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Abstract

Considering a set of observed signals that result from mixing (i.e. combin-
ing) a set of unknown source signals by means of an unknown function, blind
source separation (BSS) and blind mixture identification (BMI) methods aim
at estimating these source signals and/or the mixing function. Such methods
have been extensively used, e.g. to process hyperspectral data in the field
of remote sensing (i.e. Earth observation). However, most of these methods
are restricted to the simplest mixing model, namely linear mixtures without
the “variability” defined below. Some investigations started to tackle the
more complex case of linear-quadratic (LQ), i.e. second-order polynomial,
and memoryless mixtures. Some other investigations deal with the so-called
intraclass variability phenomenon, i.e. with the case when each source yields
a component having a somewhat different “shape” in each observed signal.
Such nonlinearity and variability may e.g. appear in remote sensing hyper-
spectral images, as detailed in this paper. To our knowledge, each BSS/BMI
method from the literature related to the nonlinearity and variability issues
only addresses one of them. In contrast, we here propose a more powerful,
very generic, BSS/BMI approach, that extends standard Nonnegative Ma-
trix Factorization so as to jointly handle LQ mixtures and arbitrary source
intraclass variability. This opens the way to a much wider range of BSS/BMI
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applications than plain linear “variabilityless” mixtures, e.g. to handle the
above-defined two issues of remote sensing. Considering the latter applica-
tion, we built data sets so that they are both realistic and suited to a detailed
quantitative performance evaluation. The tests reported in this paper show
that our method significantly outperforms several approaches from the lit-
erature: the estimation errors are thus decreased by factors up to around 2
and 1.5, respectively for spectra and mixing coefficients.

Keywords: Blind source separation, hyperspectral imaging, intraclass
source variability, linear-quadratic mixture, nonnegative matrix
factorization

1. Introduction

Blind source separation (BSS) and blind mixture identification (BMI)
are mature fields within signal/image/data processing (see e.g. the books
or survey chapters [8, 10, 12, 21, 32, 44]). They aim at solving problems
where a set of unknown source signals get mixed, i.e. combined, through
an unknown mixing function, thus yielding a set of known mixed signals,
also called observations. One then aims at estimating the source signals
and/or mixing function only from the known mixed signals, by also using
some assumed properties about the source signals and/or mixing function.

The above type of problem is faced in various application fields, including
remote sensing / Earth observation, when analyzing hyperspectral data (see
e.g. the surveys in [6, 26]), for the following reason. Remote sensing hyper-
spectral data are obtained with sensors that have a low spatial resolution.
Therefore, each pixel of such an image usually corresponds to a surface on
Earth which is covered by several pure materials. The overall reflectance
spectrum obtained for such a pixel is then a combination of the spectra of
all involved pure materials. More precisely, the simplest configuration corre-
sponds to homogeneous illumination of a flat surface on Earth, with sunlight
directly reflected from the ground to the airbone or satellite sensor (and no
intimate mixing, as discussed below) [13, 39]. Each pixel spectrum of an
observed image is then a linear combination of the pure material spectra,
with each associated coefficient equal to the fraction of surface covered by
the considered pure material in this pixel. These coefficients are therefore
called abundance fractions. A detailed analysis of hyperspectral images then
requires one to derive two types of quantities from each recorded mixed pixel
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spectrum: 1) the corresponding pure material spectra, that may then be
further analyzed (classified) so as to identify the types of pure materials
present in each pixel and 2) the corresponding abundance fractions, which
may then e.g. be used to build a spatial map of the abundance of each pure
material, that may be further analyzed, e.g. in order to manage crop in
natural scenes or to derive the overall surface of solar panels in urban areas
[25]. To this end, the pure material spectra and abundance fractions may be
estimated by using suitable classes of BSS/BMI methods, often referred to
as unsupervised unmixing methods by the remote sensing community. For
the above-defined type of mixtures, a natural approach considers the pure
spectra as the source signals, whereas the abundance fractions are the mix-
ing coefficients. Alternatively, one may rewrite the data model so that the
source signals are composed of the abundance fractions (with image pixels
rearranged as a one-dimensional series) whereas the mixing coefficients then
consist of the values of pure material spectra (the correspondence between
these two models is e.g. detailed in [24]).

The above approach however has limited applicability because practical
data often result from more complex mixing phenomena. Some configura-
tions involve mixing at a microscopic level, referred to as intimate mixtures
[26]. Even when such microscopic effects can be ignored (observations at a
decimetric or metric scale), two other major phenomena may occur at the
macroscopic level. The first one may still be considered in the framework
of the most general BSS/BMI problem defined above. It concerns the case
when the mixing function is nonlinear. Hyperspectral data give rise to such
mixtures, and especially to linear-quadratic (LQ) ones, as shown e.g. in
[35]. Briefly, this occurs when part of the sunlight is successively reflected
by two surfaces before it reaches the sensor, e.g. in urban environments
where it may be first reflected by the walls or windows of a building, down
to the ground, and then from the ground to the sensor (see Fig. 1). In
such conditions, [35] showed that the recorded pixel spectra are LQ mixtures
(possibly restricted to bilinear ones, as defined in [16]) of the pure mate-
rial spectra. Various methods have been proposed in the literature to solve
the LQ version of the BSS/BMI problem in general (see e.g. the surveys
in [11, 16]), and more specifically for unmixing hyperspectral data (see e.g.
[1, 2, 3, 4, 14, 15, 17, 18, 20, 22, 23, 33, 34, 35, 36, 43, 45]).

