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Abstract

Blind source separation (BSS) and Blind Mixture Identification (BMI) meth-

ods typically concern unknown source signals, transferred through a given class

of functions with unknown parameter values, which yields mixed observations.

Using only these observations, BSS/BMI aims at estimating the source signals

and/or mixing parameters. Most investigations concern linear instantaneous

mixing functions. They contain two aspects. The first one consists in propos-

ing general BSS/BMI principles, e.g. Independent Component Analysis, Sparse

Component Analysis or Nonnegative Matrix Factorization (NMF), and/or de-

riving associated practical algorithms. The second aspect consists in analyzing

the properties resulting from these principles. This is of utmost importance,

to determine if the proposed BSS/BMI principles are guaranteed to separate

the source signals and to identify the considered mixing model up to accept-

able indeterminacies. These separability/identifiability analyses are even more

important for nonlinear mixtures, that were shown to potentially yield higher

indeterminacies. Among them, bilinear and linear-quadratic mixtures are re-

ceiving increasing attention, e.g. due to their application to remote sensing.

Especially, extensions of NMF were recently proposed for them, but the result-

ing separability/identifiability properties were not analyzed. We here address

this topic, moreover proceeding further by investigating Bilinear and Linear-

Quadratic Mixture Matrix Factorization (BMMF and LQMMF) approaches

without nonnegativity constraints. We especially show that, whereas nonlin-

earity is often considered to be a burden, it yields an essentially unique decom-
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position under mild conditions for BMMF. On the contrary, full LQMMF is

shown to yield spurious solutions, which increases the usefulness of combining

it with nonnegativity constraints in applications where data meet these con-

straints. Algorithms based on this framework are also defined in this paper and

their performance is reported.

Keywords: nonlinear blind source separation, blind nonlinear mixture

identification, bilinear and linear-quadratic mixtures, matrix factorization,

separability and identifiability, uniqueness of decomposition

1. Introduction

Blind source separation (BSS) methods aim at restoring a set of unknown

source signals from a set of observed signals which are mixtures of these source

signals [2], [4], [6], [10]. The considered mixing model, i.e. the class of mixing

functions, is usually predefined, but the values of its parameters are initially5

unknown. BSS is thus closely linked to the estimation of these parameters,

i.e. to Blind Mixture Identification (BMI) [7], [10]. In the most studied mixing

model, the observations are linear instantaneous (i.e. memoryless) combinations

of the source signals. Several classes of BSS/BMI methods were developed for

this model, especially including Independent Component Analysis (ICA), Sparse10

Component Analysis (SCA) and Nonnegative Matrix Factorization (NMF) [4],

[7], [10].

The standard procedure [6], [10] for developing a complete BSS/BMI method

consists in defining five items: the considered mixing model, separating struc-

ture, separation principle (e.g. enforcing mutual statistical independence of15

separating system outputs in ICA), separation criterion (e.g. minimization of a

cost function) and separation algorithm (e.g. gradient descent for minimizing a

given cost function). Besides, the above steps allow one to propose a BSS/BMI

method or a class of methods, but one should in addition analyze if that/these

methods have acceptable separability/identifiability properties. At the most20

general level, the latter task consists in considering all the class of BSS/BMI

methods associated with the considered mixing model, separating structure and

separation principle, and in deriving all the solutions of that configuration, in
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terms of estimated sources (separability properties) and/or estimated mixing

model parameters (identifiability properties). This defines the indeterminacies25

of that configuration, i.e. the residual transforms up to which the source signals

may be separated and/or the mixing model may be identified. Whereas many

investigations were devoted to proposing new linear instantaneous BSS/BMI

methods since the 1990s, far fewer analyses of separability/identifiability prop-

erties were reported. These analyses are defined in Appendix A.30

Beyond the above linear (instantaneous) mixtures, BSS/BMI methods were

also developed for nonlinear mixing models, especially for post-nonlinear models

and for linear-quadratic ones, including their bilinear version: see e.g. the

surveys of these methods and of their applications in [8] or [10]. In particular,

extensions of NMF intended for bilinear and linear-quadratic mixtures were35

especially reported in [13], [17], [18], [19], [20], [21].

In this paper, we first address bilinear mixtures, defined in Section 2. More

specifically, we consider the class of BSS/BMI methods called Bilinear Mix-

ture Matrix Factorization, or BMMF, methods (this terminology is justified in

Appendix B). We stress that these methods do not assume nonnegative sources40

and mixing coefficients (although they allow them), unlike the above-mentioned

NMF-based methods. In the very first stage of this investigation reported in

the short conference paper [9], we “proposed but almost did not analyze” this

class of BMMF methods, in the above sense: considering bilinear mixtures,

that paper [9] introduced associated separating structure and separation prin-45

ciple (summarized hereafter in Section 3), then focused on specific separation

criteria and algorithms, but did not analyze the indeterminacies thus obtained,

except by performing direct calculations for the very specific case of two sources.

In the present paper, our first contribution dealing with bilinear mixtures

is therefore fully complementary to the above article: we address the complete50

class of BSS/BMI methods based on the BMMF separation principle defined

in Section 3 (i.e. without depending on any separation criterion or algorithm)

and we provide an analytical derivation of its indeterminacies for an arbitrary

number of sources, which requests us to use a completely different approach

as compared with [9]. This separability/identifiability analysis is presented in55

Section 4. Whereas that analysis applies to any number M of sources, it may be
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better understood by focusing on the simplest cases, that is M = 2 and M = 3.

Additional explanations are therefore provided for these two cases. They are

gathered in Appendix C, for the sake of readability. Once the attractive separa-

bility/identifiability properties of the proposed BMMF approach have thus been60

established, corresponding separation criteria and algorithms should be derived,

in the framework of the above-defined procedure. The range of options for these

criteria and algorithms is quite wide, so that they will be analyzed in more detail

in a future paper. However, some of them are here presented in Sections 5 and

6 to completely illustrate the proposed procedure. Moreover, numerical tests65

performed with data corresponding to major applications of the considered mix-

ing model are then reported in Section 6. They first prove the relevance of the

assumptions used in our investigation of BMMF separability/identifiability, and

they then show the performance of the considered practical BMMF algorithms.

An extended version of the above model, namely the full linear-quadratic70

model, is then considered in Section 7, and the resulting separability/identifiability

issues are illustrated. Finally, conclusions are drawn from this investigation in

Section 8.

2. Bilinear mixing model

Considering real-valued signals which depend on a discrete variable n, the

scalar form of the bilinear (instantaneous) and noiseless mixing model reads

xi(n) =
M∑

j=1

aijsj(n) +
M−1∑

j=1

M∑

k=j+1

bijksj(n)sk(n) ∀ i ∈ {1, . . . , P} (1)

where xi(n) are the values of the P observed mixed signals for the sample index75

n and sj(n) are the values of the M unknown source signals which yield these

observations, with M ≥ 2 hereafter, whereas aij and bijk are respectively the

linear and quadratic real-valued mixing coefficients (with unknown values in the

blind case) which define the considered source-to-observation transform.

A first matrix form of that model (1) reads

x(n) = As(n) +Bp(n) (2)
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where the source and observation vectors are80

s(n) = [s1(n), . . . , sM (n)]T (3)

x(n) = [x1(n), . . . , xP (n)]
T , (4)

where T stands for transpose and matrix A consists of the mixing coefficients

aij . The column vector p(n) is composed of all source products sj(n)sk(n) of

(1), i.e. with 1 ≤ j < k ≤ M , arranged in a fixed, arbitrarily selected, order [9].

The matrix B is composed of all entries bijk arranged so that i is the row index

of B and the columns of B are indexed by (j, k) and arranged in the same order85

as the source products sj(n)sk(n) in p(n).

An even more compact form of this model may be derived by stacking row-

wise the vectors s(n) and p(n) of sources and source products in an extended

vector

s̃(n) =

[
s(n)

p(n)

]
(5)

whereas the corresponding matrices A and B are stacked column-wise in an

extended matrix

Ã = [A B] . (6)

The bilinear mixing model (2) then yields

x(n) = Ãs̃(n). (7)

A third matrix-form model may eventually be derived by stacking column-

wise all available signal samples, which correspond to n ranging from 1 to N ,

in the matrices

S̃ = [s̃(1), . . . , s̃(N)] (8)

X = [x(1), . . . , x(N)]. (9)

The single-sample model (7) thus yields its overall matrix version

X = ÃS̃. (10)

3. Separating structure and separation principle90

Generally speaking, a separating system aims at providing estimates of

source signals, by using adequately tuned parameters. Within this framework,
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a standard approach uses systems which receive the observations as their in-

puts and which combine them according to a model which implements a class

of functions equal to the inverse of the class of functions corresponding to the95

mixing model. The parameter values of such a system define one single function

within this class and should be selected so as to match those of the single func-

tion corresponding to the considered mixture. The outputs of this separating

system thus yield estimates of the source signals.

