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Blind source separation and blind mixture identification methods

Yannick Deville
Institut de Recherche en Astrophysique et Planétologie (IRAP), University of Toulouse, France

Blind Source Separation (BSS) is a generic signal processing problem, which may be briefly
defined as follows:

BSS methods aim at estimating a set of “source signals” (which have unknown values but some
known properties), using a set of available signals which are “mixtures” of the source signals to be
restored, without knowing (or with very limited knowledge about) the “mixing transform”, i.e. the
transform of source signals which yields their mixtures.

The term “signal” is here to be understood in a broad sense: the considered problem not only
concerns monodimensional functions (especially time-dependent functions), but also images and
various types of data.

BSS methods appeared in the 1980s and then quickly expanded. Various books, especially
[1, 2, 3, 4, 5, 6], provide a detailed description of BSS methods, or at least of some classes of such
methods defined hereafter, such as Independent Component Analysis, Sparse Component Analysis
or Nonnegative Matrix Factorization (related topics are also discussed in the book [7]).

Moreover, the BSS problem, focused on signal restoration, is closely linked to the estimation
of (the parameters of) the mixing transform, and thus to the problem often referred to as Blind
Mixture Identification, or BMI (see e.g. [1] pp. 65-66 or [8, 9, 10, 11, 12]).

In this chapter, we provide an overview of the fields of BSS and BMI, i.e. we first define in more
detail the considered goal (see Section 1) and conditions of investigation (Section 2), and we then
introduce the major classes of methods which make it possible to solve the considered problems.
The presentation of BSS/BMI methods themselves, and of typical applications, is split in successive
sections (Sections 3 to 7), where we progress from standard to more advanced configurations, in
terms of properties of source signals and/or class of mixing transform. Some additional topics are
eventually outlined in Section 8, which also contains general conclusions about BSS and BMI.
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1 Goal of Blind Source Separation (BSS)

We consider the situation when a set of signals xi(t) are available and they result from a set of
unknown source signals sj(t) (often simply called “sources sj(t)”), due to a “mixing” phenomenon,
as shown in Fig. 1. This notion of “mixing” will be detailed further in this chapter, but we can
already clarify it at this stage, by stating that the simplest class of mixture corresponds to the
case when the signals xi(t) are linear combinations of the signals sj(t). In particular, in the basic
case when two mixtures x1(t) and x2(t) of two source signals s1(t) and s2(t) are available, these
mixed signals read, at any time t,

x1(t) = a11s1(t) + a12s2(t) (1)

x2(t) = a21s1(t) + a22s2(t) (2)

where aij are scalar coefficients. The mixed signals xi(t) are also called “observations” or “observed
signals”. They are e.g. provided by sensors, such as radio-frequency antennas, microphones...
Mixing between source signals then occurs during their simultaneous propagation to the sensors.

1
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Figure 1: General configuration for the source separation problem.

BSS aims at creating a processing method (or a set of methods) which only receives the mixed
signals xi(t) as inputs and which “extracts” all source signals sj(t) from these signals xi(t). This
“extraction” or “separation” of source signals may be defined as follows:

• Ideally, BSS methods should aim at creating output signals yj(t) which are respectively equal
to the source signals sj(t).

• However, one has to restrict oneself to a somewhat simpler goal, because the considered
problem intrinsically entails some limitations: unless additional information is available, one
can only aim at making the output signals of a BSS method equal to the source signals
up to a set of unavoidable modifications, called “indeterminacies”. The nature of these
indeterminacies depends upon the constraints set on the source signals, on the considered
class of mixtures and on the selected type of BSS method. For the sake of clarity, we
can already state at this stage that, in the most standard case (namely determined linear
instantaneous mixtures, defined further in this chapter), these indeterminacies are restricted
to a possible permutation concerning the order of the output signals and to scale factors
applied to these signals.

Whatever type of signals is studied, the general considered configuration is shown in Fig. 1.
More explicit versions may then be derived from it, for each particular application domain. For
instance, Fig. 2 illustrates the case when the considered source signals have an acoustic nature, the
sensors are microphones and the separating system aims at extracting one or several speech signals
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of interest, from the microphones signals consisting of noisy mixtures of these speech signals. A
specific version of this configuration is obtained when the microphone signals contain no noise
components (or when noise has a negligible magnitude). The latter problem is often referred to
as the “cocktail party problem”, in connection with the situation when a set of microphones are
placed in a cocktail room where a group of people are talking, and one aims at extracting each of
these speech signals.

