL mixtures [60,
62] — here, of course, the resulting linear BSS problem is more challenging than
the determined linear BSS problem.

The underlying criteria for inverting gj(·) in the two-stage methods presented
so far are based on a joint processing of the mixtures. Alternatively, there are two-
stage methods that process each mixture in a separate fashion — this approach
will be referred to as independent two-stage methods. In this case, the resulting
method thus comprises P independent executions of an algorithm that blindly
compensates each fi(·) followed by the application of a linear BSS method.

The first independent PNL two-stage methods make use of a well-known
property involving probability distributions and nonlinear functions: it is possible
to blindly estimate a univariate random variable that underwent a nonlinear
distortion by setting up a nonlinear compensating function that provides a new
random variable having the same probability distribution as that of the original
random variable. This idea of matching the probability distributions of the input
and its estimated version was firstly applied in signal processing by White [64].

In the context of PNL methods, it is possible to adapt the strategy pro-
posed in [64] by observing that, after the linear mixing stage, the signals tend
to Gaussian variables — this is a consequence of the central limit theorem.
Moreover, due to the action of fj(·), the observations xj(n) have non-Gaussian
distributions. Therefore, a natural idea to counterbalance fj(·) is to adapt gj(·)
so that its output becomes again Gaussian. Implementations of this strategy
can be found in [58,66,67]. Interestingly, these Gaussianization-based methods
provide better results as the number of sources increases, since the hypothesis
of Gaussian linear mixtures is more realistic as P grows. However, even for a
small number of sources they can provide at least an initial approximation of
gj(·) [58].

Alternative independent two-stage methods were proposed by taking into
account other prior information than the gaussianity of the linear mixtures. For
instance, [29] introduced a novel method that is tailored to the case of bandlim-
ited sources. More recently, by considering the assumption that the sources admit
a sparse representation in a known domain, [30] extended [29] and introduced
a method for blind compensation of nonlinear functions that can be directly
applied to PNL separation problems. Note that, differently from the above-
discussed PNL methods based on sparsity priors, the introduced method in [30]
operates in an independent fashion.

5 Conclusion

In this overview, we especially focused on practical BSS/BMI methods intended
for two major types of nonlinear mixtures. Due to space limitations, we hereafter
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first only briefly mention closely related topics, i.e. the case of finite-alphabet
sources [13], the invertibility of the considered mixing models (see e.g. [36]) the
extension of LQ mixtures to polynomial ones (see e.g. [13,47,65]), the sepa-
rability of these models with given separation principles, such as ICA (see [5]
for bounded sources), the approaches based on non-blind and semi-blind BSS
methods (see e.g. [20,34]). There are also interesting works that deal with PNL
models and were not discussed in this overview paper. For instance, some effort
has been put on the case of convolutive PNL mixtures [9,41] and on the prob-
lem of blind source extraction in PNL mixtures [44]. Finally, let us stress that
other types of nonlinear mixing models have also recently been considered in the
literature. All this shows that nonlinear BSS is currently a quite active research
field, that we plan to present in more detail in a future publication.
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blind source separation using NMF to unmix urban hyperspectral images. IEEE
Trans. Sig. Process. 62, 1822–1833 (2014)

50. Merrikh-Bayat, F., Babaie-Zadeh, M., Jutten, C.: Linear-quadratic blind source
separating structure for removing show-through in scanned documents. IJDAR
14, 319–333 (2011)

51. Mokhtari, F., Babaie-Zadeh, M., Jutten, C.: Blind separation of bilinear mixtures
using mutual information minimization. In: Proceedings of IEEE MLSP, Grenoble,
France, 2–4 September 2009

52. Nguyen, T.V., Patra, J.C., Emmanuel, S.: gpICA: a novel nonlinear ICA algorithm
using geometric linearization. EURASIP J. Adav. Sig. Process. 2007, 1–12 (2007)

53. Pham, D.T.: Fast algorithms for mutual information based independent component
analysis. IEEE Trans. Sig. Process. 52(10), 2690–2700 (2004)

54. Pham, D.T.: Flexible parametrization of postnonlinear mixtures model in blind
sources separation. IEEE Sig. Process. Lett. 11(6), 533–536 (2004)

55. Puigt, M., Griffin, A., Mouchtaris, A.: Post-nonlinear speech mixture identification
using single-source temporal zones and curve clustering. In: Proceedings of the
European Signal Processing Conference (EUSIPCO), pp. 1844–1848 (2011)
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