Within the above overall framework, we here consider a different approach,100

defined in [9], which consists in building a system which aims at modeling the

direct, i.e. mixing, function. It thus does not require the analytical form of

the inverse model to be known. Since the direct function is defined by (10), the

variables involved in the considered separating structure consist of two matrices,

Ǎ and Š, which respectively aim at estimating Ã and S̃ (possibly up to some105

indeterminacies). The rows of S̃ and thus Š may be seen as vectors used to

decompose the row vectors of X , whereas Ã and thus Ǎ contain the coefficients

of this decomposition. Moreover, matrix S̃ is guaranteed to meet a constraint: as

shown by (5) and (8), only its top M rows are free, i.e. they contain the source

values, whereas all subsequent rows are element-wise products of two of the110

above rows. Therefore, the same constraint is here set on the adaptive variable

Š of the separating structure. This means that the top M rows of Š are master,

i.e. freely tuned, variables. These M row vectors are respectively denoted as

š1 to šM . On the contrary, all subsequent rows of Š are slave variables, which

are updated together with the above top M rows, so as to contain element-wise115

products šj ⊙ šk of those top M rows. These šj ⊙ šk products are only stored

for 1 ≤ j < k ≤ M and arranged in a fixed, arbitrarily selected, order [9].

The separation principle used hereafter for adapting matrices Ǎ and Š of the

above separating structure consists in updating these variables associated with

the direct model so that their product ǍŠ fits the observation matrixX , in order120

to ideally achieve ǍŠ = X . This class of methods and their separation principle

are therefore called Bilinear Mixture Matrix Factorization, or BMMF. Hereafter,

we first determine all values of Ǎ and Š which yield an exact decomposition

ǍŠ = X of the observed data.
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4. Uniqueness of decomposition125

4.1. Notations

The vectors in the top M rows of S̃ are respectively denoted as s1 to sM .

The matrix composed of these row vectors, i.e. the “linear part” of S̃, is denoted

as S:

S =




s1

. . .

sM


 . (11)

The matrix composed of the top M rows of Š, i.e. the “linear part” of Š, is

denoted as ŠL:

ŠL =




š1

. . .

šM


 . (12)

We denote as M̃ the overall number of “extended sources”, which correspond

to the above original source vectors s1 to sM and their products sj⊙sk involved

in (1). This yields

M̃ =
M(M + 1)

2
. (13)

The subspace spanned by the row vectors of S̃ is denoted as ∫
S̃
. The subspace

spanned by the row vectors of X is denoted as ∫X .

4.2. Assumptions

The following assumptions are used as from Section 4.3. The number of130

samples of all source vectors sj is supposed to be at least equal to M̃ . The rank

of S̃ is then limited by its row rank: it is at most equal to M̃ . Moreover, we

hereafter consider the following case:

Assumption 1. S̃ has full row rank: rowrank(S̃) = M̃.

In other words, all M̃ vectors sj and sj ⊙ sk corresponding to (1) are assumed135

to be linearly independent (as explained above, ⊙ denotes element-wise vector

product).

The considered mixture is assumed to be determined or over-determined

with respect to the extended set of sources, i.e. the number P of rows of X

7



is assumed to be at least equal to M̃ . Besides, all row vectors of X are linear140

combinations of the M̃ extended source vectors, as shown by (10). Therefore,

the row rank of X is at most equal to M̃ . Moreover, we hereafter consider the

following case:

Assumption 2. rowrank(X) = M̃.

Note that Assumption 2 implicitly implies that Assumption 1 is met. Besides,145

we introduce the following assumption, used as from Section 4.4:

Assumption 3. All vectors s1 to sM and all different vectors involved in the

right-hand part of Eq. (15) introduced below (these vectors are element-wise

products of two to four vectors sj) are linearly independent.

When counting the number of different vectors of (15) involved in Assumption150

3, one should not take into account the total number of terms in the right-hand

part of (15), but only the number of different element-wise vector products that

(15) yields, which is therefore lower. More precisely, let us first consider the case

when M = 2. In that case, the first line of the right-hand part of (15) contains

four terms, respectively proportional to s1 ⊙ s1 and s1 ⊙ s2 for j = 1, and then155

s2⊙ s1 and s2⊙ s2 for j = 2. But s1⊙ s2 = s2⊙ s1 due to the commutativity of

the element-wise product ⊙, so that these four terms only yield three different

products sj ⊙ sj′ . The same principle applies to the terms in the subsequent

lines of (15). More generally speaking, for any M with M ≥ 4, the number of

different vector products contained in (15) may be shown to be as follows:160

• The number of different products of two source vectors, which correspond

to the first line of (15), is equal to
M(M + 1)

2
.

• The number of different products of three source vectors, which correspond

to the second and third lines of (15), is equal to
M(M − 1)(M + 4)

6
.

• The number of different products of four source vectors, which correspond165

to the fourth line of (15), is equal to
M(M − 1)[(M − 2)(M + 9) + 12]

24
.

For instance, for M = 4, Eq. (15) thus yields 10+ 16+ 19 = 45 different source

products. When adding this number to the number of plain source vectors s1 to
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sM with M = 4 also involved in Assumption 3, the overall number of different

vectors involved in Assumption 3 for M = 4 is equal to 49.170

Note that Assumption 3 implies that Assumption 1 is met. Also note that

this requires us to assume that the number of samples of all source vectors sj

is at least equal to the number of different vectors involved in Assumption 3.

4.3. Structure of the rows of Š

Under the assumptions of Section 4.2, we derive the following properties,175

focused on the general structure of the rows of Š.

Lemma 1. A basis of ∫X consists of all row vectors of S̃.

Proof Due to (10), all rows of X are linear combinations of the M̃ rows of S̃.

Besides, due to Assumptions 1 and 2, the rows of X actually span all ∫
S̃
.180

Lemma 2. If X = ǍŠ, then a basis of ∫X consists of all row vectors of Š.

Proof Due to Assumption 2, ∫X has dimension M̃ . If X = ǍŠ, then all

directions of ∫X are actually spanned by the M̃ row vectors of Š, which are

therefore linearly independent. Therefore, the latter vectors span a subspace

with dimension M̃ and form a basis of ∫X .185

Lemma 3. If X = ǍŠ, then

šℓ =
M∑

j=1

eℓjsj +
M−1∑

j=1

M∑

k=j+1

eℓjksj ⊙ sk ∀ ℓ ∈ {1, . . . ,M} (14)

where eℓj and eℓjk are coefficients.

Proof Combine Lemmas 1 and 2. Thus, if X = ǍŠ, then each row vector of Š

is a linear combination of all row vectors of S̃. In particular, this applies to any

of the top M rows of Š.
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Lemma 4. If X = ǍŠ, then190

šℓ ⊙ šm =
M∑

j=1

M∑

j′=1

eℓjemj′sj ⊙ sj′

+

M∑

j=1

M−1∑

j′=1

M∑

k′=j′+1

eℓjemj′k′sj ⊙ sj′ ⊙ sk′

+

M−1∑

j=1

M∑

k=j+1

M∑

j′=1

eℓjkemj′sj ⊙ sk ⊙ sj′

+

M−1∑

j=1

M∑

k=j+1

M−1∑

j′=1

M∑

k′=j′+1

eℓjkemj′k′sj ⊙ sk ⊙ sj′ ⊙ sk′

∀ ℓ ∈ {1, . . . ,M}, ∀ m ∈ {1, . . . ,M}. (15)

Proof Apply Lemma 3 to šℓ and šm, and take their element-wise product.

For more details about the terms of (15) whenM = 2 orM = 3, see Appendix C.

4.4. Simplification of linear part of rows of Š

Under the assumptions of Section 4.2, we hereafter derive properties of the

coefficients eℓj of (14).195

Lemma 5. If X = ǍŠ, then for each j with j ∈ {1, . . . ,M}, at least one of the

coefficients eℓj in (14) is non-zero.