Figure 2: Application of source separation methods to acoustic signals.

2 General conditions of investigation

We again consider the general BSS configuration illustrated in Fig. 1. We here review the quantities
involved in this configuration and the information assumed, or not, to be available about these
quantities.

2.1 Observed signals

The mixed signals xi(t) are known, both from the point of view of their number and of their values:
they are the measured signals from which BSS is carried out.

In many practical applications, the number of mixed signals is equal to the number of sensors
which respectively provide each of these observations xi(t).

2.2 Source signals

Concerning the source signals sj(t):

1. The values of these signals are assumed to be unknown, otherwise the BSS problem would
already be solved.

2. In the simplest configuration, the number N of source signals sj(t) is assumed to be equal
to the number P of observed signals xi(t). The mixture is then said to be “determined”. In
this case, the number of source signals is known, since the number of observed signals itself
is known. In this chapter, we consider this case of determined mixtures, unless otherwise
stated. We then denote as N the number of source and observed signals. In Fig. 1, we
already focused on this configuration.

Besides, it is implicitly assumed that these observations are not “redundant”: for instance,
it would e.g. be an illusion to pretend that N mixtures xi(t) of the considered source signals
were available if some of these signal xi(t) were in fact strictly identical ! This notion of
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non-redundant observations may be expressed in a way which depends on the nature of the
mixing which occurs between source signals. When the mixture is defined by a mixing matrix
A (see e.g. Section 3.1.1), this non-redundancy corresponds to assuming that this matrix A
is invertible.

Apart from determined mixtures, the other two possible situations are as follows:

(a) The mixtures are “overdetermined” when the number of observed signals is higher than
the number of source signals. One may imagine that this case does not entail major
difficulties as compared with the determined case, since the information concerning the
source signals and provided by the measured signals is then as rich as in the case of
determined mixtures, or even richer.

Starting from an overdetermined mixture, one may try to get back to a determined
mixture. A brute-force approach to this end would consist in totally ignoring some of the
observations, by only taking into account a number of observations equal to the number
of source signals (again assuming that the observations thus kept are not redundant).
A more interesting approach, especially for the noisy version of the linear instantaneous
mixtures defined further, consists in applying Principal Component Analysis to the
observations. This yields signals whose number can be made equal to the number N
of source signals and which are equal to the N first principal components of these
observations (see e.g. Chapter 6 of [2] for more details).

(b) On the contrary, the mixtures are “underdetermined” when the number of observed
signals is lower than the number of source signals. One may expect that this situa-
tion is more difficult to handle, using the same analysis as in the overdetermined case
considered above. Indeed, even for the simplest class of mixtures, if the mixture is un-
derdetermined, the source signals can be estimated only if they have specific properties
(this phenomenon is explained in more detail in Section 4.1.2, where it is especially
shown that, for underdetermined mixtures, one should distinguish between the BMI
and BSS tasks).

3. The source signals are constrained to meet some properties, which then makes it possible
to build methods that exploit these properties to separate these signals. Several properties
have thus been used in the literature. For the simplest class of mixtures, the most used
property applies to random source signals and consists in assuming that they are statistically
independent, as explained in Section 3, whereas the other classical properties are detailed in
Section 4.

2.3 Mixing model

The other quantities and assumptions concern the model which defines the mixing phenomenon
between sources, i.e. the multidimensional deterministic function F which makes it possible to
express the observed signals xi(t) with respect to the source signals sj(t) as

x(t) = F (s(t)) (3)

where the vectors of source and observed signals are defined as

s(t) = [s1(t), . . . , sN (t)]T (4)

x(t) = [x1(t), . . . , xN (t)]T (5)

where T stands for transpose.
The model given by eq. (3) corresponds to so-called “noiseless mixtures”. On the contrary, in

the case of noisy mixtures, each observation xi(t) not only contains the components associated with
the source signals, defined by eq. (3), but also a random noise component, often assumed to be
additive and independent both from the source signals and from the noise components associated
with the other observations. The noiseless model is considered in many investigations although the
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noisy model (more general but more difficult to handle) is better suited to various applications. In
this chapter, we consider the noiseless model, unless otherwise stated.