Also starting from the standard linear mixing model, the other major
macroscopic phenomenon that requires one to move to a more complex mix-
ing model in various remote sensing configurations is the so-called intraclass
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Figure 1: Double reflection of light emitted by the sun: the light is first reflected by a
wall or window of a building, then reflected by the ground, and it eventually reaches the
sensing device (Reprinted from [35]).

variability or spectral variability. In the above description, it was implicitly
assumed that a given type of pure material is defined by a single spectrum
so that, if the complete considered image involves M pure materials, then
all observed pixel spectra are mixtures of the same M pure material spectra.
The general definition of the BSS/BMI problem provided at the beginning
of this section is also based on this assumption, the pure material spectra
being then replaced by the source signals. However, things are more difficult
in many practical remote sensing configurations, because what we called a
pure material above yields somewhat different spectra in all observations, i.e.
in all pixels: for instance, if various pixels contain roof tiles, the associated
tile spectra are not the same for all these pixels (see e.g. [13, 39] and Section
4.1 below). One should then not think anymore in terms of a pure material
defined by a single spectrum, but in terms of a class of materials (e.g. the
class of roof tiles), whose spectra are somewhat different but still generally
closer to one another than to the spectra of other classes of materials (e.g.
the asphalt class if again considering urban areas). In other words, the classes
have no or limited overlap (see an example e.g. in Fig. 5 of [39]). Starting
from an image involving M classes of pure materials and containing P pixels,
one may therefore aim at estimating MP pure spectra (that is, representa-
tives of all classes in each pixel) and associated abundance fractions. Various
methods have been proposed to this end: see e.g. the surveys [7, 48] and
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recent original contributions e.g. in [30, 41, 42, 47]. Besides, [13, 39] describe
a linear mixing model which includes a specific representative in each pixel
for each class of pure materials, and a blind unmixing algorithm that handles
variability by constraining the estimates of these representatives to have a
limited spread within each class.

The previous work in [13, 39] is of importance in the framework of the
present paper, because we here aim at extending that approach of [13, 39]
so as to handle mixing nonlinearity in addition to variability. Indeed, when
trying to extend unsupervised hyperspectral unmixing methods beyond the
standard case of linear mixtures without variability, the papers cited above
only considered one of the two possible issues, i.e. nonlinear mixtures or
variability, but not both. In contrast, in the present paper, we propose an
approach where we first define a data model which explicitly takes both phe-
nomena into account and we then build an algorithm which allows one to
estimate all the unknown variables involved in that model. This approach is
based on one of the major classes of methods that have been developed in
the literature to solve the BSS/BMI problem in general, and more specifi-
cally to perform unsupervised hyperspectral unmixing, namely Nonnegative
Matrix Factorization (NMF) [5, 9, 10, 28, 29] (see also its origin in [38]). In
particular, we here build upon the extension of NMF to LQ mixtures without
variability that we proposed in [36]. The approach proposed in the present
paper is thus very generic and could therefore be applied to other domains,
in addition to Earth observation.

The remainder of this paper is organized as follows. In Section 2, we
define the proposed data model. In Section 3, we introduce a corresponding
unmixing method. Test results are reported in Section 4 and conclusions are
drawn from this investigation in Section 5.

2. Data model

In this paper, the reflectance spectrum xp associated with all L spectral
bands and any pixel p of the observed image is modeled as the L-element
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column vector

xp =
M∑

m=1

cp,mrm(p) +
M∑

m=1

M∑

µ=m

cp,(m,µ)rm(p)⊙ rµ(p),

∀ p ∈ {1, . . . , P},

with





∑M

m=1 cp,m = 1
cp,m ≥ 0 ∀m ∈ {1, . . . ,M}
0 ≤ cp,(m,µ) ≤ 0.5 ∀m,µ, with 1 ≤ m ≤ µ ≤M

(1)

where the constraints on cp,m and cp,(m,µ) are inspired from [35, 36], and with
the following notations. M and P are, respectively, the number of classes
of pure materials and the number of pixels in the observed image. rm(p)
is the pure material spectrum associated with the m-th class of materials
and with pixel p. For a given class m, the corresponding pure material spec-
trum may depend on the considered pixel, thus allowing intraclass variability.
Moreover, the model in itself allows any values for the spectra, which makes
this model able to handle any type of variability (whereas some variability
models from the literature are much more restricted, thus e.g. only allowing
them to handle a global scale factor inside each class of pure materials: see
e.g. [46]). The variability of the estimated model will be further constrained
by the algorithm proposed in this paper. Besides, the proposed model (1)
first includes a linear combination (with coefficients cp,m) of the above spec-
tra rm(p), but also a linear combination (with coefficients cp,(m,µ)) of their
element-wise products rm(p)⊙rµ(p). This allows this model to jointly include
variability and quadratic effects (including bilinear ones, that correspond to
m 6= µ).

Still distinguishing between the linear and quadratic contributions, this
yields a first matrix-form model for the complete observed data matrix X ∈
R

P×L composed of the vectors xp for all pixels, rearranged as

X = [x1, . . . ,xP]
T (2)

where T stands for transpose. The proposed model then reads

X = C̃R̃+ Γ̃T̃ (3)

with the following notations:
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• R(p) = [r1(p), . . . , rM(p)]T ∈ R
M×L contains all M pure material spec-

tra for pixel p, with the spectrum for any class m stored in row m of
R(p) whatever p.

• The matrix

R̃ =



R(1)
...

R(P )


 ∈ R

PM×L (4)

contains the pure material spectra for all pixels of the observed image,
with the spectra for any class m stored in rows m + (κ − 1)M , with
κ ∈ {1, . . . , P}.

• cp = [cp,1, . . . cp,m]
T ∈ R

M×1 is the vector of linear mixing coefficients
associated with R(p).

• C̃ ∈ R
P×PM is the resulting block-diagonal matrix of linear mixing

coefficients associated with R̃ (i.e. with the complete image), defined
as

C̃ =




c1
T 0 . . . 0 . . . 0 . . . 0

0 . . . 0 c2
T . . . 0 . . . 0

. . .

0 . . . 0 0 . . . 0 . . . cP
T


 .