Proof For a given, arbitrary, value of j, with j ∈ {1, . . . ,M}, let us assume

that all coefficients eℓj , with ℓ ∈ {1, . . . ,M}, are equal to zero, i.e. that sj does

not appear in any of the linear parts of the vectors šℓ defined by (14). Then,200

whatever Ǎ, the row rank of ǍŠ is strictly lower than M̃ . But this contra-

dicts the joint assumption composed of condition X = ǍŠ and Assumption 2.

Therefore, if X = ǍŠ and using Assumption 2, one gets the result of Lemma 5.

Lemma 6. If X = ǍŠ, then

eℓjemj = 0 ∀ j, ℓ,m ∈ {1, . . . ,M} with ℓ 6= m. (16)
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Proof Let us first consider the case when ℓ < m. As already shown in the proof205

of Lemma 3, if X = ǍŠ, then each row vector of Š is a linear combination of all

row vectors of S̃. We here apply this to any bottom row of Š, which is defined

by (15), here with 1 ≤ ℓ < m ≤ M . Then, by combining the property provided

above in the current proof and Assumption 3, all components sj ⊙sj of (15) are

equal to zero. Considering the terms with j = j′ of the first sum (i.e. first line)210

of (15), this yields (16).

Let us now consider the case when ℓ > m. Then, by permuting the roles of

ℓ and m, i.e. setting ℓ′ = m and m′ = ℓ, rewriting (16) as emjeℓj = 0 and thus

eℓ′jem′j = 0, and using the above proof for ℓ′ and m′, with ℓ′ < m′, the desired

result is obtained.215

Lemma 7. If X = ǍŠ, then for each j with j ∈ {1, . . . ,M}, at most one of

the coefficients eℓj in (14) is non-zero.

Proof Use Lemma 6: for two different indices ℓ and m, the product of eℓj and

emj is equal to zero, so at least one of these coefficients is equal to zero.

Lemma 8. If X = ǍŠ, then for each j with j ∈ {1, . . . ,M}, exactly one of the220

coefficients eℓj in (14) is non-zero.

Proof Combine Lemma 5 and Lemma 7.

Lemma 9. If X = ǍŠ, then each row vector šℓ in (14) has at least one non-

zero coefficient eℓj with j ∈ {1, . . . ,M}.

Proof Let us assume that K > 0 of the vectors šℓ, with ℓ ∈ {1, . . . ,M}, have225

only zero-valued coefficients eℓj in the first term of their decomposition (14).

Then, let us consider all possible linear combinations of all vectors š1 to šM

(and of šℓ ⊙ šm with 1 ≤ ℓ < m ≤ M) and let us focus on the “linear parts”

of these combinations, i.e. their terms which are linear combinations of s1 to

sM . Due to (14), these linear parts are combinations of (M −K) vectors which230

are linear combinations of s1 to sM , so that these linear parts span a subspace

with dimension (at most) M −K < M . Therefore, if X = ǍŠ, the dimension

of ∫X is strictly lower than M̃ . But this contradicts Assumption 2. Therefore,

assumption K > 0 is false, i.e. K = 0, which yields Lemma 9.
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Lemma 10. If X = ǍŠ, then each row vector šℓ in (14) has exactly one non-235

zero coefficient eℓj with j ∈ {1, . . . ,M}.

Proof We here consider the case when X = ǍŠ. Let us stack row-wise the

vectors š1 to šM , consider their “linear part”, which corresponds to the first

sum in (14), and let us consider column-wise the contributions respectively

associated with s1 to sM in this linear part. First, due to Lemma 8, in each240

column j (corresponding to sj), with j ∈ {1, . . . ,M}, exactly one coefficient

eℓj with ℓ ∈ {1, . . . ,M}, is non-zero. Second, due to Lemma 9, in each row

ℓ (corresponding to šℓ), with ℓ ∈ {1, . . . ,M}, at least one coefficient eℓj, with

j ∈ {1, . . . ,M}, is non-zero. The first of these two properties shows that, when

successively considering rows 1 to M , for each row ℓ, whenever a coefficient eℓj245

in column j is non-zero, that column is thus “used” and cannot be “used again”

for other rows, i.e. all other eℓj with the same j as above are equal to zero.

Besides, the second above property shows that each row ℓ thus “uses” at least

one column (since it has at least one non-zero coefficient eℓj). We now add the

following extension of that result: each row ℓ thus uses exactly one column. This250

may be shown as follows. If at least one row ℓ uses more than one column (i.e.

if more that one coeffcient eℓj, with j ∈ {1, . . . ,M}, is non-zero), then these

columns cannot be used again by other rows, i.e. at most (M − 2) columns

are still available for the other (M − 1) rows ℓ′ 6= ℓ. This number of available

columns is too low with respect to the above need to have one different column255

available for each of the remaining (M − 1) rows.

Lemma 11. If X = ǍŠ, then the M ×M matrix composed of the coefficients

eℓj defined in (14) and denoted as E reads

E = ΛΠ (17)

where Λ is a diagonal matrix with non-zero elements on its diagonal, and Π is

a permutation matrix.

Proof Combine Lemmas 8 and 10 (and see the organization in rows and columns

in the proof of Lemma 10). Thus, if X = ǍŠ, then the above-defined matrix E

contains exactly one non-zero coefficient per row and per column. This may be
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expressed as

E = ΛΠ (18)

where Λ is a diagonal matrix with non-zero elements on its diagonal, and Π is

a permutation matrix.260

In other words, the linear parts of the vectors šℓ, corresponding to the first sum

in (14), are equal to the vectors sℓ, up to scale and permutation indeterminacies.

4.5. Simplification of quadratic part of rows of Š

Under the assumptions of Section 4.2, we now analyze the second-order terms

of the vectors šℓ, corresponding to the coefficients eℓjk of the second sum in (14).265

To this end, we consider the third-order terms of the vectors products šℓ ⊙ šm,

corresponding to the second and third sums (and lines) of (15).

Lemma 12. If X = ǍŠ, then for any given integers ℓ and m with 1 ≤ ℓ <

m ≤ M , a given vector si1 ⊙ si2 ⊙ si3 , i.e. with a given unordered set of indices

{i1, i2, i3}, appears for at most one set of values of j, j′ and k′ in the second line270

of (15).

Proof For a direct proof of Lemma 12 whenM = 2 orM = 3, see Appendix C.

Instead, we hereafter provide a general proof applicable to any value of M .

When X = ǍŠ, and when ℓ and therefore šℓ are fixed, that vector šℓ contains

exactly one linear term in the first sum of (14), due to Lemma 10. We denote

as j0 the index of that term (i.e., the linear term of šℓ is eℓj0sj0 , with eℓj0 6= 0).

The value of j0 depends on ℓ. Since all other coefficients eℓj with j 6= j0 in the

second sum of (15) are equal to zero, that sum reduces to

M−1∑

j′=1

M∑

k′=j′+1

eℓj0emj′k′sj0 ⊙ sj′ ⊙ sk′ . (19)

Any given term in this sum, i.e. with given values of j′ and k′ in addition to j0,

yields a component associated with the vector sj0 ⊙ sj′ ⊙ sk′ , and this vector

is entirely defined by the unordered set of indices {j0, j
′, k′}. The question we

investigate here is: given such a set of indices {j0, j
′, k′}, with

1 ≤ j′ < k′ ≤ M, (20)
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is there another term in the second sum of (15) which corresponds to the same

vector ? In other words, is there another value of the couple of indices j′ and

k′, denoted as j′′ and k′′, with

1 ≤ j′′ < k′′ ≤ M (21)

and with j′′ 6= j′ or k′′ 6= k′, such that the associated unordered set {j0, j
′′, k′′}

is equal to the above fixed unordered set {j0, j
′, k′} ? We hereafter show that275

no such other couple exists, by successively considering all possible cases for the

other potential ordered set (j′′, k′′), i.e. we consider all possible correspondences

between each of the indices j′′ and k′′ and an index among j′ and k′. We show

that none of these cases can occur, because they are not compatible with the

above-defined constraints. These cases are as follows.280

Case 1: j′′ = j′ and k′′ = k′: these conditions are not compatible with the

fact that the ordered set (j′′, k′′) is assumed to be different from the ordered set

(j′, k′).

Case 2: j′′ = k′ and k′′ = j′: then (20) yields j′′ > k′′, which is not

compatible with (21).285

Theorem 1. If X = ǍŠ, then in (14) the coefficients eℓj meet the conditions

of Lemma 11 and all coefficients eℓjk are equal to zero. This reads as follows in

matrix form, using (11) and (12):

ŠL = ΛΠS (22)

where Λ is a diagonal matrix with non-zero elements on its diagonal and Π is a

permutation matrix.

