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Abstract Classical, i.e. non-quantum, communications include configurations
with multiple-input multiple-output (MIMO) channels. Some associated signal
processing tasks consider these channels in a symmetric way, i.e. by assign-
ing the same role to all channel inputs, and similarly to all channel outputs.
These tasks especially include channel identification/estimation and channel
equalization, tightly connected with source separation. Their most challeng-
ing version is the blind one, i.e. when the receivers have (almost) no prior
knowledge about the emitted signals. Other signal processing tasks consider
classical communication channels in an asymmetric way. This especially in-
cludes the situation when data are sent by Emitter 1 to Receiver 1 through
a main channel, and an “intruder” (including Receiver 2) interferes with that
channel so as to extract information, thus performing so-called eavesdropping,
while Receiver 1 may aim at detecting that intrusion, which leads to a decision
problem (existence of intrusion / no intrusion). Part of the above processing
tasks have been extended to quantum channels, including those that have
several quantum bits (qubits) at their input and output. For such quantum
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channels, beyond previously reported work for symmetric scenarios, we here
address asymmetric (blind and non-blind) ones, with emphasis on intrusion
detection and additional comments about eavesdropping. To develop funda-
mental concepts, we first consider channels with exchange coupling as a toy
model. We especially use the general quantum information processing frame-
work that we recently developed, to derive new attractive intrusion detection
methods based on a single preparation of each state. Finally, we discuss how
the proposed methods might be extended, beyond the specific class of channels
analyzed here.

Keywords quantum channel, exchange coupling, intrusion detection,
eavesdropping, blind / unsupervised processing, single-preparation quantum
information processing (SIPQIP)

1 Previous works and problem statement

The communication systems that involve classical, i.e. non-quantum, channels
give rise to a variety of signal processing problems. Among them, two closely
related problems are (i) channel identification, i.e. estimation, and (ii) chan-
nel equalization [31,20]. These problems may be seen as the communication
version of, respectively, (i) system identification and (ii) system inversion and
its multiple-signal extension to source separation, that are generic signal pro-
cessing problems, which include various versions defined as follows. The basic
version of system identification addresses single-input single-output (SISO)
systems. It consists in estimating the unknown parameter values of such a sys-
tem (i.e. of its transform) belonging to a known class, by using known values
of its input (source signal s) and output (signal x). This version is stated to be
non-blind (or supervised), as opposed to the more challenging, blind (or unsu-
pervised), version of that problem, where the input values are unknown (and
uncontrolled, but the input signal may be known to belong to a given class):
See [1]. Both versions may then be extended to multiple-input multiple-output
(MIMO) systems.

Besides, in various applications, what is needed is not the direct transform
achieved by the above system, but the inverse of that transform (assuming it
is invertible). For SISO non-blind and blind configurations, this is motivated
by the fact that one eventually only accesses the ouput x of the above direct
system, and one aims at deriving a signal y which ideally restores the original
source signal s. To this end, one may use the above-mentioned system iden-
tification methods in order to first estimate the direct system, then derive its
inverse and eventually transfer the output x of the direct system through the
inverse system. Alternatively, one may develop methods for initially identify-
ing the inverse system itself. Extended versions of this “(unknown) system
inversion” task deal with MIMO configurations, where a set of original source
signals s1 to sM are to be respectively restored by the outputs y1 to yM of the
inverse system.
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The blind MIMO version of the above system inversion problem is almost
the same as blind source separation (BSS) (see e.g. [7,22,9,25]): As in sys-
tem inversion, BSS aims at canceling the contributions of all sources but one
in each output signal of the separating system; however, in BSS, one often
allows each output signal to be equal to a source signal only up to an accept-
able residual transform. These transforms, called indeterminacies, cannot be
avoided because only limited constraints are set on the source signals and on
the direct system which combines (i.e., “mixes”, in BSS terms) these signals.

Let us now consider quantum “signals” and systems, where these “sig-
nals” e.g. consist of the quantum states of quantum bits, or qubits, defined
below. Then, among the above processing problems, the one which was first
studied is non-blind system identification, especially1 introduced in 1997 in [6]
and often called “quantum process tomography” (QPT) by the quantum in-
formation processing (QIP) community: See e.g. [5,27,29,33,34,2,3,28,35,36].
Besides, we introduced the field of “quantum source separation” (QSS) and
especially its blind version (BQSS) in 2007: See [10]. We first mainly devel-
oped a class of BQSS methods related to the classical BSS methods based on
Independent Component Analysis: See especially [11,14]. We then proposed a
second class of BQSS methods, based on output quantum state disentangle-
ment: See especially [12,13,19]. Moreover, in 2015, we introduced the field of
“blind quantum process tomography” (BQPT) in [15]. We then developed it
especially in [18]. We also very recently [17] introduced methods for a closely
related problem, namely Blind Hamiltonian Parameter Estimation (BHPE).
All these QIP problems involve a quantum state transform, to be identified or
inverted. Such a transform is also called a quantum process by the QIP com-
munity, or a quantum channel [29,30], with an explicit reference to the field of
communications, although the considered framework includes other quantum
application fields in addition.