• T(p) = [r1(p)⊙r1(p), r1(p)⊙r2(p), . . . , rM(p)⊙rM(p)]T ∈ R
K×L, with

K = M2 −

(
M

2

)
, contains all element-wise products of pure material

spectra (involved in quadratic components) for pixel p, in the same
order for all pixels.

• The matrix

T̃ =



T(1)
...

T(P )


 ∈ R

PK×L (5)

contains the element-wise products of pure material spectra for all pix-
els of the observed image.

• γp = [cp,(1,1), cp,(1,2), . . . , cp,(M,M)]
T ∈ R

K×1 is the vector of quadratic
mixing coefficients associated with T(p).
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• Γ̃ ∈ R
P×PK is the resulting block-diagonal matrix of quadratic mixing

coefficients associated with T̃ (i.e. with the complete image), defined
as

Γ̃ =




γ1
T 0 . . . 0 . . . 0 . . . 0

0 . . . 0 γ2
T . . . 0 . . . 0

. . .

0 . . . 0 0 . . . 0 . . . γP
T


 .

Finally, this data model may be expressed in a more compact form, as

X = ĊṘ (6)

with the following notations:

• The matrix

Ṙ =




R(1)
T(1)
...

R(P )
T(P )



∈ R

P (M+K)×L (7)

contains the “extended spectra”, i.e. the pure material spectra and
their element-wise products, for all the observed image.

• Besides, Ċ ∈ R
P×P (M+K) is the block-diagonal matrix of linear and

quadratic mixing coefficients associated with Ṙ, defined as

Ċ =




[c1
T , γ1

T ] 0 . . . 0 . . . 0 . . . 0
0 . . . 0 [c2

T , γ2
T ] . . . 0 . . . 0

. . .

0 . . . 0 0 . . . 0 . . . [cP
T , γP

T ]


 . (8)

3. Proposed unmixing method

3.1. Principle of the method

We here extend the principles of linear NMF without variability, so as to
derive a general BSS/BMI/unmixing method that jointly handles two phe-
nomena, namely linear-quadratic (LQ) mixtures and intraclass variability.
The latter phenomenon is dealt with by introducing an Inertia-constrained
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Pixel-by-pixel (IP) approach, as detailed below, so that the proposed algo-
rithm is called LQIP-NMF. This method involves two adaptive matrices that
respectively aim at estimating the matrices Ṙ and Ċ of the mixing model (6).

These adaptive matrices might be denoted as
̂̇
R and

̂̇
C for the sake of clarity

but, for better readability, they are simply denoted as Ṙ and Ċ hereafter:
we stess that, in all this Section 3, the notations Ṙ and Ċ (and those for the
associated variables, as defined in Section 2) refer to the adaptive matrices
that are updated by the proposed unmixing algorithm, whereas the actual,
fixed, values of the matrices in the right-hand term of the data model (6) are
unknown and not used in this Section 3.

The LQIP-NMF method consists of adapting Ṙ and Ċ so as to minimize
the cost function defined as

Jlqip−nmf (Ṙ, Ċ) = JRE(Ṙ, Ċ) + wJI(Ṙ) (9)

with

JRE(Ṙ, Ċ) =
1

2

∥∥X− ĊṘ
∥∥2

F
(10)

JI(Ṙ) =
M∑

m=1

Tr(Cov(R̃Cm)) (11)

where ||.||F stands for the Frobenius norm, Tr and Cov stand for matrix trace
and covariance, and R̃Cm ∈ R

P×L is the matrix containing all pure spectra
estimates for the m-th class of materials and all pixels (the cost function (9)
is minimized so as to take the constraints of model (1) into account, as de-
tailed in the pseudo-code provided further in this paper). As shown by (10),
JRE(Ṙ, Ċ) measures the reconstruction error achieved when approximating
the observed imageX by the product ĊṘ of adaptive matrices. It extends the
traditional NMF cost function to the much more complicated data structure
defined by (7) and (8), which takes nonlinearity and variability into account.
Besides, the penalty term JI(Ṙ) defined in (11) is an extension of its re-
stricted version only intended for linear mixtures with intraclass variability
that we proposed in [39]. It is used to control the variability, inside each class
of pure materials, allowed for the estimates of the pure spectra for that class
that are associated with all pixels: as shown by (11), the quantity JI(Ṙ) is
the sum, over all classes, of the inertia (i.e. of the spread) Tr(Cov(R̃Cm)) of
all estimated pure spectra for the considered class. Minimizing the overall
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cost function (9) therefore also tends to force all the spectra estimated for
one class to remain close to one another, and the strength of this constraint
may be freely increased by increasing the value of the weight w in (9).

One should then define an optimization algorithm for minimizing the cost
function Jlqip−nmf (Ṙ, Ċ). A projected gradient algorithm is derived hereafter
and the corresponding gradient expressions are therefore first calculated.

As with standard NMF, the proposed cost function may have spurious
global minima and local minima. In order to make the proposed algorithm
more likely to converge to an adequate point, one should initialize the adap-
tive matrices with relevant values. A practical initialization method is detail
in Section 4 for the considered application.

3.2. Gradient with respect to R̃: scalar form

To first calculate the partial derivative of the term JRE of the cost function
(9) with respect to R̃, that term is rewritten as follows (see the proof in
Appendix A):

JRE =
P∑

p=1

Jp with Jp =
1

2
‖xp

T −
[
cp

T γp
T
] [R(p)

T(p)

]
‖2F . (12)

This first yields the following scalar partial derivative of JRE with respect to
one element of R(p), with indices m and l:

∂JRE

∂ [R(p)]ml

=
P∑

q=1

∂Jq
∂ [R(p)]ml

.