Proof The proof of this theorem is significantly longer than those of the lemmas

and other theorems of this paper. It is therefore provided in an appendix: see

Appendix D.290

Theorem 1 is the main result of this section. In the above-defined conditions,

it guarantees that, if X = ǍŠ, then the estimated source vectors š1 to šM

are equal to the actual source vectors s1 to sM up to scale and permutation
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indeterminacies1. Therefore, the indeterminacies resulting from the separation

principle considered here are restricted to the same as those encountered with295

usual linear instantaneous BSS methods, although the mixing model is more

complex here. Moreover, we stress that this identifiability property only requires

the mild conditions of Section 4.2, that is essentially the linear independence of a

set of vectors derived from the source vectors. If disregarding the fact that this

set contains element-wise products of the original source vectors in addition300

to the latter vectors, the above identifiability conditions may be considered

to be much less restrictive than those set by various usual classes of linear

instantaneous BSS methods: briefly, the latter methods not only require linear

independence but also (multi-lag) uncorrelatedness (related to orthogonality)

or even statistical independence of the sources, or different additional types of305

properties, such as sparsity and/or nonnegativity. This may be interpreted as

follows: the existence of a specific class of nonlinear terms in the mixing model

considered here is an additional constraint, that we also impose on the associated

“separating structure” and that allows us to reduce the other constraints set on

the sources as compared with usual classes of linear instantaneous BSS methods,310

while preserving the same indeterminacies. In this sense, although mixture

nonlinearity is usually considered to be an additional burden as compared with

the linear case, it here turns out to be quite helpful when adequately used.

Moreover, the estimated mixing coefficients meet the following property:

Theorem 2. If X = ǍŠ, then for any such matrix Š (which meets Theorem 1,315

as shown above), the corresponding matrix Ǎ is unique.

Proof Let us consider the case when X = ǍŠ, with a given matrix Š. Then,

due to Lemma 2, each row vector of X has a unique decomposition over the

row vectors contained in Š. For the overall matrix X , this yields a unique

decomposition matrix Ǎ such that X = ǍŠ.320

1In this paper, we investigate the analytical solution of the exact factorization problem

X = ǍŠ. Numerical conditioning is a quite different problem, which would deserve a separate

investigation if it were to be studied.
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Theorem 1 yields a necessary condition for achieving X = ǍŠ. It may then

be proved as follows that this condition is also sufficient:

Theorem 3. If

ŠL = ΛΠS, (23)

where Λ is a diagonal matrix with non-zero elements on its diagonal, and Π is

a permutation matrix, then there exists a unique matrix Ǎ such that X = ǍŠ.

Proof If (23) is met, then the (unordered) set of row vectors in matrix ŠL is325

equal to the set of row vectors in S, up to non-zero scale factors. The overall

set of row vectors contained in Š is then equal to the overall set of row vectors

in S̃, up to non-zero scale factors. The row vectors of Š therefore span the same

subspace as the row vectors of S̃. Moreover, this subspace is ∫X , due to Lemma

1. Therefore, each row vector of X has a unique decomposition over the row330

vectors of Š, i.e. there exists a unique matrix Ǎ such that X = ǍŠ.

This completes the proof of the existence of a unique factorization (up to

the above-defined scale factors and permutation) for the above bilinearly mixed

sources. As the relevance of BMMF has thus been established, we hereafter

show how corresponding practical algorithms may be derived.335

5. Separation criteria and algorithms based on BMMF

5.1. Methods based on the above source-constrained separating structure

We here first consider the separating structure defined in Section 3 and we

aim at defining practical methods for adapting its matrices Ǎ and Š. These

methods are based on the separation principle introduced in Section 3, which

consists in adapting Ǎ and Š so that their product ǍŠ fits the observation

matrix X . Several criteria may be used to this end. The most natural one

consists in minimizing the cost function

J1 = ||X − ǍŠ||F (24)

(or its square), where ||.||F stands for Frobenius norm. Moreover, a modified

version of this BMMF method may be derived as follows.
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5.2. Methods based on a doubly-constrained separating structure340

In the above version of our methods, both Ǎ and the top M rows of Š are

master, i.e. independently updated, variables. However, since this adaptation

aims at minimizing J1 = ||X − ǍŠ||F , a different adaptation scheme may be

used. In this scheme, only the top M rows of Š are considered as master

variables. In each occurence of the loop for updating Š, the slave variable Ǎ

is set to its optimum value, i.e. to its value which minimizes ||X − ǍŠ||F with

respect to Ǎ for the considered value of Š. This optimum is nothing but the

least squares (LS) solution, i.e. (assuming Š has full row rank) [23]

Ǎopt = XŠT (ŠŠT )−1. (25)

Setting Ǎ = Ǎopt in (24), the cost function to be optimized (only with respect

to the top M rows of Š ) becomes

J2 = ||X(I − ŠT (ŠŠT )−1Š)||F (26)

(or its square). Using Ǎ = Ǎopt is attractive, first because the number of master

variables adapted when using Ǎopt and therefore J2 is much lower than when

using J1, so that the searched space has a much lower dimension, which may

decrease computational time and improve convergence properties. Moreover, Ǎ

and J2 are thus defined by a closed-form expression, which allows one to derive345

the gradient of J2 with respect to the master part of Š. This gradient may then

be used in gradient-based optimization algorithms.

The last step of the development of BMMF methods consists in defining

the considered separation algorithm(s). Various algorithms may be derived for

minimizing the above cost functions J1 or preferably J2. As suggested above,350

this e.g. includes standard gradient descent and extended gradient-based min-

imization methods, that we will report elsewhere. Derivative-free optimization

algorithms may also be used. In particular, the algorithm used hereafter to min-

imize J2 is the Nelder-Mead (NM) method, as implemented in the fminsearch()

Matlab function. The resulting version of our BMMF methods is therefore355

called BMMF-LS-NM. Moreover, several runs of this method may be combined

to improve performance, as detailed in Section 6.2.
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6. Numerical tests

6.1. Numerical validation of the assumptions of the separability analysis

The theoretical results of Section 4 were obtained under some assumptions360

concerning the considered data. We hereafter show that these assumptions are

indeed met for actual data. To this end, we consider synthetic but realistic

bilinear mixtures, corresponding to remote sensing applications such as those

described in [18], [19], [20], [21]. We first use M = 2 source vectors s1 and s2,

which are reflectance spectra derived from the USGS hyperspectral database.365

The considered two original USGS spectra are shown in Fig. 1 (each of their

samples corresponds to one narrow spectral band). The resulting source vectors

s1 and s2 here contain 10 samples, which corresponds to a typical situation for

multispectral images. Each of these samples of s1 and s2 is derived as the average

of 200 adjacent samples of an original USGS spectrum (we use the 2000 samples370

of the USGS spectra which have the lowest indices). These source spectra s1 and

s2, and their product s1⊙s2 are shown in Fig. 2 (s1⊙s2 has a lower magnitude

than s1 and s2, because the latter vectors contain reflectance values, which

are therefore lower than 1). Using only 10 samples per source vector at this

stage allows us to investigate numerical performance in the difficult case when375

limited information is available about the sources. Similarly, only 10 mixtures

of these sources are used (this models 10 pixels of an observed image). Based

on the physical mixing model derived in [20], the linear mixing coefficients aij

are randomly, uniformly, drawn over [0, 1] and then rescaled so as to sum to one

in each observed vector, whereas the second-order coefficients bijk are uniformly380

drawn over [0, 0.2].

In these conditions, matrix S̃ consists of three rows, which respectively con-

tain s1, s2 and s1 ⊙ s2. Its rank is therefore expected to be equal to 3. This is

confirmed by computing this rank with the Matlab rank() function. Assumption

1 is therefore actually met for these data.385

Besides, the set of vectors involved in Assumption 3 here consists of the 8

vectors {s1, s2, s1⊙s1, s1⊙s2, s2⊙s2, s1⊙s1⊙s2, s1⊙s2⊙s2, s1⊙s1⊙s2⊙s2}.

The rank of the matrix composed of these vectors is expected to be equal to 8.

Here again, this is confirmed by the Matlab rank() function. Assumption 3 is

therefore actually met for these data.390
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Figure 1: Two original spectra from the USGS database.