To solve the above QIP problems, we first proposed multiple-preparation
methods, i.e. methods which require many copies of each considered quantum
state value, in order to derive estimates of probabilities of associated measure-
ment outcomes, thus using statistical approaches, as in usual QIP methods.
In addition, in [16], we introduced the concept of SIngle-Preparation QIP (or
SIPQIP) methods, i.e. methods that can operate with only one instance of
each considered quantum state and that extract information thanks to sta-
tistical averaging over measurement outcomes associated with various states.
We then especially provided a detailed report of the principles of this SIPQIP
framework and of its application to BQPT in [18]. Finally, we very recently
applied that framework to a variety of QIP tasks: See [17]. As shown fur-
ther in this paper, this SIPQIP framework is particularly attractive for the
communication applications considered here.

In multiple-source or multiple-qubit configurations, all above-defined classi-
cal or quantum processing problems are expressed symmetrically with respect
to all sources/qubits. In contrast, other signal processing problems, e.g. re-

1 See also [29] p. 398 for the other earliest references.
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lated to communications, assign a different role to different sources/qubits.
First considering classical communications again, this especially involves two-
source configurations, with a “main channel” from, say, Emitter 1 to Receiver
1 and with the following two possible cases. In Case 0, the above configuration,
from Emitter 1, through the main channel, to Receiver 1, does not interact
with its environment. In Case 1, such an interaction exists, i.e. an “intruder”,
often called the eavesdropper in the literature [29], interferes in some way with
the above channel from Emitter 1 to Receiver 1. This yields the following two
signal processing problems. On the one hand, the eavesdropper is interested
in extracting information from the main channel. This information is typically
derived by a Receiver 2 controlled by the eavesdropper, who may in addition
control an Emitter 2, that may be considered as the jammer (this is the case
in the quantum extension of this scenario analyzed further in this paper). In
contrast, the eavesdropper ideally requires no prior knowledge about the data
manipulated by Emitter 1 and Receiver 1. On the other hand, Receiver 1 of-
ten has a strong interest in intrusion detection, that is, in detecting that the
eavesdropper is extracting, i.e. intercepting, information from the connection
between Emitter 1 and Receiver 1. This receiver should perform this intrusion
detection task by using only the data that he receives from the main channel
(blind configuration) or by also using information that he gets from Emitter
1 (non-blind mode; some configurations are also stated to be semi-blind be-
cause Receiver 1 is provided with very limited prior information in addition
to the received data). In all these configurations, Receiver 1 does not access
information about the data possibly sent by Emitter 2 nor those obtained by
Receiver 2.

How the above intrusion detection and eavesdropping capabilities extend
to quantum channels is currently a major and still open problem. Whereas
various approaches may be proposed to this end, e.g. depending on the na-
ture of the considered quantum sources and channels, this paper aims at in-
vestigating this topic by analyzing how results from above-mentioned BQSS
and related (i.e. BQPT and BHPE) investigations reported so far, hence with
“symmetric” scenarios, may be exploited to derive first concepts for intrusion
detection and/or eavesdropping, hence for asymmetric scenarios. We will thus
only build upon the data model previously considered for BQSS and related
tasks, whereas the quantum processing algorithms proposed in this paper are
quite different from the above-mentioned BQSS and related algorithms, since
they have very different goals. More precisely, we hereafter put the emphasis
on intrusion detection and more briefly discuss eavesdropping.

The remainder of this paper is therefore organized as follows. In Section
2, we summarize the data model, i.e. the considered class of channels and
its input, that was used in the above-mentioned BQSS and related methods,
when addressing coupling between two qubits. We also describe measurements
associated with the considered quantum states. Moving to intrusion detection
in Section 3, new data models must first be derived from the above one, be-
cause the information available to Receiver 1 is not the same as in BQSS in
this asymmetric scenario, with or without interaction between both qubits.
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Then, two types of intrusion detection methods are proposed, respectively us-
ing the multiple-preparation and single-preparation frameworks. Finally, Sec-
tion 4 contains a discussion of the features of the above methods, some con-
siderations about the related eavesdropping problem and a conclusion.