(13)

Moreover, (12) shows that Jq depends on R(p) only if q = p, so that (13)
reduces to

∂JRE

∂ [R(p)]ml

=
∂Jp

∂ [R(p)]ml

. (14)

10



It may then be shown that

∂Jp
∂ [R(p)]ml

= −[cp(xp
T −

[
cp

T γp
T
] [R(p)

T(p)

]
)]ml

−
M∑

µ=1
µ 6=m

[R(p)]µl × [γp(xp
T −

[
cp

T γp
T
] [R(p)

T(p)

]
)](µm)l

− 2 [R(p)]ml × [γp(xp
T −

[
cp

T γp
T
] [R(p)

T(p)

]
)](mm)l. (15)

The above matrix R(p) is included in the matrix R̃ defined by (4), and one
then derives the scalar partial derivative of JRE with respect to one element
of R̃, with indices ν and l. This may be shown to yield

∂JRE

∂[R̃]νl
= −

[
C̃T

(
X− ĊṘ

)]
νl
−

pM∑

µ=(p−1)M+1
µ 6=ν

[
R̃
]
µl
×
[
Γ̃T

(
X− ĊṘ

)]
(µν)l

− 2
[
R̃
]
νl
×
[
Γ̃T

(
X− ĊṘ

)]
(νν)l

(16)

where (p,m) is the only couple of indices such that ν = (p − 1)M +m, for
a given ν with ν ∈ {1, . . . , PM}. In this couple (p,m), the index p is the
index of the pixel with which [R̃]νl is associated and m is the index of the
class considered in R(p).

To then calculate the partial derivative of the term JI of the cost function
(9) with respect to R̃, that term is rewritten as follows (see the proof and
the expression of QCm in Appendix B):

JI =
1

P
Tr(R̃T R̃)−

1

P 2

M∑

m=1

Tr(QCm). (17)

From this expression, tedious calculations show that

∂JI

∂R̃
=

2

P
(IdPM −

1

P
U)R̃ (18)
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where U ∈ R
PM×PM is defined as

U =




M





M︷ ︸︸ ︷
1 0 . . . 0
0 1 . . . 0
...

. . .

0 0 . . . 1
1 0 . . . 0
...

1 . . .
0 . . .
...
0 . . .
1 . . .

. . .




=



IdM . . . IdM

...
. . .

...
IdM . . . IdM


 (19)

and IdD is the identity matrix with dimension D. By using (16) and (18),
Eq. (9) yields

[
∂Jlqip−nmf

∂R̃

]

νl

= −
[
C̃T

(
X− ĊṘ

)]
νl
−

pM∑

µ=(p−1)M+1
µ 6=ν

[
R̃
]
µl
×
[
Γ̃T

(
X− ĊṘ

)]
(µν)l

− 2
[
R̃
]
νl
×
[
Γ̃T

(
X− ĊṘ

)]
(νν)l

+
2w

P

[(
IdPM −

1

P
U

)
R̃

]

νl

. (20)

3.3. Gradient with respect to R̃: matrix form

To take advantage of programming environments, such as Matlab, that
use matrix representations to speed up computation, one must then use the
scalar derivative (20) to derive the derivative of the cost function with respect
to the complete matrix R̃. Using the structure of R̃ defined in (4), tedious
calculations show that (20) yields

∂Jlqip−nmf

∂R̃
= −C̃T

(
X− ĊṘ

)
+

2w

P

(
IdPM −

1

P
U

)
R̃

− (IdPM ⊗ 11K)
((

(IdP ⊗ F) (IdP ⊗ (1M1 ⊗ IdM)) R̃
)

⊙
(
(IdP ⊗ (1M1 ⊗ IdK)) Γ̃

(
X− ĊṘ

)))

(21)
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where ⊗ is the Kronecker multiplication operator. The matrices denoted as
1Y Z contain Y × Z elements, all equal to 1. Besides, F ∈ R

MK×M2

is a
block-diagonal matrix defined by

F =



F1 · · · [0]
...

. . .
...

[0] · · · FM




[Fµ]km =
M∑

ν=1

δνmδ
η
k(1 + δµν )

η = (min(µ, ν)− 1)(M −
min(µ, ν)

2
) +max(µ, ν)

where δji is the Kronecker symbol.

3.4. Update of matrix T̃

The above equations will be used below to derive a gradient-based algo-
rithm for updating the part of the matrix Ṙ, defined by (7), that corresponds
to the matrix R̃ defined by (4), i.e. that corresponds to all pure material
spectra. In contrast, the part of Ṙ that corresponds to the matrix T̃ defined
by (5) is not updated with a gradient-based rule, but in such a way that
this part of Ṙ contains all element-wise products of estimated pure material
spectra. First using a scalar data representation, this yields the assignment

[
T̃(i+1)

]
(mν)l

←
[
R̃(i+1)

]
ml
×
[
R̃(i+1)

]
νl

(22)

where the superscript (i+1) refers to the new value of a matrix derived during
iteration i of the unmixing algorithm.

Here again, the corresponding matrix form of this update rule is then
preferred. Using the structure of T̃ defined in (5), it may be shown to read

T̃←−
(
(IdP ⊗G1)R̃

)
⊙
(
(IdP ⊗G2)R̃

)
(23)

where G1 ∈ R
K×M and G2 ∈ R

K×M are matrices defined as

[G1]km =
M∑

α=1

M∑

β>α

δk(α−1)(M−α

2
)+β.δ

α
m

[G2]km =
M∑

α=1

M∑

β>α

δk(α−1)(M−α

2
)+β.δ

β
m.
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3.5. Gradient with respect to Ċ

Using matrix derivation properties, it is easily shown that

∂Jlqip−nmf

∂Ċ
= −(X− ĊṘ)ṘT (24)

except that part of the elements of Ċ must be kept to zero, as detailed below.