The most studied situation then corresponds to the following conditions:

• The nature of the mixing model, i.e. the class of functions containing function F , is assumed
to be known.

• The values of the parameters which appear in this model are unknown.

• The parameters of the mixing model (or of the inverse of this model) are estimated only from
the observations xi(t).

This problem is then called “blind source separation” because: (i) generally speaking, “source
separation” consists in restoring source signals from their mixtures and (ii) this separation is here
performed “blindly”, i.e. without knowing the values of the source signals sj(t) nor the mixing
function F that was imposed on these source signals to create the available observations xi(t), so
that the parameters of this function F (or of its inverse) are only estimated from the observations.
It should be noted that the mixing function F is however assumed to be partly known, since its
functional form is fixed. Observations are therefore not processed in a completely blind way, so
that some authors state that this processing problem is “myopic”, rather than blind.

On the contrary, the case of non-blind source separation includes two situations: (i) the ideal
case when the mixing function F (or its inverse) is a priori known and (ii) the situation when F
is unknown and this function (or its inverse) is estimated by using not only values of observations
xi(t) but also corresponding values of source signals sj(t). The latter version of non-blind source
separation is linked to non-blind system identification: in that non-blind identification task, one
aims at determining the function F which defines the behavior of a system, from known values of
inputs sj(t) and outputs xi(t) of that system, but without focusing on the subsequent restoration
of unknown input values sj(t) from known output values xi(t), unlike in the source separation
task. For more details about non-blind system identification, the reader may e.g. refer to [13] in
this encyclopedia.

The same type of link as above exists in the blind case, i.e. between blind source separation
(BSS) and blind mixture identification (BMI), where BMI may be seen as a blind extension of the
above-mentioned non-blind system identification: in BMI, one determines the function F defining
the behavior of the considered system, but blindly, i.e. only from known output values xi(t) (and
from some properties imposed on its inputs sj(t)).

Different sub-fields may then be distinguished within the overall field of BSS/BMI, depending
on the considered mixing model, which has a strong influence on the separation/identification
methods that may be developed. In the subsequent sections, we progress from simple to more
complex mixing models and we describe corresponding BSS/BMI methods, which often consist of
various classes of methods, depending on the considered source properties. We thus investigate
linear instantaneous mixtures in Sections 3 and 4, anechoic and general convolutive mixtures in
Section 5 and nonlinear mixtures in Section 6 and 7.

3 Methods for linear instantaneous mixtures of independent

sources

The main two classes of mixing models that may first be distinguished are linear and nonlinear
mixtures. Linear mixtures, especially instantaneous ones, often yield simpler BSS/BMI methods
than nonlinear ones and are sufficient for addressing a large number of application fields. Lin-
ear mixtures have therefore been much more studied. Among them, three sub-classes may be
distinguished. The first one is defined hereafter.
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for i.i.d. sources (see [100] for an extension to sources which are filtered versions of i.i.d. processes).
As shown by eqs. (70) and (72), any single source signal sj yields an “‘overall contribution” (i.e.
taking all successive values sj(n− k) of that source signal sj into account), in any observed signal,
which may be reinterpreted as follows. One considers the (M + 1) values sj(n − k) as the values
of an extended set of (M + 1) source signals, which are mutually statistically independent since
the original source signals are assumed to be i.i.d. The convolutive mixing model defined by eqs.
(70) and (72) is then reinterpreted as a linear instantaneous mixture of (M + 1)N independent,
extended, source signals. This approach thus has the advantage of bringing us back to the simplest
type of mixtures. However, one should keep in mind that mixtures must be (over-)determined to
avoid the issues that we described above for underdetermined mixtures. This may essentially be
achieved by increasing the number of observed mixtures as follows: one defines an extended set
of observed mixtures which does not consist of the signals of eq. (70) at a single time, but over a
bounded interval of time positions [100]. This approach was applied to several linear instantaneous
BSS methods defined in Section 3. For instance, a convolutive extension of FastICA was proposed
in [100]. Similarly, a convolutive version of second-order diagonalization-based methods, derived
from SOBI, was introduced in [101] for the case when each original source signal sj is temporally
autocorrelated.