2 Considered quantum channels: Coupling model for two qubits

The basic concepts for a single qubit, e.g. implemented as a spin 1/2, are
provided in Appendix A. That description directly applies to several qubits
if they are not “coupled”, i.e. if they do not interact with one another. How-
ever, coupling between individual quantum states has to be considered in the
QIP/QP area, in the same way as signal coupling exists in various classical

signal processing systems. Coupling in quantum physical setups e.g. occurs
when two electron spins interact through exchange. In [11], we considered a
two-qubit system composed of two distinguishable [19] spins coupled accord-
ing to the version of the Heisenberg model which has a cylindrical-symmetry
axis, denoted Oz and collinear with the applied magnetic field. We analyzed
in detail the global state of that two-qubit system resulting from that coupling
and the associated measured values. As in Appendix A, the measured value of
the component of each spin along axis Oz can only be + 1

2
or − 1

2
. Therefore,

when measuring the components of both spins, the obtained couple of values
is equal to one of the four possible values (+ 1

2
,+ 1

2
), (+ 1

2
,− 1

2
), (− 1

2
,+ 1

2
) and

(− 1

2
,− 1

2
). The probabilities of these four values are respectively denoted as

p1, p2, p3 and p4 hereafter. These probabilities are related as follows to the
state of the overall system composed of these two spins. This state may be
expressed as a linear combination of the vectors of the four-dimensional basis
{| + +〉, | + −〉, | − +〉, | − −〉} which corresponds to the operators s1z and
s2z respectively associated with the components of Spin 1 and Spin 2 along
the symmetry axis Oz. As in Appendix A, each of the probabilities p1 to p4
is here equal to the squared modulus of the coefficient of the corresponding
basis vector in the expression of the overall system state. In [11], we provided
a detailed derivation of the expressions of these probabilities in the following
configuration. The two spins are separately initialized (i.e. prepared) at time
t0, with states |ψj(t0)〉 defined by

|ψj(t0)〉 = αj |+ 〉+ βj | − 〉 (1)

where j = 1 for Spin 1 and j = 2 for Spin 2, first considering deterministic
pure states. The initial state of the overall system composed of these two
distinguishable spins is therefore equal to the tensor product (denoted as ⊗)
of the states of both spins defined in (1), i.e.

|ψ(t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉. (2)

That initial state |ψ(t0)〉 is thus unentangled. The overall system state then
evolves with time and the spin states thus get “mixed” (in the classical BSS
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sense2) with one another, thus yielding an entangled state |ψ(t)〉 (except for
very specific parameter values). The time evolution of the overall system state
is defined by phase rotations, as in (21), and this here involves four frequen-
cies. These frequencies depend on the Heisenberg coupling, which is especially
characterized by the so-called principal value Jxy of the exchange tensor (see
[11] for more details). We derived the expressions of the above probabilities p1
to p4 at an arbitrary time t > t0, with respect to the polar representation of
the initial qubit parameters αj and βj , which reads

αj = rje
iθj βj = qje

iφj j ∈ {1, 2} (3)

with 0 ≤ rj ≤ 1 and

qj =
√

1− r2j (4)

due to (20). The above probabilities may then be expressed as follows:

p1 = r2
1
r2
2

(5)

p2 = r21(1− r22)(1 − v2) + (1− r21)r
2

2v
2

−2r1r2

√

1− r2
1

√

1− r2
2

√

1− v2v sin∆I (6)

p4 = (1− r21)(1 − r22) (7)

with

∆I = (φ2 − θ2)− (φ1 − θ1) (8)

∆E = −
Jxy(t− t0)

h̄
(9)

v = sgn(cos∆E) sin∆E (10)

where h̄ is the reduced Planck constant. Probability p3 is not considered, since
it may be derived from the other three probabilities by means of

p1 + p2 + p3 + p4 = 1. (11)

Eq. (5)-(7) yield a QSS problem because, using the classical BSS termi-
nology, they show that some “observations” are “mixtures” of the quantities
which define quantum “sources”. That QSS problem is detailed in Appendix
B. In most configurations, the values of the coupling parameter Jxy and there-
fore of v (see (9)-(10)) are unknown (the sign of Jxy is however known in some
configurations) but fixed, i.e. deterministic. This corresponds to the blind ver-
sion of this QSS problem. In this configuration, estimating the sources first
requires one to estimate the unknown mixing parameter v. BQSS is thus an
estimation problem [32], where one aims at deriving continuous-valued quan-
tities. In contrast, as shown below, intrusion detection is a decision making

2 The terms “mixing” and “mixtures” should be considered with care when dealing with
quantum data: In this paper, when speaking of random pure states, we implicitly refer to
some statistical mixtures, as defined in quantum mechanics, but, except in the present note,
we do not explicitly use the expression “statistical mixture”.
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(i.e. detection) problem [32], with a “yes/no answer” to the determination of
which case, among two possible cases, is actually faced. The algorithms pro-
posed below to answer that decision problem are therefore quite different from
those introduced in our previous papers to solve the BQSS problem.