3.6. Complete LQIP-NMF algorithm

The above calculations make it possible to derive the corresponding com-
plete LQIP-NMF algorithm, whose pseudo-code is provided at the end of
this section. The adaptive variables R̃, T̃ and Ċ are first initialized as de-
tailed in Section 4 and then iteratively updated, denoting with superscripts
(i) and (i+1) their values before and after adaptation during iteration i of that
unmixing algorithm. At each iteration, R̃ is first updated with the standard
gradient algorithm (using (21) and an adaptation gain denoted as αṘ) and
each of its components is then projected onto the subset of positive values (by
taking the maximum between that value and a very small positive real num-
ber ǫ). Then, T̃ is updated with (23). The last steps of the algorithm aim at
adapting Ċ. They first use the standard gradient algorithm (and hence (24)
and an adaptation gain denoted as αĊ), except that all “off-block-diagonal

elements”, i.e. all elements of Ċ(i+1) that correspond to zero-valued elements
of the data model (8), are then reset to zero. Finally, the elements of Ċ(i+1)

are post-processed so as to meet the inequalities and sum-to-one constraint
of the data model (1), as detailed in Steps 4 and 5 of the pseudo-code shown
below.

Algorithm: Linear-Quadratic Inertia-constrained Pixel-by-pixel NMF
(LQIP-NMF)

i←− 1
While (Jlqip−nmf > Threshold
and i < Maximum number of iterations):
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1. Update matrix R̃:

R̃(i+1) ←− R̃(i) + αṘ

(
C̃(i)T

(
X− Ċ(i)Ṙ(i)

)

−
2w

P

(
IdPM −

1

P
U

)
R̃(i) + (IdPM ⊗ 11K)×

((
(IdP ⊗ F) (IdP ⊗ (1M1 ⊗ IdM)) R̃(i)

)
⊙

(
(IdP ⊗ (1M1 ⊗ IdK)) Γ̃

(i)
(
X− Ċ(i)Ṙ(i)

))))

R̃(i+1) ←− max(R̃(i+1), ǫ)

2. Update matrix T̃:
T̃(i+1) ←−

(
(IdP ⊗G1)R̃

(i)
)
⊙
(
(IdP ⊗G2)R̃

(i)
)

3. Update matrix C̃:

Ċ(i+1) ←− Ċ(i) + αĊ

((
X− Ċ(i)Ṙ(i)

)
Ṙ(i)T

)
.

Then reset to zero all “off-block-diagonal elements” (see text).

4. Post-process linear coefficients:
For p = 1 to P

cp
(i+1) ←− max(cp

(i+1), ǫ)

cp
(i+1) ←− cp

(i+1)/
∑M

m=1 cp,m

5. Post-process quadratic coefficients:
For p = 1 to P

Update the vectors corresponding to all m and ν as follows:
cp,(m,ν)

(i+1) ←− max(cp,(m,ν)
(i+1), ǫ)

cp,(m,ν)
(i+1) ←− min(cp,(m,ν)

(i+1), 0.5)

6. i←− i+ 1

4. Test results

4.1. Considered data

We here aim at accurately, and hence numerically, evaluating the perfor-
mance of the proposed method. To this end, we process a matrix X of mixed
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spectra, we thus get the estimated pure spectra and linear mixing coefficients
(that could then be used as explained in Section 1 in final applications), and
we compare these estimates to the actual values of these parameters. Im-
plementing that protocol for a matrix X of real, i.e. measured, mixed data
is quite challenging even when only considering the standard mixing model
from the literature (i.e. the linear model without variability), because know-
ing the above actual values (i.e. ground truth) requests one to know all pure
spectra involved in the considered scene and the abundance of each pure
material in each pixel, typically derived by evaluating the surface covered
by this material. It is then infeasible to extend the above protocol to real

data X that obey the much more complex data model (1) considered in the
present paper because, due to source variability, for each class of pure mate-
rials, one would need all versions of the corresponding spectrum for all pixels.
To avoid that problem, we hereafter use mixed data X that are synthetic but
realistic, since they combine real pure spectra that have variability, by using
the model (1).

More precisely, the reported tests involve M = 3 classes of pure mate-
rials, namely tiles, vegetation and asphalt, which is relevant for urban ap-
plications. For each class, a complete set of presumably pure spectra were
manually extracted from a real urban hyperspectral image from the city of
Toulouse (France). Most features of this image are the same as in [39] and
the considered area is shown in Figure 2. The database of presumably pure
spectra here consists of 190 tile spectra, 55 vegetation spectra and 52 asphalt
spectra. This set of spectra yields large intraclass variabilities. The angular
variability is here separately evaluated for each of the 3 classes, by means
of the Spectral Angle Mapper (SAM) [27] with respect to the mean of the
spectra of the considered class. The mean and maximum values of this SAM
over a class are respectively equal to 2.64◦ and 8.53◦ for the tile class, 7.38◦

and 15.39◦ for the vegetation class, 2.73◦ and 10.05◦ for the asphalt class. In
contrast, it is generally considered that spectra corresponding to the same
class of materials yield SAMs limited to a few degrees. For instance, for
default settings, the SAM-based classification method available in the com-
mercial ENVI software [31] considers that spectra from a class have a SAM
lower than 0.1rad ≃ 5.73◦, with respect to the representative of that class.
The larger values faced in our database may result from the fact that a few
spectra that were manually selected (based on the objects present in the
considered scene) are in fact not completely pure.

Hereafter, we will take advantage of that property to also analyze the per-
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Figure 2: Image of the considered urban area (Toulouse, France) (Reprinted from [39]).

formance of the considered unmixing methods depending on the magnitude
of variability, by also considering various subsets of this overall set of spec-
tra, that have a lower variability. To this end, we select a value f , ranging
from 0% to 100%, that defines the fraction of spectra that we want to keep,
separately for each class of pure materials. The kept spectra are then chosen
as follows. Each class c contains a total number of spectra denoted as n(c).
We only keep the spectra of that class which yield a SAM, with respect to
the mean spectrum of that complete class, that is lower than a bound, where
we tune this bound so that the number of kept spectra is almost equal to
f × n(c). The mean and maximum SAM values, that were considered above
only for each complete class, can now also be computed for each subset of
data per class corresponding to a given value of f (now computing SAMs
with respect to the mean of spectra over that fixed subset). Their variations
with respect to the fraction f are provided in Fig. 3. This shows that, to ob-
tain subsets of data that correspond to realistic classes, i.e. to SAM limited
to a few degrees, f should be upper bounded by a value around 80% or even
lower (depending on the considered class, depending whether one focuses on
the mean or maximum SAM in the class and depending whether one sets
the SAM limit at ≃ 5.73◦ as mentioned above). The minimum, median and
maximum spectra obtained for each class with f = 80% are shown in Fig. 4.
Each subset of pure spectra selected with the above-defined approach is then
used as follows. For each pixel, one pure spectrum is randomly selected from
the considered subset for each class, to derive the corresponding mixed spec-
trum of the data matrix X, which contains 756 pixels. The mixing coefficient
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values used to this end in (1) are defined as follows.