Operating in the time domain therefore yields several attractive options for convolutive BSS
methods. However, this requires one to introduce adaptive separating variables which typically
consist of the impulse responses of filters which aim at, at least approximately, “matching” the
filters contained in the mixing model or its inverse. This may require high-order separating fil-
ters e.g. in application domains where the non-negligible parts of the impulse responses of the
mixing filters have a long duration. This may entail both reduced estimation accuracy and high
computation load, then limiting the attractiveness of time-domain approaches in application fields
involving these “long mixing filters”. These considerations especially apply to acoustic impulse
responses (see e.g. Fig. 11), and frequency-domain approaches have indeed widely been used,
instead of time-domain methods, in Acoustics. On the contrary, in various electromagnetic com-
munication applications, the effect of the propagation channel may be modelled by filters whose
impulse responses are restricted to a few coefficients.

For more details about convolutive BSS methods or their acoustic/audio applications, the reader
may e.g. refer to Chapters 8 and 19 of [1] or to [5, 102, 103].

6 Methods for nonlinear mixtures

Beyond the different types of linear mixtures considered above, a significantly smaller number of
reported investigations concern nonlinear mixing models. The most general form of these models
may be compactly expressed as in eq. (3), when interpreting this equation as follows: the value
of the observed vector x(t) at a single time t may depend on the series of values of the source
vector at different times, as in the compact notations used in eq. (66) for general, i.e. convolutive,
linear mixtures. In particular, the nonlinear mixing model given by eq. (3) includes instantaneous
(or memoryless) nonlinear mixtures, which correspond to the case when x(t) only depends on the
value of the source vector at the same time t, i.e. s(t).

Nonlinear mixtures are more complex to handle than the linear instantaneous ones that we
detailed above. Difficulties appear at different stages of the standard procedure for developing BSS
methods that we defined in Section 3.6. First, if trying to extend the standard separating system
structure of Section 3.2 to a given class of nonlinear mixtures, i.e. to a class of MIMO functions
with unknown parameter values, then for various BSS methods one again has to define a class of
MIMO separating functions which implements the inverse of the considered class of MIMO mixing
functions. However, unlike with linear mixtures, for many given analytical expressions of nonlinear
MIMO mixing functions, the analytical expressions of the corresponding inverse functions cannot
be derived (moreover, MIMO mixing functions are not necessarily invertible, i.e. bijective, unless
one accepts to consider them only over a small enough bounded domain). This also means that, for
nonlinear mixtures, BMI is easier to perform than BSS in situations when the analytical form of
only the mixing model is known. Similarly, concerning the separation principle, a natural approach
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consists in trying to extend to nonlinear mixtures the principle which was the most studied for
linear mixtures, that is the ICA principle. However, it has been shown (see p. 552 of [1] or [104])
that, if the mixing model is not constrained to belong to a specific class, the indeterminacies of
nonlinear ICA-based methods are unacceptably high: starting from independent source signals,
such methods may yield output signals which are still mixtures of the source signals, although
these output signals are independent (a simple example is e.g. provided on pp. 552-553 of [1]).
Related topics are also discussed in [105].

Most reported investigations for nonlinear BSS are restricted to specific classes of nonlinear
mixtures, in order to reduce the above indeterminacies and/or because they are motivated by
practical applications where the encountered mixing models are guaranteed to belong to known
classes. Two such classes were especially studied, namely linear-quadratic instantaneous mixtures
(and, to some extent, their polynomial extensions) and post-nonlinear ones. The remainder of this
section is therefore focused on these two classes. For more detailed discussions about nonlinear
BSS, the reader may refer to Chapter 14 of [1] or to [106, 107]. A specific type of nonlinear mixture
is also discussed, in a different context, in Section 7.