3 Intrusion detection

3.1 Data models for intrusion detection

The BQSS methods that we proposed in our previous papers to address the
data model of Section 2 take advantage of all the data that are available in that
model, that is, of the probabilities p1, p2 and p4 that are derived (estimated
in practice) from spin component measurements associated with both qubits.
This corresponds to the above-defined symmetric scenario. In contrast, these
“two-qubit probabilities”, i.e. joint probabilities, are not known any more in
the investigation reported in the present paper, due to the considered asym-
metric scenario. More precisely, if starting from the data model of Section 2
as a toy model for quantum channels at this stage, the considered intrusion
detection scenario may be defined as follows. The main channel considered in
Section 1 here goes from the initial deterministic pure state |ψ1(t0)〉 involved
in (2), provided by Emitter 1, to the results of the measurements performed
by Receiver 1 at the final time t for the first qubit of the data model of Sec-
tion 2. These measurements thus only allow Receiver 1 to access “one-qubit
probabilities”, i.e. marginal probabilities, associated with Qubit 1 (at the final
time t).

When intrusion is actually performed, the above model also involves cou-
pling with the second qubit (see Case 1 in Section 1). The probabilities of mea-
surement results of Receiver 1 thus also depend (i) on the initial state |ψ2(t0)〉
involved in (2) and provided by Emitter 2, and (ii) on the qubit coupling phe-
nomenon leading to (5)-(7) and hence on the parameter Jxy of that exchange
coupling model. We then aim at defining and exploiting the probabilities of
the measurement results of Receiver 1. This may be performed as follows, still
considering the data model of Section 2. At the final time t, the measure-
ments for each qubit with index j ∈ {1, 2} define a binary random variable
(RV) denoted as bj , whose possible values are equal to + 1

2
and − 1

2
. The two

events defined by the outcomes of this RV are therefore denoted as {bj = +}
and {bj = −} hereafter. The joint probabilities of the two RVs defined by
the considered two qubits, namely P (b1 = +, b2 = +), P (b1 = +, b2 = −),
P (b1 = −, b2 = +) and P (b1 = −, b2 = −) are nothing but the above-defined
probabilities p1, p2, p3 and p4. Besides, the marginal probabilities associated
with measurements performed for Qubit 1 only may be expressed as follows

P (b1 = +) = P (b1 = +, b2 = +) + P (b1 = +, b2 = −)

(12)

= p1 + p2. (13)
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Using (5)-(6), this yields

P (b1 = +) = r2
1
+ v2(r2

2
− r2

1
)

−2r1r2

√

1− r2
1

√

1− r2
2

√

1− v2v sin∆I .

(14)

Besides, P (b1 = −) provides no additional information, because

P (b1 = −) = 1− P (b1 = +). (15)

As stated above, this model corresponds to the case when intrusion actually
occurs (Case 1), which physically corresponds to electrons being close to one
another or both close to the same atom/ion, hence with exchange coupling
involving Jxy 6= 0. Let us now consider the case when no intrusion is performed
(Case 0), which physically corresponds to electrons being far from one another.
The corresponding data model may be derived by setting Jxy = 0 in the data
model defined above for Case 1. Eq. (9)-(10) then yield v = 0, so that (14)
reduces to

P (b1 = +) = r21 . (16)

This result could be anticipated as follows. We here consider the case when
Qubit 1 does not interact with Qubit 2, so that its state evolves according to
(21) with j = 1. Therefore, as explained in Appendix A, at any time t, the
probability of {b1 = +} is equal to the squared modulus of the coefficient in
(21) of the vector |+〉. It is thus equal to |α1|

2, i.e. r2
1
due to (3).

3.2 Multiple-preparation intrusion detection methods

The problem addressed in this paper consists of only using the measurements
performed by Receiver 1 so as to determine whether intrusion occurs or not,
i.e. whether the main channel is in Case 0 or Case 1. That can be seen as a
hypothesis testing problem (i.e. a decision making or detection problem) [32],
with hypotheses H0 and H1 respectively corresponding to the above-defined
Cases 0 and 1.

To perform the above test, several methods may be proposed. Their sim-
plest version uses a single, deterministic, value of the initial states |ψj(t0)〉
with j ∈ {1, 2}, of the final state |ψ(t)〉 of the two-qubit system at time t and
of the associated probability P (b1 = +). This method exploits the fact that,
“in general”, this probability does not take the same value depending whether
Case 0 or Case 1 is considered, as shown by (14) and (16). By “in general”,
we mean that the values in (14) and (16) are different except for very spe-
cific values of the quantities that they involve, that are related to the initial
quantum state (parameters r1, r2, ∆I) or to the channel (parameters v and
hence Jxy and (t − t0)). We here ignore these very specific cases and we will
further discuss this topic in Section 4. One should also keep in mind that, in
practice, an estimate of P (b1 = +) is used and, to obtain it, one must prepare
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many copies of the initial state |ψ(t0)〉 of the two-qubit system, as explained
in Appendix B.