Figure 3: For each class of materials, mean (<SAM>) and maximum (SAMmax) of SAM
(in degrees), versus fraction f of selected spectra (see text).

The LQIP-NMF method can handle the complete linear-quadratic mixing
model, i.e. here with 3 linear and 6 quadratic estimated coefficients per pixel,
and it is indeed operated in this way hereafter. However, as a simple synthetic
case, the actual data matrix X considered here is restricted to the bilinear
mixing model. This means that non-zero quadratic coefficients are used in
X only for element-wise products of different pure spectra, that therefore
involve the (tile, vegetation), (tile, asphalt) and (vegetation, asphalt) pairs
of pure spectra. Moreover, some linear and quadratic coefficients in X are set
to zero, especially to create a few pure pixels (i.e. with one linear coefficient
equal to one, whereas all the other linear coefficients and all quadratic ones
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Figure 4: Minimum, median and maximum spectra obtained for each class with f = 80%.

are equal to zero) and to ensure that, when a bilinear term has a non-zero
coefficient in a pixel, the corresponding two linear terms also have non-zero
coefficients in that pixel. In each non-pure pixel, the non-zero linear mixing
coefficients are arbitrarily selected and scaled so that they sum to one. Be-
sides, the non-zero quadratic coefficients are randomly drawn with a uniform
distribution between 0 and an upper bound γmax, that is varied in our tests
in order to investigate the dependence of performance with respect to the
degree of nonlinearity of the mixing model.
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4.2. Tested methods

The above-defined data are first processed with the LQIP-NMF algorithm
and a variant, both operated as follows. As in standard NMF methods, the

matrices
̂̇
R and

̂̇
C used here need to be initialized before they are adapted.

This is here performed with the following procedure. The standard VCA
unmixing algorithm [37], intended for linear mixtures, is first applied to the
matrix X of mixed data, with a number of estimated spectra set to M = 3,
thus neglecting the nonlinear part actually present in the processed data
matrix X at this stage. That part is then taken into account when setting

the initial value of the matrix
̂̇
R of extended spectra: for each pixel, the

M = 3 “linear rows of
̂̇
R” (see the data structure in (7)) are set to the

spectra estimated by VCA, whereas the M(M + 1)/2 = 6 “quadratic rows

of
̂̇
R” are set to the element-wise products of the spectra provided by VCA.

All the linear mixing coefficients contained in the matrix
̂̇
C are initially set

to 1/M , so that they meet the standard sum-to-one constraint. The initial

values of all estimated quadratic mixing coefficients in
̂̇
C are randomly drawn

(independently from the actual values in Ċ), with a uniform distribution
between 0 and the upper bound γmax.

After the above initializations, two alternative methods are first consid-

ered for updating the matrices
̂̇
R and

̂̇
C. The first one is the complete LQIP-

NMF algorithm defined in Section 3.6. The second one, called LQIP-NMF-
FCLSU below, is a hybrid method, where the update rule of the LQIP-NMF

algorithm is only used to update
̂̇
R whereas, at each iteration, the coefficient

matrix
̂̇
C is derived from X and from the current value of

̂̇
R as follows, sepa-

rately considering each pixel p of the data matrix X. The FCLSU algorithm
[19] is first applied to the considered pixel p of X and to the part of the

current matrix
̂̇
R corresponding to pixel p, with 9 abundance fraction coef-

ficients summing to one for this pixel p, as if the considered data consisted
of linear mixtures of the above-defined set of 9 extended spectra for pixel
p. Then, the 6 abundance fractions corresponding to products of “standard
spectra” are left unchanged, whereas the same scale factor is applied to the 3
abundance fractions corresponding to these “standard spectra” themselves,
so that the resulting 3 coefficients sum to one. This protocol is used be-
cause the linear-quadratic model developed in [35] was shown to meet the
sum-to-one condition for its linear abundance fractions, whereas quadratic
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abundance fractions “come in addition”.
Two types of algorithms derived from the literature were tested in addi-

tion to the above methods, namely:

1. An unmixing method which is intended neither for variability nor non-
linearity in the data. This method consists of a combination of VCA
(for estimating spectra) and then FCLSU (for estimating abundance
fractions), with a number of estimated spectra set to M = 3 and 3
estimated linear abundances per pixel, thus neglecting the nonlinear
part actually present in the processed data matrix X. This method is
called VCA-FCLSU hereafter.

2. Two unmixing methods intended for variability but not for nonlinearity
in the data. The first one is the IP-NMF algorithm defined in [13, 39],
which here estimates 3 pure spectra and 3 linear coefficients that are all
specific to each pixel. The second one, called IP-NMF-FCLSU below,
is an original hybrid method, where the update rule of the IP-NMF
algorithm is only used to update the matrix that contains 3 spectra
per pixel whereas, at each iteration, the matrix that contains 3 linear
coefficients per pixel is derived from X and from the current value of
the above spectral matrix, by using the FCLSU algorithm separately
for each pixel. Here again, the variables used to store estimated pure
spectra are initialized with the results of VCA, whereas the variables
used to store estimated mixing coefficients are initialized to 1/M .