6.1 Linear-quadratic mixtures and associated BSS methods

The scalar form of the linear-quadratic (instantaneous) mixing model reads

xi(t) =

N
∑

j=1

aijsj(t) +

N
∑

j=1

N
∑

k=j

bijksj(t)sk(t) ∀ i ∈ {1, . . . , P} (75)

where xi(t) are the values of the P observed mixed signals at time t and sj(t) are the values of
the N unknown source signals which yield these observations, whereas aij and bijk are respectively
the linear and quadratic mixing coefficients (with unknown values in the blind case) which define
the considered source-to-observation transform. The specific version of this model which contains
no second-order auto-terms (i.e. bijk = 0 when k = j) is called the bilinear mixing model. It

corresponds to replacing the second sum in eq. (75) by
∑N−1

j=1

∑N

k=j+1
. Similarly, the quadratic

version of this model is obtained when all coefficients aij are zero.
The linear-quadratic mixing model is thus a natural extension of linear (instantaneous) mix-

tures, obtained by also including second-order terms (and higher-order terms for its polynomial
extensions). It may thus first be seen as a generic model, to be used as an approximation (truncated
polynomial series) of various, possibly unknown, models faced in practical applications. Moreover,
linear-quadratic mixing has been shown to actually occur in some applications. It has thus mainly
been used in three types of applications. The first one concerns unmixing of remote sensing data
(see e.g. [108, 109]). As already discussed in Section 3.1.2, in simple situations involving single
reflections, this application yields a linear instantaneous mixing model, where e.g. each source sig-
nal is the reflectance spectrum of a pure material and each associated mixing coefficient is related
to a surface on Earth corresponding to this pure material. However, more complex situations with
double reflections also exist, e.g. when light emitted by the sun is first reflected by a wall of a
building, then reflected by the ground, and it eventually reaches the sensing device (see Fig. 12).
When considering the source and observed signals as reflectance spectra (the time variable t of
eq. (75) is then replaced by the wavelength index), the above situation yields observed signals in
which each contribution involving double reflection is the product of the reflectances of the two
pure materials (source signals) for which double reflection occurs and of a coefficient (mixing coef-
ficient), as shown in [108]. Taking these contributions into account in addition to those associated
with simple reflections, the observed data are represented according to the linear-quadratic model
defined by eq. (75).

Apart from the above application, the linear-quadratic mixing model has also been considered
when processing scanned images involving the show-through effect already mentioned in Section 4.3
(see e.g. [82]) and when analyzing gas sensor array data [110]. References of other investigations
related to the above applications are also provided in [111].

A recent survey of the BSS methods that have been proposed for linear-quadratic (and polyno-
mial) mixtures is also available in [111]. We hereafter summarize the main trends in that domain
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Figure 12: Double reflection of light emitted by the sun: light is first reflected by a wall of a
building, then reflected by the ground, and it eventually reaches the sensing device (Reprinted
from [108]).

and refer the reader to [111] for more details. These trends are consistent with the investigations
previously performed for linear instantaneous mixtures, which were described in Sections 3 and
4. In particular, various reported methods for the configuration considered here may be seen as
linear-quadratic extensions of ICA. To solve the above-mentioned issue concerning nonlinear sep-
arating structures (analytical form of inverse of mixing function), several of these methods use
recurrent networks, which may be seen as nonlinear extensions of the original Hérault-Jutten net-
work intended for linear mixtures (these networks may be further extended to much more general
nonlinear mixtures than linear-quadratic ones only, as detailed in [112]). The parameters of these
networks are adapted by using ICA-based MIMO criteria which are similar to those described in
Section 3.5 for linear mixtures, namely centered output cross-moment cancellation [113], output
mutual information minimization [114] and likelihood maximization (see e.g. [115]). The above
methods concern i.i.d. sources. For autocorrelated sources, a few approaches based on second-
order statistics and therefore related to Section 3.7 were also proposed: see e.g. [116], which is
restricted to BMI and thus avoids the issue of the nonlinear separating structure often used for
BSS. Still in the framework of statistical methods, Bayesian approaches have also been applied to
linear-quadratic mixtures, including for autocorrelated sources (see e.g. [82]).

The other reported approaches first include a few linear-quadratic or bilinear extensions of SCA,
again using either single-source zones (see e.g. the investigation in [117] or its summary in [8]) or
cost functions based on L0 pseudo-norm [118]. Besides, some linear-quadratic extensions of NMF
were developed, especially for the above-mentioned remote sensing application (see especially [109]
for a general configuration).