A first intrusion detection method then consists of using a value |ψ1(t0)〉 of
the state provided by Emitter 1, or at least a value of its parameter r1 in (3),
that Receiver 1 knows. Receiver 1 then compares his estimate of P (b1 = +) to
r2
1
and makes the following decision, based on (14) and (16): If that estimate of

P (b1 = +) is “close enough” (one may aim at deriving a bound from test theory
for given statistics of the considered data) to r2

1
, then Receiver 1 decides that

no intrusion is being performed (Case 0); otherwise, he decides that intrusion
is occurring (Case 1). Since this approach requires Receiver 1 to know a value
of emitted (i.e. source) data, it can be considered to be a non-blind method.
Of course, such an approach can only be used to perform detection intrusion
during one or a few limited time periods, moreover jointly defined by Emitter
1 and Receiver 1 (somewhat as when using a synchronization sequence in
classical communication networks) because, otherwise, Receiver 1 would have
to permanently know which states are provided by Emitter 1, which would
make data transmission in the main channel useless.

To reduce the above restriction about known emitted data, one may in-
stead develop a blind variant of the above method, i.e. a variant in which
Receiver 1 does not know which state is provided by Emitter 1 (and by Emit-
ter 2) and can only use estimates of P (b1 = +). The proposed approach then
consists of splitting the above-mentioned complete set of copies of the initial
state |ψ(t0)〉 in two successive subsets. An estimate of P (b1 = +) is then sep-
arately computed by Receiver 1 for each subset and these two estimates are
then compared: If they are “far enough” (with the same comment as above
concerning an associated bound) from one another, Receiver 1 considers that
the main channel switched between Cases 0 and 1 (or between Case 1 with
one value of v to Case 1 with another value) from one of the above subsets to
the other.

Both variants of this method have limitations. In particular, they require
Receiver 1 to estimate at least one value of the probability P (b1 = +), which
requires many copies of the same state |ψ1(t0)〉 to be transmitted by Emitter 1
through the main channel (with a timing known by Receiver 1) and, more im-
portantly, many copies of the same state |ψ2(t0)〉 to be provided by Emitter 2
(i.e. the intruder) meanwhile, which is very constraining from a practical point
of view. If sticking to that multi-preparation framework that is usual in QIP,
there might seem to be no solution to this problem at first glance, because esti-
mating a probability value requires a large number of trials for the considered
single experiment. However, beyond that usual QIP framework, we recently
developed an original concept (see [16,18,17]), called SIngle-Preparation QIP
(or SIPQIP) for its general version, and especially applied to BQSS and related
tasks so far, which solves the above problem, as will now be shown. Briefly,
instead of estimating a single deterministic probability from many copies of
a single deterministic quantum state, SIPQIP estimates the expectation of a
random probability associated with a random quantum pure state, i.e. associ-
ated with various quantum states whose coefficients (such as αj and βj in (1))
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are randomly drawn in practice, by possibly using a single instance of each of
these states.

3.3 Single-preparation intrusion detection methods

We here address the situation when Receiver 1 considers the initial state (2)
of the two-qubit system, and hence the initial state (1) of each qubit, as a
random pure state, i.e. when the parameters rj (and hence qj), θj and φj in
(3) are RVs (this concept of random quantum pure state is defined in more
detail in [8]). Then, the probabilities p1, p2 and p4 in (5)-(7) are also RVs, and
so is the probability P (b1 = +). The approach proposed here is then based on
estimating the expectation of P (b1 = +) over random states (1). Due to (13),
this expectation may be expressed with respect to the expectations of p1 and
p2. A major property is then that all these expectations may in practice be
estimated by using only one instance of each of the considered states (1). This
property was theoretically justified in [16,18] and confirmed by numerical tests
in [16,18,17]. Its relevance may be outlined as follows. For each expectation
E{pk} of a random probability pk to be estimated, in practice the expectation
operator E{.} is replaced by a sample mean, i.e. by a sum (of values, moreover
normalized). Similarly, each probability pk is replaced by a sample frequency,
i.e. by a sum (of 1 and 0, depending whether the considered event occurs or
not for each trial defined by a preparation of the initial quantum states (1)
and by an associated measurement of the considered spin component, for each
of the two spins; this summation is here again followed by a normalization,
by the total number of trials). E{pk} is therefore estimated by a (normalized)
“sum of sums”, which may then be reinterpreted as a single global sum, and
what primarily matters is the total number of preparations of initial quantum
states (1) involved in that global sum, whereas the number of preparations for
each state value (1) may be decreased, down to 1.