Finally, we created various matrices X of spectra mixed with random co-

efficients that meet the above-defined constraints. In all cases, the rank of X

computed by Matlab was equal to 3, as expected. So, these data meet Assumption

2.

We then performed another series of tests, using M = 4 source vectors,395

with each of their 50 samples obtained as the average of 40 adjacent samples

of an original spectrum from the USGS database. 50 mixtures of these sources

are here used. The ranks computed with Matlab for matrix S̃, for the matrix

composed of all the vectors involved in Assumption 3 and for matrix X with

various sets of mixing coefficients were here respectively equal to 10, 49 and 10,400

which confirms that all assumptions of Section 4.2 are here again met (see (13)

and see Section 4.2 concerning the fact that the rank of the matrix composed

of all the vectors involved in Assumption 3 is here equal to 49).

Finally, we performed another series of tests, again with M = 2 source

vectors s1 and s2, but now with 100 samples in each of these vectors, which405
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Figure 2: 10-sample source spectra s1 (solid line) and s2 (dashed line), and their element-wise

product s1 ⊙ s2 (dash-dotted line).

corresponds to a typical situation for hyperspectral images and which allows us

to investigate the numerical performance of our approach for high-dimensional

data. Each of the samples of s1 and s2 is here derived as the average of 20

adjacent samples of the leftmost part of an USGS spectrum of Fig. 1. These

source spectra s1 and s2, and their product s1 ⊙ s2 are shown in Fig. 3. Here410

again, 10 mixtures of these sources are created. The ranks computed with Matlab

for matrix S̃, for the matrix composed of all the vectors involved in Assumption

3 and for matrix X with various sets of mixing coefficients were here respectively

equal to 3, 8 and 3, which confirms that all assumptions of Section 4.2 are here

again met.415

6.2. Numerical validation of separation algorithms with multispectral data

We then tested the performance of the BMMF-LS-NM separation method

defined in Section 5.2. To this end, we first performed 100 Monte-Carlo tests
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Figure 3: 100-sample source spectra s1 (solid line) and s2 (dashed line), and their element-wise

product s1 ⊙ s2 (dash-dotted line).

with 10 mixtures of the two multispectral (i.e., 10-sample) sources s1 and s2

defined in the first part of Section 6.1. The master variables š1 and š2 of the420

BMMF-LS-NM method were initialized with values respectively equal to s1 and

s2 plus random noise.

Performance is analyzed by computing two error parameters involving the

value of Š obtained after our BMMF-LS-NM method converged and the asso-

ciated value Ǎopt of Ǎ defined by (25). First, the normalized root-mean-square

error for sources is defined as

Esrc =

√
min

i6=j∈{1,2}
(Fij)

√
||s1||2 + ||s2||2

(27)

where Fij is equal to

min
ǫ1=±1

(
||s1 + ǫ1

||s1||

||ši||
ši||

2

)
+ min

ǫ2=±1

(
||s2 + ǫ2

||s2||

||šj ||
šj ||

2

)
.
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Then, the normalized reconstruction error is defined as

Erecons =
||X − ǍoptŠ||F

||X ||F
. (28)

The corresponding scatter plot in the (Esrc, Erecons) plane, for all 100 Monte-

Carlo tests, is shown in Fig. 4.
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Figure 4: Scatter plot in (Esrc, Erecons) plane, after convergence of the BMMF-LS-NM sep-

aration algorithm, for 10-sample spectra.

This figure shows that the BMMF-LS-NM method yields low errors Esrc425

and Erecons in a large number of runs. In a few runs, however, Esrc is higher.

One may expect that, if one would instead use an algorithm which is able to

converge to lower values of the cost function J2 defined in (26), and hence of its

normalized version Erecons defined in (28), then the error Esrc for the sources

would be lower than in the above tests (because, in the limit-case when the cost430

function J2 is made equal to zero, our analytical analysis of Section 4 shows that

the error Esrc for the sources becomes equal to zero, too). Therefore, beyond

the simple separation method obtained here by just applying a Matlab built-in

optimization algorithm, one may aim at developing more advanced methods for
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the proposed BMMF framework, in order to achieve lower errors. This will re-435

quire a detailed investigation, which is beyond the scope of the current paper.

Yet, the potential directions of investigation for these future practical methods

are outlined hereafter. These investigations will first consist in developing op-

timization algorithms associated with the considered separation criteria, thus

especially requiring one to derive the analytical expressions of the gradients of440

the considered cost functions. Moreover, numerical investigations may be per-

formed e.g. to investigate the sensitivity of the proposed iterative algorithms to

initialization or the conditioning properties of the considered methods. Finally,

applying metaheuristic methods to a set of runs of the elementary algorithms

suggested here may be a way to make them insensitive to the lower performance445

obtained in rare runs which was observed above.

Still considering this idea of combining the results of elementary runs in order

to improve performance, a much simpler approach than the above-mentioned

one based on metaheuristics consists of the following steps:

• First perform a set of elementary runs.450

• Then keep the “best” runs in the sense of a performance criterion that

may be measured in a blind framework, i.e. when only knowing the ob-

served data matrix X and the output of the separation algorithm. The

normalized reconstruction error Erecons defined in (28), or equivalently

the value of the cost function defined by (24) or (26) at the end of the455

iterations of the separation algorithm, are such performance criteria (on

the contrary, the criterion Esrc defined in (27) cannot be used in this blind

framework, because the source signals are unknown). Keeping the best

runs may be achieved either by ordering them according to the values of

the considered performance criterion or by keeping all the runs for which460

the values of that criterion are lower than a given threshold.

• Eventually gather the results of all runs kept above, by computing, sepa-

rately for each source vector to be estimated, the mean of all its estimates

obtained in the runs which were kept above.

We applied this approach to the results of the 100 runs defined at the beginning465

of this Section 6.2, keeping the 10 best runs. The resulting average estimated
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source spectra are shown in Fig. 5, together with the actual source spectra.

This shows that these estimated spectra are accurate enough to e.g. allow a

remote sensing expert to visually derive the nature of the pure materials whose

mixtures are observed in a given application, or to allow an automatic classifier470

to perform that pure material identification.
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Figure 5: 10-sample source spectra s1 and s2 (solid lines) and their estimates obtained as the

means of the outputs of selected runs of the BMMF-LS-NM method (dashed lines).

6.3. Numerical validation of separation algorithms with hyperspectral data

We here again consider 10 mixtures of the two hyperspectral (i.e., 100-

sample) sources s1 and s2 defined in the last part of Section 6.1. Using the

same protocol as in Section 6.2, we first performed 100 independent runs of475

the BMMF-LS-NM separation method with these data. The resulting perfor-

mance is shown in Fig. 6. This yields the same type of comments as in Section

6.2, except that the phenomenon of rare cases with higher final errors Esrc for

sources which was observed in Section 6.2 is reduced here, possibly thanks to the
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richer information about these sources which is available here. We then applied480

the extended separation method of Section 6.2 to the results of the above 100

runs, keeping the 9 best runs. The resulting average estimated source spectra

are shown in Fig. 7, together with the actual source spectra. In this high-

dimensional configuration, these estimated spectra somewhat differ from the

actual ones for the samples which have the lowest indices. However, the over-485

all shapes of these estimated spectra are here again sufficiently similar to the

shapes of the actual spectra to e.g. allow one to identify the corresponding pure

materials.
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Figure 6: Scatter plot in (Esrc, Erecons) plane, after convergence of the BMMF-LS-NM

separation algorithm, for 100-sample spectra.
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Figure 7: 100-sample source spectra s1 and s2 (solid lines) and their estimates obtained as

the means of the outputs of selected runs of the BMMF-LS-NM method (dashed lines).

7. Extension to full linear-quadratic mixtures

An extension of the above bilinear mixing model (1) is the linear-quadratic

one, which reads

xi(n) =

M∑

j=1

aijsj(n) +

M∑

j=1

M∑

k=j

bijksj(n)sk(n) ∀ i ∈ {1, . . . , P}. (29)

This model thus contains additional terms, involving the squares of the source490

signals sj(n): these are the second-order auto-terms corresponding to k = j in

the second sum of (29). This model is thus nonlinear with respect to each source

signal. On the contrary, the bilinear model (1) is linear with respect to each

source signal separately (hence its name), despite its second-order cross-terms

involving products of two different sources, that is sj(n)sk(n) with k 6= j.495

Starting from the scalar form (29) of the linear-quadratic model, associated

matrix forms may be derived in the same way as in Section 2. This again
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eventually yields (10), but with an extended version of vector p(n) and matrix

B, which here also include additional entries for the above-defined second-order

auto-terms.500

In the same way as in Section 3, one may then introduce adaptive matrices Ǎ

and Š which respectively have the same structure as the extended version of Ã

and S̃ considered here. Hence, one may propose the separation principle which

consists in adapting these extended matrices Ǎ and Š so as to ideally achieve

ǍŠ = X , thus introducing Linear-Quadratic Mixture Matrix Factorization, or505

LQMMF.