6.2 Post-nonlinear mixtures and associated BSS methods

The post-nonlinear (instantaneous) mixing model is defined by

xi(t) = fi





N
∑

j=1

aijsj(t)



 ∀ i ∈ {1, · · · , P} (76)

where we use the same notations as above and we introduce single-input single-output nonlinear
functions fi(·). In the blind case, both aij and fi(·) are unknown. However, the functions fi(·) are
often assumed to be strictly monotonic and, thus, invertible. This model is useful in applications
where the first stage of the mixing process has a linear nature but the sensors then exhibit a
nonlinear response, due to saturation or more complex nonlinear transducer phenomena. The
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main field of application for post-nonlinear models is the design of smart chemical sensor arrays
(see e.g. [119]). These models were also applied to remote sensing data [120].

The BSS methods that have been developed for post-nonlinear mixtures are especially focused
on ICA. When using this separation principle, this class of mixtures has a major attractive feature:
in the determined configuration, the associated separating structure ensures ICA separability under
conditions which are similar to those established for the linear case. This result was first established
in [121] and later extended in other investigations. The reader is referred to the recent survey [111]
for more details about these separability analyses and about practical post-nonlinear BSS methods
based on ICA and Bayesian approaches.

7 Blind quantum source separation and process tomogra-

phy

The above sections span various types of mixtures and source properties, but they do not include
all kinds of BSS and BMI configurations, in the sense that they are restricted to “classical”, i.e.
non-quantum, source signals and mixing phenomena.

Independently from classical BSS and BMI, another field within the overall Information Pro-
cessing (IP) domain rapidly developed during the last decades, namely Quantum Information
Processing (QIP) [122, 123, 124, 125, 126]. QIP is closely related to Quantum Physics (QP). It
uses abstract representations of systems whose behavior is requested to obey the laws of QP. This
already made it possible to develop new and powerful IP methods, to be contrasted with classical
methods such as the above-mentioned BSS and BMI approaches. These new methods manipulate
the states of so-called quantum bits, or qubits. Their effective implementation then requires one
to develop corresponding practical quantum systems, which is an emerging topic [122].

The gap between classical (B)SS and QIP/QP, was bridged in 2007 in [127] (followed by its
extended version [128]), which introduced a new field, namely Quantum Source Separation (QSS)
and especially its blind version, Blind Quantum Source Separation (BQSS). The BQSS problem
consists in restoring (the information contained in) individual source qubit states, i.e. quantum
source signals, only starting from the mixtures (in BSS terms [128]) of these source qubit states
which result from their undesired coupling.

Several classes of (B)QSS methods were thus developed. In the first of them, the standard
configuration of classical BSS shown in Figure 5 is modified as follows. The source signals and
first part of the mixing stage here have a quantum nature. The last part of the mixing stage then
converts its quantum input into data which have a classical form, but whose properties reflect their
quantum origin. This conversion is performed by means of measurements. The set of resulting
classical-form signals, which corresponds to the mixed vector x(t) of Figure 5, is then processed
by a separating system which uses classical processing. This system is the counterpart of block
C of Figure 5, but it here implements a nonlinear function, because the mixing model (including
the above quantum/classical conversion) resulting from that approach is nonlinear. This mixing
model is specific to the considered BQSS problem (Heisenberg coupling + quantum/classical con-
version). Various methods were therefore developed for adapting the parameters of the associated
separating system. They have a relationship with classical ICA, thus leading to the introduction of
Quantum-Source Independent Component Analysis (QSICA). A survey of these methods is avail-
able in [129]. Starting from the above QSICA separation principle, these methods cover various
associated separation criteria, which are reminiscent of those reported in the previous sections for
classical BSS, namely moment-based and cumulant-based approaches, and methods which perform
output mutual information minimization or likelihood maximization (here extended to the original
encountered nonlinear mixing model).

Another reported class of BQSS approaches (see e.g. [130]) is much more different from classi-
cal BSS, from the point of view of the nature and structure of the separating system, and of the
considered separation principle. The separating system here directly receives mixed, i.e. coupled,
quantum states and, after its parameters have been adapted, it only operates with quantum cir-
cuitry. In other words, the classical-BSS configuration of Figure 5 is here replaced by completely
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quantum data and processing means. Quantum/classical data conversion and classical processing
means are only used to adapt the separating system parameters, i.e. in the part of the feedback
adaptation loop which is the counterpart of the lowest part of the configuration shown in Figure
6 for adaptation in classical BSS. The proposed adaptation procedure is also specific to quantum
BSS because, although it may eventually be shown to have some relationship with (QS)ICA, it is
primarily based upon another separation principle. This principle is derived from the concept of
(dis)entanglement, which appears in quantum physics and has no classical counterpart.