In our previous papers, we applied the above analysis to the probabili-
ties p1, p2 and p4 of the data model (5)-(7), in order to achieve BQSS [16,
17], BQPT [16,18] and BHPE [17]. Here, we apply it to a new SIPQIP task,
namely intrusion detection, thus introducing its single-preparation version. We
therefore consider the expectations of (14) and (16). For Case 1, Eq. (14) thus
yields

E{P (b1 = +)} = E{r21}+ v2(E{r22} − E{r21})

−2E{r1r2

√

1− r2
1

√

1− r2
2
sin∆I}

×
√

1− v2v. (17)

This might be further simplified when moreover assuming that the RVs r1, r2
and ∆I are statistically independent, as in our previous BQSS and related
investigations (see e.g. [8] about random quantum sources and their inde-
pendence). However, that additional assumption is not required for the task
considered here.
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Similarly, for Case 0, Eq. (16) yields

E{P (b1 = +)} = E{r21}. (18)

The two variants of the method of Section 3.2 may then be transposed
to the single-preparation framework considered here. We hereafter transpose
only the first variant, because it is especially attractive: It yields a simple
protocol while requesting Receiver 1 to have only limited prior knowledge
about the emitted data, namely the value of E{r21}. This method may therefore
be stated to be blind (so-called blind signal processing methods are in fact
not completely blind because they set some, although possibly very limited,
conditions on the considered data) or semi-blind for the sake of clarity. It
should be noted that, unlike its multiple-preparation version of Section 3.2, this
single-preparation method does not require Receiver 1 to know any individual

state value prepared by Emitter 1, which is very attractive. Moreover, it does
not depend on the state values prepared by Emitter 2 (again provided the
“specific values” are avoided).

This single-preparation method operates as follows. Receiver 1 gets a set of
final two-qubit states |ψ(t)〉, without any request on the number of copies per
state value, unlike in Section 3.2. After performing a single one-qubit mea-
surement on Qubit 1 for each such state, Receiver 1 derives an estimate of
E{P (b1 = +)}, as explained above. Receiver 1 then compares this estimate
to the known value E{r2

1
} and makes the following decision, due to the ex-

pressions (17) and (18) respectively for Cases 1 and 0: If E{P (b1 = +)} is
“close enough” (with the same comment as above) to E{r21}, then Receiver 1
decides that no intrusion is being performed (Case 0); otherwise, he decides
that intrusion is occurring (Case 1). This method again exploits the fact that,
“in general” (in the same sense as above), E{P (b1 = +)} does not take the
same value in Cases 0 and 1, as shown by (17) and (18).

4 Discussion and conclusion

A transform applied to a (possibly multi-qubit) quantum state is often re-
ferred to as a “quantum process”, by the scientific community focused on
quantum process tomography, or a “quantum channel”, by the scientific com-
munity focused on quantum communications. So far in this paper, we focused
on a particular class of such quantum processes/channels, namely two-qubit
processes based on cylindrical-symmetry Heisenberg-type exchange coupling.
This class of processes is relevant for describing coupling between two close
electron spins, and that was our motivation for investigating such processes in
our previous papers, focused on the field of spintronics and on associated data
processing tasks, such as BQSS, BQPT and BHPE.

When moving to the detection intrusion task with quantum channels in the
present paper, we still considered the above class of channels so far, in order to
more easily develop first concepts for intrusion detection, by taking advantage
of the information about these channels that was already available from our
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previous investigations. However, it should be clear that, from the point of
view of the detection intrusion task, the above class of channels is here only
regarded as a toy model for first investigations: We do not claim that it will
be relevant when then studying practical communication scenarios, depending
on the considered hardware implementation. In particular, communications
based on photons are discussed in Appendix C.

The competition between eavesdropping and intrusion detection, men-
tioned for the above new scenario, already clearly appeared in the intrusion
detection methods proposed in this paper: these methods can detect intrusion
“in general”, i.e. except for specific values of the considered parameters (quan-
tum states and channel parameters). Another extension of this paper therefore
consists of analyzing these specific values in more detail, in order to determine
whether they allow the eavesdropper to defeat the intrusion detector, while
extracting useful information from the main channel. More generally speak-
ing, in this paper we focused on the capabilities of the proposed approaches
in terms of intrusion detection, but the associated eavesdropping capabilities
should also be analyzed in our future work.

Finally, if one e.g. aims at developing intrusion detection methods that
are statistical in the sense that they are based on averages of measurement
outcomes (to estimate probabilities or their expectations), the following fea-
ture, specific to the most advanced methods that we proposed in this paper,
should be kept in mind because it is likely to remain of high interest in future
methods too. Our general SIPQIP framework for quantum processing makes
it possible to use only one instance of each source state (i.e. emitted state),
and this is especially attractive in communication scenarios, because (i) the
receiver of the main channel (Receiver 1) should preferably not require any
control on the states provided by the emitter of the main channel (Emitter 1)
and (ii) anyway, that receiver surely has no control on the states provided by
the intruder, i.e. jammer (Emitter 2). This ability of our SIPQIP methods to
operate with one instance of each state is obtained by using expectations of
probabilities, the latter probabilities being random-valued because we consider
random quantum pure states. In contrast, a drawback of usual QIP methods
is that they require many copies of a single state (or many copies per state, if
considering several states) to estimate the individual probabilities associated
with that state.