4.3. Performance criteria

The performance of the tested unmixing methods is evaluated by means
of two criteria. First, the quality of the estimated pure spectra is measured by
comparing them to the actual pure spectra used to create the mixed matrix
X. This comparison is performed by using the SAM. This SAM parameter is
first averaged over all M = 3 spectra and all image pixels. Moreover, for each
considered configuration, 100 runs are performed with different randomly
drawn data in each run. The SAM values provided hereafter are averages
derived from all these runs.

Besides, the quality of the estimated linear mixing coefficients is evaluated
thanks to the (mean) Coefficient Error (CE), obtained by first computing the
Frobenius norm of the difference between the vectors of actual and estimated
coefficients, then dividing that norm by the number of pixels in the image,
and finally again averaging these results over all 100 runs.
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4.4. Results

In all the tests we performed, the LQIP-NMF-FCLSU and IP-NMF-
FCLSU methods yielded better performance than their LQIP-NMF and IP-
NMF variants. Therefore, we hereafter only consider LQIP-NMF-FCLSU
and IP-NMF-FCLSU, together with the VCA-FCLSU method. Moreover,
we present two types of tests: 1) tests performed in the noiseless case, i.e.
with a data matrix X that obeys the model (6), which does not include
noise, and then 2) tests with a noise component added in each pixel to the
component ĊṘ of (6) to form the final noisy data matrix X.

4.4.1. Tests with noiseless data

Within the noiseless case, a first set of tests was performed with a fixed
degree of nonlinearity in the observed data, whereas their spectral variability
was varied. To this end, the parameter γmax defined in Section 4.1 was
set to 0.3. This corresponds to a rather high degree of nonlinearity, with
a significant number of quadratic coefficients ranging up to 0.3. This may
e.g. be compared with the investigation of urban scenes in [35]: although
the upper bound of quadratic coefficients is then 0.5, their histogram is a
decreasing function, with most coefficients concentrated on significantly lower
values, up to 0.15 for most of them and 0.25 for some others. Besides, we
here control the variability of these data by using the protocol defined in
Section 4.1, keeping in mind that the relevant variability domain is obtained
for f lower than or equal to around 80%. The values of the SAM and CE
parameters thus obtained with the considered three methods are shown in
Fig. 5 and 6. These figures show that the proposed LQIP-NMF-FCLSU
method yields significantly better performance than the IP-NMF-FCLSU and
VCA-FCLSU methods derived from the literature, whatever the variability
in the relevant range defined at most by f ∈ [0, 80%] and even for higher
values of f .

A complementary set of tests was then performed with a varying de-
gree of nonlinearity in the observed data, whereas their spectral variability
was fixed. To this end, γmax was varied from 0.1 to 0.5, thus covering a
wide range of nonlinearities. Meanwhile, f was fixed to 80%, which corre-
sponds to a large variability, as explained above. The values of SAM and CE
thus obtained with the considered three methods are shown in Fig. 7 and
8. LQIP-NMF-FCLSU here again significantly outperforms IP-NMF-FCLSU
and VCA-FCLSU, whatever the considered degree of nonlinearity.
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Figure 5: Performance of LQIP-NMF-FCLSU, IP-NMF-FCLSU and VCA-FCLSU meth-
ods: mean SAM (in degrees), versus fraction f of selected spectra, for γmax = 0.3 (see
text).
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Figure 6: Performance of LQIP-NMF-FCLSU, IP-NMF-FCLSU and VCA-FCLSU meth-
ods: mean Coefficient Error (CE, in %), versus fraction f of selected spectra, for
γmax = 0.3 (see text).

A more detailed analysis of the obtained results can be performed by
graphically comparing the actual pure material spectra used to create the
processed data matrix X with their estimates derived by the considered un-
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Figure 7: Performance of LQIP-NMF-FCLSU, IP-NMF-FCLSU and VCA-FCLSU meth-
ods: mean SAM (in degrees), versus upper bound γmax of quadratic mixing coefficients,
for f = 80%.
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ods: mean Coefficient Error (CE, in %), versus upper bound γmax of quadratic mixing
coefficients, for f = 80%.
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mixing method. Focusing on the proposed LQIP-NMF-FCLSU method, we
provide such results in Fig. 9 to 11. These results are obtained in the diffi-
cult case involving both high spectral variability (with f = 80%) and high
nonlinearity (with γmax = 0.3). Fig. 9 to 11 show average performance. To
this end, each of these figures addresses only one of the considered classes
of pure material spectra (tile, vegetation or asphalt) and shows the actual
and estimated spectra in the pixel where the SAM between these two spectra
takes the median value, among the values corresponding to all pixels of the
image. When disregarding the scale factors, since they are not taken into
account in the SAM parameter, Fig. 9 to 11 show that the considered actual
and estimated spectra are quite similar. This confirms the good performance
of the proposed LQIP-NMF-FCLSU method, even in the difficult considered
case.
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Figure 9: Actual spectrum and spectrum estimated by LQIP-NMF-FCLSU, for tile class,
in the pixel which yields the median value of SAM for that class (SAM = 2.74◦), for
f = 80% and γmax = 0.3.
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Figure 10: Actual spectrum and spectrum estimated by LQIP-NMF-FCLSU, for vegeta-
tion class, in the pixel which yields the median value of SAM for that class (SAM = 7.55◦),
for f = 80% and γmax = 0.3.
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Figure 11: Actual spectrum and spectrum estimated by LQIP-NMF-FCLSU, for asphalt
class, in the pixel which yields the median value of SAM for that class (SAM = 2.42◦), for
f = 80% and γmax = 0.3.
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4.4.2. Tests with noisy data