The above-mentioned investigations were focused on (quantum) BSS. On the contrary, a new
classical-processing approach for mixed quantum sources was recently derived [131] by using an
extended set of measurements, thus not only providing a BQSS method with new features, but
also offering an attractive approach to achieve another goal, namely the blind estimation of the
parameter values of the mixing system itself (i.e. without considering source state restoration).
From the point of view of QIP, this yields a new field, namely Blind Quantum Process Tomography
(BQPT), which is the blind extension of the existing field of QPT [122], that consists in non-blindly
identifying the behavior of a quantum “system” (which is here the mixing operator). Besides, with
respect to the concepts that we introduced at the beginning of this chapter, in this framework
BQPT may be considered as the quantum extension of BMI.

8 Extensions and conclusion

As explained above, Blind Source Separation (BSS) methods aim at estimating a set of unknown
source signals, after they were transferred through an unknown mixing function, whereas Blind
Mixture Identification (BMI) methods aim at estimating that mixing function. Although these BSS
and BMI problems may thus be defined in a very generic way, they give rise to many configurations,
to be analyzed independently, depending on the properties of the source signals and on the mixing
function faced in the considered application. In this chapter, we provided an overview of the main
classes of mixing functions adressed in the literature and of the source properties exploited in
BSS/BMI methods. A more detailed analysis of these fields would e.g. also address the following
topics:

• Other BSS and/or BMI methods for underdetermined mixtures, beyond the comments that
we provided in Section 4.1.2 about SCA-based methods: see e.g. [9, 10, 11] for some statistical
methods, or Chapter 9 of [1] for an overview.

• Configurations involving complex-valued data, e.g. as in [132, 133], or discrete-valued data,
e.g. as in [9, 134, 135] (besides, the measurements mentioned in Section 7 yield binary-valued
signals).

• Equivariant ICA algorithms for linear instantaneous mixtures, whose performance does not
depend on the mixing matrix (see e.g. [136] and the EASI algorithms presented therein ; see
also [49]), and BSS methods based on natural gradient [137].

• Other BSS methods operating in a transformed domain. In this chapter, we focused on the
STFT, but other time-frequency transforms exist. This especially includes quadratic time-
frequency transforms, e.g. described in [60, 61]. The use of the latter transforms in the
framework of BSS is detailed in Chapter 11 of [1]. The reader may also refer e.g. to [138].

• Various types of approaches based on multidimensional or joint analysis, some of which allow
statistical dependence between some of the source signals. This e.g. includes taking into
account that some physical objects, considered as “physical sources”, are each described
not by a single source signal, but by a set of such signals, thus defining a source vector
and a corresponding multidimensional subspace: for instance, the data associated with the
electrical activity of the heart of a pregnant woman spans a 3-dimensional subspace, whereas
the electrical activity of the fetus’s heart may yield a lower dimension, as discussed in [15].
Besides, the concept of Multidimensional Independent Component Analysis (MICA) was
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introduced in [139]. Combining MICA with the principle of invariant-feature subspaces yields
Independent Subspace Analysis (ISA) [140]. In addition, Independent Vector Analysis (IVA)
was especially introduced in [141] and Chapter 6 of [5], as an extension of ICA from univariate
to multivariate components, which is able to take advantage of statistical dependence inside
each multivariate signal, in addition to statistical independence between multivariate signals.
A description of IVA methods and of their application to fMRI signals is e.g. available in
[142]. Similarly, group ICA was introduced in the biomedical field in [143] for handling a
group of subjects, and its application to fMRI is e.g. presented in [143] and [142].

So, well-stabilized ICA methods now exist for the most standard BSS/BMI configuration, namely
determined linear instantaneous mixtures of independent source signals. Beyond that case, a
variety of configurations may be defined, and the most advanced of them are still the topic of quite
active research. Major developments are therefore expected to occur in the forthcoming years in
the overall fields of BSS/BMI methods and related applications.
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