In Section 4, we showed that BMMF yields no spurious solutions. On the

contrary, the following spurious solutions may be exhibited for LQMMF. For

the sake of simplicity, let us consider the case when M = 2 and when the row

vectors s1, s2, s1 ⊙ s1, s1 ⊙ s2 and s2 ⊙ s2 which here form S̃ are linearly510

independent. Besides, let us consider the case when the two estimated source

row vectors š1 and š2 are linear combinations of the actual source vectors s1

and s2, with non-zero combination coefficients which are arbitrary but such

that the 2×2 matrix composed of these four coefficients is non-singular. It may

then be shown that the row vectors š1, š2, š1 ⊙ š1, š1 ⊙ š2 and š2 ⊙ š2 which515

here form Š are linearly independent. Since they are here linear combinations

of s1, s2, s1 ⊙ s1, s1 ⊙ s2 and s2 ⊙ s2, they thus form a basis of ∫
S̃
. Then,

each row of X may be decomposed over this basis. Denoting Ǎ the matrix of

coefficients of this decomposition, we thus get ǍŠ = X . This shows that, for

LQMMF, the condition which defines the considered separation principle yields520

spurious solutions for š1 and š2, namely solutions which are not equal to the

actual sources (up to the indeterminacies of BMMF), but which are mixtures of

these sources.

The above result may be interpreted as follows with respect to the approach

developed in Section 4 for bilinear mixtures. BMMF is more constraining than525

LQMMF is the sense that, to achieve ǍŠ = X , it does not allow the estimated

source row vector products šℓ ⊙ šm to contain terms proportional to second-

order auto-terms sj ⊙ sj with respect to the source vectors sj , as shown in the

proof of Lemma 6. On the contrary, when considering LQMMF, such terms are

allowed by the considered mixing model itself, and we showed above that this530
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entails spurious solutions.

8. Conclusion and future work

In this paper, we considered bilinear mixtures (this also applies to their

subclass associated with [13]) and complete linear-quadratic mixtures, without

nonnegativity constraints. We showed that they may be reformulated as prod-535

ucts of two matrices, where the extended matrix related to sources contains

values of sources and source products. We proved that the associated Bilin-

ear Mixture Matrix Factorization (BMMF) separation principle yields a unique

solution (up to the usual scale and permutation indeterminacies) under mild

conditions, whereas Linear-Quadratic Mixture Matrix Factorization (LQMMF)540

yields spurious points. Although uniqueness is thus achieved only when the

second-order terms of the mixing model are restricted to products of differ-

ent sources, this result is of high interest, because of its practical applicability:

second-order mixtures are especially faced in urban scenes in remote sensing

applications [18, 19], [20], [21], where second-order terms most often consist of545

products of different reflectances (sources), since they correspond to different

materials.

The nonlinearity of the mixing model may thus help constraining the solu-

tions of matrix factorization and hence reducing required constraints on sources,

as compared with (possibly constrained) linear NMF. Moreover, mixture nonlin-550

earity may be combined with nonnegativity conditions to further constrain solu-

tions or optimization algorithms in applications where the data meet such non-

negativity properties. This paper therefore contributes to proving the relevance

of matrix factorization methods (with or without nonnegativity constraints)

for second-order mixtures. We here started to define practical algorithms as-555

sociated with the proposed BMMF framework and to check their performance.

Various detailed investigations may then be performed to develop and test more

powerful BMMF algorithms. We will report them in a future paper.
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Appendix A. Separability/identifiability analyses available from the

literature560

The following separability/identifiability analyses were reported in the lit-

erature for the main classes of BSS/BMI methods intended for the standard

(that is, linear instantaneous) mixing model, which were defined in Section 1.

For ICA, Ref. [3] introduced specific BSS/BMI methods and proved that the

indeterminacies entailed by the ICA separation principle are restricted to scale565

factors and permutation (for at most one Gaussian source). Within the frame-

work of SCA, two major subclasses of methods were studied, depending on the

considered type of sparsity properties. The first subclass is typically based on

the minimization of L0 pseudo-norm or L1 norm. Related properties about the

uniqueness of sparse decompositions were especially addressed in [12], [15] and570

references therein. The second subclass takes advantage of zones in (possibly

transformed) signals where only one source is active, i.e. non-zero (see espe-

cially [1], [5], [7]). Such methods were shown to estimate the columns of the

mixing matrix, and hence the source signals, up to scale factors and permuta-

tion, for determined mixtures [1], [5], [7]. Finally, the standard NMF separation575

principle yields high indeterminacies. Various investigations were devoted (i) to

their analysis, (ii) to the determination of conditions in which they are reduced

so that NMF factorization yields a unique solution up to standard, acceptable,

underdeterminacies or (iii) to the development of extended methods aiming at

reducing these indeterminacies (see e.g. [2], [11], [14], [16], [22]).580

Appendix B. About the terminology

The terminology “Bilinear Mixture Matrix Factorization” used in this paper

refers to the fact that the considered BSS/BMI approach consists in developing

source and mixture estimators eventually based on a matrix product, for a

mixing model which is bilinear with respect to the source signals : it contains585

products sj(n)sk(n) of two (different) source signals, as detailed in the second

(double) sum of terms in (1). The above source products are moreover multiplied

by mixing coefficients bijk thus eventually yielding products bijksj(n)sk(n) of

three terms, as shown in (1).
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Similarly, the terminology “NMF” or “linear NMF”, used for standard NMF590

involving linear mixtures, refers to the fact that the considered mixing model is

linear with respect to the source signals, i.e. it only consists of linear combina-

tions aijsj(n) of the source signals (which also appear in the first sum of terms

in (1)).

The above terminology is therefore coherent. It should be noted that a dif-595

ferent terminology might be preferred if one would not focus on the dependence

of the mixing model with respect to the sources, as was done above, but on the

dependence of this model with respect to the overall set of parameters composed

of both the sources and mixing coefficients. Then, when considering the above-

mentioned standard NMF, in which each observed signal is the sum of terms600

aijsj(n) (as in the first sum of terms in (1)), one might define a terminology

focused on the fact that these terms are bilinear with respect to the overall set

of parameters composed of both the sources and mixing coefficients, as opposed

to the emphasis on linearity with respect to the sources only (related to our

focus on BSS), for this linear NMF, that we put in the terminology used in this605

paper.

Appendix C. Illustrations of the separation analysis

The analysis provided in Section 4 may be better understood by illustrating

it with examples, focusing on low values of the number M of source signals. We

therefore here consider the cases M = 2 and M = 3.610

We first detail the “third-order source vector products” which appear in the

second and third lines of (15). For its second line, each source vector prod-

uct sj ⊙ sj′ ⊙ sk′ is defined by the corresponding indices j (which corresponds

to expanding šℓ according to (14)), and j′ and k′ (which both correspond to

expanding šm according to (14)). The complete set of their possible values is615

provided in Table C.1 (respectively C.2) for M = 2 (respectively M = 3). Simi-

larly, for the third line of (15), each source vector product sj⊙sk⊙sj′ is defined

by the corresponding indices j and k (which both correspond to expanding šℓ ac-

cording to (14)), and j′ (which corresponds to expanding šm according to (14)).

The complete set of their possible values is provided in Table C.3 (respectively620

C.4) for M = 2 (respectively M = 3).
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j (j′, k′)

(1,2)

1 {1, 1, 2}

2 {1, 2, 2}

Table C.1: Indices of source vectors in second line of (15), for M = 2. Each row of this table

corresponds to a possible value of j, and each column to a possible value of the ordered couple

(j′, k′). Each cell of the table contains the corresponding unordered set {j, j′, k′}, rearranged

according to increasing values.

j (j′, k′)

(1,2) (1,3) (2,3)

1 {1, 1, 2} {1, 1, 3} {1, 2, 3}

2 {1, 2, 2} {1, 2, 3} {2, 2, 3}

3 {1, 2, 3} {1, 3, 3} {2, 3, 3}

Table C.2: Same as Table C.1, for M = 3.