As explained above, we also performed tests with a noise component
added in each pixel to the component ĊṘ of (6) to form the final noisy data
matrixX. These noise components were zero mean and uniformly distributed
over a range whose width was successively selected so as to achieve a signal-
to-noise ratio (SNR) equal to 40 dB or 30 dB over all the image. These SNR
values were selected because, in the studied application to hyperspectral
remote sensing, it is generally considered that the SNR of real-world data
may decrease down to around 40 dB, or possibly 30 dB. As in the first type
of test reported in Section 4.4.1, the degree of nonlinearity is here fixed, with
γmax = 0.3, whereas the spectral variability is varied, by varying f . The
results thus obtained are shown in Fig. 12 to 15. These figures, together
with Fig. 5 and 6 for the noiseless case, show that the performance of all
considered methods only slightly degrades when the SNR decreases in the
considered range. Moreover, whatever the SNR, the proposed LQIP-NMF-
FCLSU method significantly outperforms the other approaches.
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Figure 12: Performance of LQIP-NMF-FCLSU, IP-NMF-FCLSU and VCA-FCLSU meth-
ods: mean SAM (in degrees), versus fraction f of selected spectra, for γmax = 0.3 (see
text) and Signal-to-Noise Ratio (SNR) = 40 dB.
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Figure 13: Performance of LQIP-NMF-FCLSU, IP-NMF-FCLSU and VCA-FCLSU meth-
ods: mean Coefficient Error (CE, in %), versus fraction f of selected spectra, for
γmax = 0.3 (see text) and Signal-to-Noise Ratio (SNR) = 40 dB.

4.4.3. Computational complexity

The computational complexity of all tested methods was evaluated for a
laptop including an 11th generation Intel Core i7-1185G7 (3.00 GHz x 8),
with 31 GBytes of memory. The mean execution time per run (averaged over
all 100 runs) was around 0.1 s, 2.7 s and 13.1 s, respectively for the VCA-
FCLSU, IP-NMF-FCLSU and LQIP-NMF-FCLSU methods. As expected,
the methods that address spectral variability, namely IP-NMF-FCLSU and
LQIP-NMF-FCLSU, yield significantly higher computational times, due to
the much larger sizes of some matrices that they use. Also as expected, to
handle mixture non-linearity in addition, LQIP-NMF-FCLSU has a some-
what higher complexity than IP-NMF-FCLSU. Anyway, all methods result
in quite limited execution times per run: at most a few seconds. Their com-
putational load is therefore not a major issue, so that one can focus on the
accuracy of the considered methods and one can thus reach the overall conclu-
sion that the proposed LQIP-NMF-FCLSU method significantly outperforms
the other approaches.
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Figure 14: Performance of LQIP-NMF-FCLSU, IP-NMF-FCLSU and VCA-FCLSU meth-
ods: mean SAM (in degrees), versus fraction f of selected spectra, for γmax = 0.3 (see
text) and Signal-to-Noise Ratio (SNR) = 30 dB.

5. Conclusion and future work

The Blind Source Separation (BSS) and Blind Mixture Identification
(BMI) methods reported in the literature have especially been developed to
handle the simplest mixing model, whereas we here proposed a very generic
NMF-based method that extends previous works so as to jointly address
two extensions of that model: (i) we moved from linear mixtures to second-
order polynomial ones, called linear-quadratic mixtures, and (ii) we consid-
ered the case when the source signals have so-called intraclass variability,
i.e. each source yields (here, first- and second-order) components having a
somewhat different “shape” in each observed signal. Both phenomena are
actually faced in practical applications, including unsupervised hyperspec-
tral unmixing in Earth observation, which was one of our major motivations
for developing such methods. We therefore validated the performance of the
proposed method for hyperspectral data, showing that it significantly out-
performs approaches from the literature. We plan to also test this method
for a higher number of classes of pure materials.

The proposed framework may be further extended by considering higher-
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Figure 15: Performance of LQIP-NMF-FCLSU, IP-NMF-FCLSU and VCA-FCLSU meth-
ods: mean Coefficient Error (CE, in %), versus fraction f of selected spectra, for
γmax = 0.3 (see text) and Signal-to-Noise Ratio (SNR) = 30 dB.

order polynomial mixtures combined with intraclass variability. This may
e.g. be useful in the framework of Earth observation, to handle multiple
reflections of light, beyond the second-order reflections that only give rise
to the second-order polynomial mixtures considered in the present paper
(higher-order reflections however yield signal components that have lower
powers). Some BSS/BMI investigations have been reported in the literature
for higher-order polynomial mixtures, but without intraclass variability (see
references in [16]). In particular, in [34] we showed how to extend NMF
without variability to mixtures involving third-order polynomials. That in-
vestigation [34] is a good starting point for further extending that approach
so as to handle intraclass variability in addition.
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Appendix A. Other expression of JRE
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Appendix B. Other expression of JI

JI =
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where 1P,P is the P × P matrix with all elements equal to 1. Hence
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quadratic blind source separation Using NMF to unmix urban hyper-
spectral images”, IEEE Transactions on Signal Processing, vol. 62, no.
7, pp. 1822-1833, April 1, 2014.

[37] J. M. P. Nascimento, J. M. Bioucas Dias, “Vertex component analysis:
A fast algorithm to unmix hyperspectral data”, IEEE Transactions on
Geoscience and Remote Sensing, vol. 43, no. 4, pp. 898-910, April 2005.

36



[38] P. Paatero, U. Tapper, P. Aalto, M. Kulmala, “Matrix factorization
methods for analysing difussion battery data”, J. Aerosol Sci., vol. 22,
suppl. 1, pp. S273-S276, 1991.

[39] C. Revel, Y. Deville, V. Achard, X. Briottet, C. Weber, “Inertia-
constrained pixel-by-pixel nonnegative matrix factorisation: a hy-
perspectral unmixing method dealing with intra-class variability”,
Remote Sensing, Vol. 10, Issue 11, 1706, Nov. 2018. DOI:
https://doi.org/10.3390/rs10111706

[40] C. Revel, “Apport de la prise en compte de la variabilité intra-classe
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