A Definition of a single qubit

Qubits are widely used instead of classical bits for performing computations in the field of
QIP [29]. Whereas a classical bit can only take two values, usually denoted as 0 and 1, at
an initial time t0 a qubit with index j has a quantum state expressed, for a pure state, as

|ψj(t0)〉 = αj |+ 〉+ βj | − 〉 (19)
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in the basis defined by the two orthonormal vectors that we hereafter3 denote |+ 〉 and |−〉,
where αj and βj are two complex-valued coefficients constrained to meet the condition

|αj |
2 + |βj |

2 = 1 (20)

which expresses that the state |ψj(t0)〉 is normalized. In most of the literature, αj and βj
are deterministic, i.e. fixed, values so that |ψj(t0)〉 is a deterministic pure state. In part of
our investigations dealing with BQSS and related tasks, we also considered the case when
αj and βj are random variables (RVs), so that |ψj(t0)〉 is a random pure state (See e.g. [11,
14,8,18]).

From a Quantum Physics (QP) point of view, the above abstract mathematical model
especially applies to electron spins 1/2, which are quantum (i.e. non-classical) objects. The
component of such a spin, with index j, along a given arbitrary axis Oz defines a two-
dimensional linear operator sjz . The two eigenvalues of this operator are equal to + 1

2
and − 1

2
in normalized units, and the corresponding eigenvectors are therefore denoted as |+〉 and |−〉.
The value obtained when measuring this spin component can only be + 1

2
or − 1

2
. Moreover,

let us assume this spin is in the state |ψj(t0)〉 defined by (19) when performing such a

measurement. Then, the probability that the measured value is equal to + 1
2

(respectively

− 1
2
) is equal to |αj |2 (respectively |βj |2), i.e. to the squared modulus of the coefficient in

(19) of the associated eigenvector |+ 〉 (respectively | − 〉).
The above discussion concerns the state of the considered spin at a given initial time

t0. This state then evolves with time. The spin is here supposed to be placed in a static
magnetic field and thus coupled to it. The time interval when it is considered is assumed
to be short enough for the coupling between the spin and its environment to be negligible.
In these conditions, the spin has a Hamiltonian [29]. Therefore, if the spin state |ψj(t0)〉 at
time t0 is defined by (19), it then evolves according to Schrödinger’s equation and its value
at any subsequent time t is

|ψj(t)〉 = αje
−iωp(t−t0)|+ 〉+ βje

−iωm(t−t0)| − 〉 (21)

where the real (angular) frequencies ωp and ωm depend on the considered physical setup
and i is the imaginary unit.

B Quantum source separation problem associated with the

considered quantum channels

We here detail the quantum source separation problem associated with the “mixing model”
(5)-(7). That model involves the following items. The observations are the probabilities p1,
p2 and p4 measured for each choice of the initial states (1) of the qubits. More precisely,
these probabilities are not known exactly but estimated in practice. The procedure that we
used to this end e.g. in [11,14], and that is also widely employed in the QIP literature [3,
6], operates as follows for each choice of the initial states (1) of the qubits. We repeatedly
perform two operations: i) we first initialize these qubits according to (1) and ii) after a
fixed time interval when coupling occurs, we measure the two spin components along Oz
associated with the system composed of these two coupled qubits. The relative frequencies
of occurrence of all four possible couples of values of spin components (i.e. (+ 1

2
,+ 1

2
) to

(− 1
2
,− 1

2
)) then yield estimates of the corresponding probabilities. This approach therefore

requires a large number (typically from a few thousand up to a few hundred thousand
[11,19]) of copies of the considered two-qubit state. At this stage, we ignore the resulting
estimation errors and therefore consider the exact mixing model (5)-(7). Using standard BSS

3 These vectors |+ 〉 and | − 〉 are often respectively denoted as |0〉 and |1〉 (see e.g. [29]),
especially when considering an abstract view of qubits. When having in mind the physical
implementation of qubits as electron spins, as in most of the present paper, the notations
|+ 〉 and | − 〉 are also widely used, with a reference to spin component measurements along
the quantization axis, as detailed further in this paper.
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notations, the observation vector is therefore x = [x1, x2, x3]T , where T stands for transpose
and4

x1 = p1, x2 = p2, x3 = p4. (22)

Eq. (5)-(7) show that the source vector to be retrieved from these observations turns out to
be s = [s1, s2, s3]T with s1 = r1, s2 = r2 and s3 = ∆I . The parameters qj are then derived
from (4). The four phase parameters in (3) cannot be individually extracted from their
combination ∆I (anyway, only the phase differences (φj −θj) have a physical meaning [18]).
The transform from the sources to the observations defined by the non-linear mixing model
(5)-(7) involves a single “mixing parameter”, namely v. As shown by (10), this parameter
always meets the condition 0 ≤ v2 ≤ 1.