Tables C.1 and C.2 yield a direct proof of Lemma 12, respectively for M = 2

and M = 3:

• ForM = 2, Table C.1 shows that a given unordered set of indices {i1, i2, i3}

(as defined in Lemma 12) appears at most once in the overall table, and625

therefore at most once for any given integers ℓ and m.

• For M = 3, the reader may have noted that some values of the unordered

set of indices {i1, i2, i3} appear several times in Table C.2 (see the set

{1, 2, 3} on the antidiagonal). However, Lemma 12 does not concern the

overall set of triplets {i1, i2, i3} obtained in the complete table, but the630

subset of such triplets corresponding to given integers ℓ and m. In other

words, Lemma 12 concerns the triplets {j, j′, k′} of Table C.2 which corre-

spond to a single (arbitrary) value of j (this is detailed in the general proof

of Lemma 12 provided in Section 4.5, where this value of j is denoted as j0;
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(j, k) j′

1 2

(1,2) {1, 1, 2} {1, 2, 2}

Table C.3: Indices of source vectors in third line of (15), for M = 2. Each row of this table

corresponds to a possible value of the ordered couple (j, k), and each column to a possible value

of j′. Each cell of the table contains the corresponding unordered set {j, k, j′}, rearranged

according to increasing values.

(j, k) j′

1 2 3

(1,2) {1, 1, 2} {1, 2, 2} {1, 2, 3}

(1,3) {1, 1, 3} {1, 2, 3} {1, 3, 3}

(2,3) {1, 2, 3} {2, 2, 3} {2, 3, 3}

Table C.4: Same as Table C.3, for M = 3.

it depends on ℓ). The analysis should therefore be performed separately635

for each row of Table C.2. Then, that table actually shows that, in any of

its rows, a given unordered set of indices {i1, i2, i3} appears at most once.

Finally, for M = 2 and M = 3, Tables C.1 to C.4 yield an alternative, direct,

proof of the main property which was established for any M in the proof of

Theorem 1 provided in Section 4.5, and which may here be expressed as follows.640

We analyze the case when X = ǍŠ. We consider a coefficient emj′k′ involved in

a term of the second sum in (15), with given indices m, j′ and k′, and therefore

with a given value of the index j′0 that we associated with m in the proof of

Theorem 1 in Section 4.5. The vector which corresponds to the coefficient emj′k′

in the second sum in (15) is sj0⊙sj′⊙sk′ , where j0 (corresponding to the index ℓ645

of šℓ in the proof of Theorem 1 in Section 4.5) is free at this stage, but different

from j′0. The unordered set of indices {j0, j
′, k′} associated with the above

vector sj0 ⊙ sj′ ⊙ sk′ has the following relationship with the above tables: for
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any above-defined value of j0 and for the considered fixed value of (j′, k′), the

unordered set of indices {j0, j
′, k′} is the content of the cell corresponding to650

row j = j0 and column (j′, k′) in Table C.1 for M = 2 or Table C.2 for M = 3.

The property of interest, that we established for any M in the proof of Theorem

1 in Section 4.5 and that we here aim at independently proving or illustrating

in more detail for M = 2 and M = 3, may first be summarized as follows:

in the above conditions, there exists at least one value j0, with j0 6= j′0, such655

that the above vector sj0 ⊙ sj′ ⊙ sk′ does not appear in the third sum of (15).

Moreover, each term of the latter sum corresponds to the vector sj ⊙ sk ⊙ sj′
0

and therefore to row (j, k) and column j′ = j′0 of Table C.3 for M = 2 (or

Table C.4 for M = 3). Therefore, the above property may be restated as: there

exists at least one value j0, with j0 6= j′0, such that the above unordered set of660

indices {j0, j
′, k′} does not appear in any of the cells corresponding to any row

(j, k) and to the fixed column j′ = j′0 of Table C.3 for M = 2 (or Table C.4 for

M = 3).

The validity of the above property for M = 2 may be directly checked as

follows from Tables C.1 and C.3. We consider an arbitrary coefficient emj′k′ ,665

with 1 ≤ j′ < k′ ≤ M , which only yields one possible case for the ordered couple

(j′, k′), namely (j′, k′) = (1, 2) (this corresponds to the single column of Table

C.1). Besides, depending on index m, its associated index j′0 ∈ {1, . . . ,M} here

has two possible values. We successively consider each of them:

• If j′0 = 1, then j0 = 2, because j0 ∈ {1, . . . ,M} and j0 6= j′0. In that case,670

the content of the cell corresponding to row j = j0 and column (j′, k′) in

Table C.1 is {1, 2, 2}. Moreover, the complete set of cells corresponding to

any row (j, k) and to the fixed column j′ = j′0 of Table C.3 here similarly

reduces to the single row and to column j′0 = 1 of that table, which

contains {1, 1, 2}. Therefore, the triplets of indices in “these cells” (that675

is, only one cell, here) of Table C.3 are indeed different from the triplets

of indices in the considered single cell of Table C.1.

• The case when j′0 = 2 is analyzed in the same way. Briefly, then j0 = 1,

the content of the cell corresponding to row j = j0 and column (j′, k′) in

Table C.1 is {1, 1, 2}, whereas the complete set of cells corresponding to680

any row (j, k) and to the fixed column j′ = j′0 of Table C.3 reduces to the
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single row and to column j′0 = 2 of that table, which contains {1, 2, 2}.

Therefore, the triplets of indices in “these cells” of Table C.3 are indeed

different from the triplet of indices in the considered single cell of Table

C.1.685

The above discussion also illustrates a property for M = 2 that was men-

tioned in the proof of Theorem 1 in Section 4.5: the index j′0 is necessarily

equal to one of the indices j′ and k′ (whereas j0 is different from j′0 and there-

fore equal to the other index among j′ and k′). Therefore, for M = 2, whatever

the considered coefficient emj′k′ , we are in the second case defined in the proof690

of Theorem 1 provided in Section 4.5.

Similarly, the validity of the above property for M = 3 may be directly

checked as follows from Tables C.2 and C.4. We consider an arbitrary coefficient

emj′k′ , with 1 ≤ j′ < k′ ≤ M , which yields three possible values for the ordered

couple (j′, k′), namely (1, 2), (1, 3) and (2, 3) (this corresponds to the three695

columns of Table C.2). Besides, depending on index m, its associated index

j′0 ∈ {1, . . . ,M} here has three possible values, namely 1, 2 and 3. For each

given value of j′0, the index j0 has two possible values, because j0 ∈ {1, . . . ,M}

and j0 6= j′0 (for instance, if j′0 = 1, then j0 = 2 or j0 = 3). For any such

value of j0, we consider the content of the cell corresponding to row j = j0700

and column (j′, k′) in Table C.2. Besides, we consider the complete set of cells

corresponding to any row (j, k) and to the fixed column j′ = j′0 of Table C.4.

Two cases then exist, depending on the values of the considered indices:

1. The first case considered here is the same as the first case introduced in the

proof of Theorem 1 provided in Section 4.5. That case is defined by (D.3).705

In that case, the reader may check from the above tables that, whatever j0

with j0 6= j′0, the triplets of indices in the all above-defined cells of Table

C.4 are indeed different from the triplet of indices in the considered single

cell of Table C.2. For instance, when selecting j′0 = 1, j′ = 2, k′ = 3, one

should consider the following two subcases:710

(a) First, j0 = 2. The considered cell with row j = j0 and column

(j′, k′) in Table C.2 then contains {2, 2, 3}, whereas the considered

cells corresponding to any row (j, k) and to column j′ = j′0 in Table
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C.4 contain {1, 1, 2}, {1, 1, 3}, {1, 2, 3} and are thus different from

the above cell of Table C.2.715

(b) Then, j0 = 3. The considered cell with row j = j0 and column (j′, k′)

in Table C.2 then contains {2, 3, 3}, whereas the considered cells cor-

responding to any row (j, k) and to column j′ = j′0 in Table C.4 are

the same as above and thus contain {1, 1, 2}, {1, 1, 3}, {1, 2, 3}, so

that they are different from the above cell of Table C.2.720

2. The second case considered here is the same as the second case introduced

in the proof of Theorem 1 provided in Section 4.5. That case is defined

by (D.4). It deserves two comments:

(a) If, as proposed in the proof of Theorem 1 provided in Section 4.5,

one sets j0 to the value, among j′ and k′, which is not equal to j′0,725

then, for M = 3, the reader may check from the above tables that,

for this value of j0, the triplets of indices in the all above-defined

cells of Table C.4 are indeed different from the triplet of indices in

the considered single cell of Table C.2. For instance, if j′0 = 1, j′ = 1,

k′ = 2, one selects j0 = 2. Then, the considered single cell of Table730

C.2 contains {1, 2, 2}, whereas the above-defined cells of Table C.4

contain {1, 1, 2}, {1, 1, 3}, {1, 2, 3}.

(b) If, as opposed to the proof of Theorem 1 in Section 4.5, one would

not set j0 to the value, among j′ and k′, which is not equal to j′0,

then, for M = 3, the reader may check from the above tables that,735

for some of these values j0, some of the triplets of indices in the

all above-defined cells of Table C.4 would be equal to the triplet of

indices in the considered single cell of Table C.2. For instance, let us

keep j′0 = 1, j′ = 1, k′ = 2 as in the above Subcase 2a) of the current

section, but let us now select j0 = 3. Then, the considered single740

cell of Table C.2 contains {1, 2, 3}, whereas the above-defined cells of

Table C.4 still contain {1, 1, 2}, {1, 1, 3}, {1, 2, 3}, so that the content

of the third of these cells is equal to the content of the considered

cell of Table C.2.

The present subcase 2b) shows that, in the framework of Case 2 of745

the present alternative proof of Theorem 1, not all values of j0 yield
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the desired property. This is the reason why we had to prove that

there exists at least one value of j0 which does yield it. The value of

j0 that we exhibited to this end is the one considered in Subcase 2a)

of Case 2 of the present alternative proof of Theorem 1.750

Let us state again that we put the emphasis on the above property in the

proof of Theorem 1 for the following reason. For any coefficient emj′k′ , this

property allows us to find at least one vector sj0 ⊙ sj′ ⊙ sk′ such that a single

term is associated with this vector, and the corresponding factor is proportional

to emj′k′ (and the other factor is non-zero). Since the contribution due to this755

vector must be zero in the considered conditions, this allows us to prove that

emj′k′ = 0.

Appendix D. Proof of Theorem 1

We analyze the case when X = ǍŠ. Let us consider a term of the second

sum in (15), corresponding to a coefficient emj′k′ , with given indices m, j′ and760

k′. The index m and therefore the vector šm are fixed, and that vector šm

contains exactly one linear term in the corresponding first sum of (14), due to

Lemma 10. We denote as j′0 the index of that term (i.e., the linear term of šm

is emj′
0
sj′

0
, with emj′

0
6= 0). The value of j′0 depends on m.

Besides, the considered term in (15) is obtained for a certain vector šℓ. Again

due to Lemma 10, šℓ contains a single linear term, whose index is denoted as j0

hereafter, i.e. the linear term of šℓ is eℓj0sj0 , with

eℓj0 6= 0. (D.1)

The value of j0 thus depends on ℓ.765

The considered third-order term in (15) thus corresponds to the vector sj0 ⊙

sj′ ⊙ sk′ , which is defined by the unordered set of indices {j0, j
′, k′}, with 1 ≤

j0 ≤ M and 1 ≤ j′ < k′ ≤ M . Moreover, we consider the case when ℓ 6= m.

Therefore,

j0 6= j′0, (D.2)

due to Lemma 11.
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The indices that were initially fixed in this analysis are those of emj′k′ , that

is m, j′ and k′, or equivalently j′0, j
′ and k′. At least two of these indices are

different, namely j′ and k′. Two cases may therefore exist and are successively

considered hereafter (for a detailed analysis of these cases when M = 2 or770

M = 3, see Appendix C).

The first case is when all indices are different2, i.e.

j′0 6= j′ and j′0 6= k′. (D.3)

We consider an arbitrary term in the second set of third-order terms, corre-

sponding to the third sum in (15). For the vector šm (and šℓ) defined above,

this term of (15) corresponds to the vector sj ⊙ sk ⊙ sj′
0
and therefore to the

unordered set of indices {j, k, j′0}. This set cannot be equal to the unordered775

set {j0, j
′, k′} considered above. This is due to the fact that the element j′0 of

the first set cannot belong to the second set, since it meets conditions (D.3)

and (D.2). Let us note that this result applies whatever j0 with j0 6= j′0 (and

whatever j, k).

The second case is when

j′0 = j′ or j′0 = k′ (D.4)

and not both, because j′ 6= k′. Then, let us denote as v1 the value which is

shared by j′0 and j′ or k′, and v2 the other value among j′ and k′. Let us consider

then case when j0 = v2 (ℓ can indeed be selected so as to meet this condition,

since this is compatible with (D.2)). As in the first case, let us now consider

the set of indices associated with the vector sj0 ⊙ sj′ ⊙ sk′ corresponding to a

given coefficient emj′k′ , that is {j0, j
′, k′}, with j′ < k′ and therefore j′ 6= k′.

Due to the above analysis, this set is here equal to the unordered set {v2, v1, v2}

(because j′ = v1 and k′ = v2, or j
′ = v2 and k′ = v1). Moreover, this set cannot

be equal to any above-defined unordered set {j, k, j′0}, i.e. for any j and k with

j < k and therefore

j 6= k, (D.5)

2For M = 2 (only), this case cannot occur, because j′
0
= 1 or 2 and the ordered couple

(j′, k′) can only take the value (1, 2).
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where the latter set is here equal to the set {j, k, v1}. This results from the fact780

that, if these two sets were equal, then we would have {v2, v1, v2} = {j, k, v1},

and therefore {v2, v2} = {j, k}, which contradicts (D.5).

So, at this stage, we showed that the following result applies in all cases

(i.e. in the above two cases, which are the only possible ones). Starting from

an arbitrary coefficient emj′k′ corresponding to the second sum in (15), we785

can associate it with at least one value j0 and therefore at least one vector

sj0 ⊙ sj′ ⊙ sk′ so that this vector (with an arbitrary order for its three factors)

appears only once in the second sum of (15), due to Lemma 12, and does not

appear in the third sum of (15). Therefore, the component corresponding to

this vector is restricted to eℓj0emj′k′ . As already shown in the proof of Lemma790

3, since X = ǍŠ here, each row vector of Š is a linear combination of all row

vectors of S̃. We here apply it to the vector šℓ⊙šm with ℓ 6= m considered above.

Then, due to Assumption 3, the above component eℓj0emj′k′ of sj0 ⊙ sj′ ⊙ sk′

is equal to zero. Due to (D.1), this yields emj′k′ = 0. Since this applies to any

values of m, j′ and k′ (with j′ < k′), this shows that, if X = ǍŠ, then the795

vectors šm defined by (14) with ℓ replaced by m contain no second-order terms,

i.e. are restricted to their linear part obtained in Lemma 11.
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[20] I. Meganem, P. Déliot, X. Briottet, Y. Deville, S. Hosseini, “Linear-

quadratic mixing model for reflectances in urban environments”, IEEE

Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 544-558,

Jan. 2014.

[21] I. Meganem, Y. Deville, S. Hosseini, P. Déliot, X. Briottet, “Linear-875

quadratic blind source separation using NMF to unmix urban hyperspec-

tral images”, IEEE Transactions on Signal Processing, vol. 62, no. 7, pp.

1822-1833, April 1, 2014.

[22] S. Moussaoui, D. Brie, J. Idier, “Non-negative source separation: range

of admissible solutions and conditions for the uniqueness of the solution”,880

Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP ’05), pp. V-289 - V-292, Philadelphia, USA,

March 19-23, 2005.

[23] A. Smilde, R. Bro, P. Geladi, “Multi-way analysis with applications in the

chemical sciences”, Wiley, Chichester, England, 2004.885

41


	Introduction
	Bilinear mixing model
	Separating structure and separation principle
	Uniqueness of decomposition
	Notations
	Assumptions
	Structure of the rows of 
	Simplification of linear part of rows of 
	Simplification of quadratic part of rows of 

	Separation criteria and algorithms based on BMMF
	Methods based on the above source-constrained separating structure 
	Methods based on a doubly-constrained separating structure 

	Numerical tests
	Numerical validation of the assumptions of the separability analysis
	Numerical validation of separation algorithms with multispectral data
	Numerical validation of separation algorithms with hyperspectral data

	Extension to full linear-quadratic mixtures
	Conclusion and future work
	Separability/identifiability analyses available from the literature
	About the terminology
	Illustrations of the separation analysis
	Proof of Theorem 1