C Communications based on photons

Communications based on photons deserve the following comments. First considering the
classical framework, everyday communications use electromagnetic waves propagating either
in free space or in a solid medium, e.g. an optical fiber [26]. Such media are non-magnetic,
and their electric properties are classically described by the induction vector

−→
D (H. Lorentz),

representing a local mean of the microscopic electric vector [24].
−→
E being the applied field,

in vacuum,
−→
D = ε0

−→
E (SI units, ε0: vacuum permittivity), and in a dielectric medium

−→
D = ε0

−→
E +

−→
P . The polarization

−→
P may be seen as the response to the excitation

−→
E ,

ferroelectrics, with a spontaneous polarization, being an exception. Most dielectric media
are linear, i.e.

−→
P increases linearly with the excitation (description using a scalar or more

generally a tensor not depending upon the excitation). Moreover, the appearance of the laser
in 1960, i.e. of intense coherent electromagnetic sources, allowed the development of non-
linear optics. Turning now to the quantum behavior associated with these phenomena, one
should again make a distinction bewteen linear and non-linear setups. One first thinks of an
electromagnetic wave propagating in vacuum space (or possibly in a linear medium): Already
in 1930 Dirac [21] considered a weak electromagnetic beam and its associated photons;
a device separates this beam into two partial beams, which are then made to interfere.
One could then a priori think that two distinct photons possibly interfere. But, in such
conditions, according to the general principles of quantum mechanics “each photon then
interferes only with itself. Interference between two different photons can never occur”.
With respect to photon-based quantum communications addressed in the present paper, this
entails that, if only considering communications through vacuum space or a linear medium,
no entanglement is created in the transmission channel itself. This should be contrasted with
the scenarios considered above, where entanglement is created by the channel itself (here
with exchange coupling), whereas the original two-qubit state associated with Emitter 1 and
Emitter 2 is unentangled.

The above manifestation of the superposition principle for photons, or the presence of
(previously prepared) entangled states when more than one photon are implied may also
be found in dielectrics, but other quantum phenomena may also be found in some optically
non-linear dielectric materials: 1) two intense laser beams at frequencies ω1 and ω2 may
allow fluorescence at ω1 + ω2; there, two photons with respective frequencies ω1 and ω2

generate a photon with frequency ω1+ω2 [4]. 2) spontaneous emission may sometimes allow
emission at the difference frequency: The material receives a laser beam with frequency ωp

(p: pump), and emits at both ω (with a material dependent value) and ωp − ω (so-called
optical parametric fluorescence); here, a photon with frequency ωp generates two photons,

4 It should be noted that the observed signals involved in this QSS problem have a specific
nature, as compared with standard non-quantum BSS problems. In the latter problems, each
value of an observed signal is usually the value of a measured physical quantity, such as the
value of a voltage measured at a given time. In contrast, as shown by (22), each value of
an observed signal is here the value of a probability (which is estimated in practice). The
overall signal composed of all successive values of a given observation (e.g. all values of x1)
therefore consists of a set of values of probabilities (e.g. all values of p1), which depend on
the values of the coefficients used for initializing the qubit states.
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with respective frequencies ω and ωp − ω [4]. Quantum communications take profit of the
superposition principle, e.g. when involving two photons in an entangled state, and of the
no-cloning theorem, both specific to quantum mechanics. Future quantum communication
networks should make use of quantum teleportation - which allows transport of informa-
tion, presently using entangled photon qubits - and of quantum repeaters interconnecting
quantum nodes [23]. An eavesdropper, trying to access the information circulating within
such a network could e.g. try and operate by interacting with a repeater. Besides, one may
imagine a scenario involving transmission through quantum channels, by means of photons,
be they initially entangled or not, mainly with free propagation (linear medium), but now
also with a non-linear medium inserted (e.g. by an eavesdropper) in part of the overall trans-
mission path forming what we called the “main channel” between Emitter 1 and Receiver
1 above. One might then investigate to which extent an “intruder”, composed of Emitter 2
and Receiver 2, would thus be able to interact with the main channel so as to extract infor-
mation from it (eavesdropping), and to which extent Receiver 1 would be able to detect this
intrusion. The relevance and attractiveness of this scenario need to be further investigated.
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