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Abstract

Quantum mechanics and hence quantum information processing meth-
ods widely use two types of states, namely (deterministic-coefficient)
pure states and statistical mixtures. Density operators can be associ-
ated with them. We here address a third type of states, whose ket
coefficients are random variables, as opposed to the deterministic coef-
ficients of usual pure states. We therefore call them Random-Coefficient
Pure States, or RCPS. We define physical setups that yield RCPS.
We analyze the properties of RCPS and show that they contain much
richer information than the density operator and mean of observables
that we associate with them, because that operator only exploits the
second-order statistics of the random state coefficients, whereas their
higher-order statistics contain additional information. That information
can be accessed in practice with the multiple-preparation procedure
that we propose for RCPS, by using second-order and higher-order
statistics of associated random probabilities of measurement outcomes.
Exploiting these higher-order statistics yields a very general approach
to advanced quantum information processing. We illustrate its relevance
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with a generic quantum parameter estimation problem related to quan-
tum process tomography, especially considering its blind /unsupervised
version. We show that this problem cannot be solved by using only the
density operator p of an RCPS and the associated mean value T'r(pA)
of the operator A corresponding to the considered physical quantity.
We solve it by exploiting a fourth-order statistical parameter of state
coefficients, in addition to second-order statistics. Numerical tests val-
idate this result and show that the proposed method yields accurate
parameter estimation for the considered number of state preparations.

Keywords: blind/unsupervised or non-blind/supervised quantum
information processing, density operator, higher-order statistics, random
probability, quantum parameter estimation, quantum process tomography

1 Introduction

Two types of states are widely used in quantum mechanics and hence in
quantum information processing (QIP) methods, namely pure states (with
deterministic coefficients: see below) and mixed states, i.e. statistical mixtures,
the latter being a superset of the former. Due to our needs for new classes
of QIP methods, in [1] we introduced a third approach, based on the concept
that we then called “random pure states”, and that is hereafter more precisely
referred to as Random-Coefficient Pure States and abbreviated as RCPS.

We previously used these RCPS to perform various QIP tasks based on
blind adaptation/estimation, i.e. unsupervised quantum machine learning [2].
These tasks are Blind Quantum Source Separation (BQSS, introduced in [1];
see also e.g. [2—4]), Blind Quantum Process Tomography (BQPT, introduced in
[5]; see also e.g. [6]), Blind Hamiltonian Parameter Estimation (BHPE, intro-
duced in [2]) and other QIP tasks [2]. Beyond the above practical QIP methods,
we started to investigate more fundamental aspects of RCPS in [7]: we showed
how these states can be physically implemented (this is also discussed here-
after in Section 2.1) and we briefly commented about their relationship with
the concept of density operator. We addressed the latter topic in a much more
detailed way very recently in [8]. This especially showed that, starting from
an RCPS, one can associate a density operator with it.

In this paper, we proceed much further in the investigation of RCPS and
their application to QIP. In Section 2, we first provide a general definition of
these states, beyond their specific versions considered in our above-mentioned
application-driven papers. We then analyze various features of these states and
show their potential for QIP, as compared with more usual approaches. We
especially explain how one may try to handle RCPS by adapting the usual prac-
tice in quantum mechanics and QIP, which is based on defining other states
(namely mixed ones) by a density operator p and using the mean value Tr(pA)
of a physical quantity (i.e. observable) A represented by an operator A. We
prove that this usual approach does not allow one to access all the information
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that is present in an RCPS. That information can indeed be accessed, by using
measurements and the associated statistics of the moduli of the random ket
coefficients of that state. A major result of this paper is thus that certain QIP
tasks cannot be carried out by only resorting to the usual approach to quantum
mechanics and QIP (that is, using only Tr(pfl), as explained above), whereas
they can be performed by exploiting the higher-order statistics of the random
coefficients of an RCPS. In Section 3, we illustrate this phenomenon with a
generic example, dealing with parameter estimation and related to (B)QPT
and (B)HPE. We mainly consider its blind version and briefly comment about
its non-blind one. In Section 4, we focus on the discrete version of RCPS and
analyze their connections with usual mixed states, as defined by von Neu-
mann. Relationships with other works from the literature, that are more or
less connected with RCPS and their higher-order statistics, are then discussed
in Section 5. We therefore warn the reader that, beyond the general informa-
tion provided in the present section, the “state of the art” concerning various
aspects of random quantum states is provided in Section 5 (Section 4 more-
over addresses a related topic), i.e. once we have described our RCPS in detail,
so that the reader can better appreciate the relationships and differences that
exist between all these types of states. Finally, we draw conclusions from this
investigation in Section 6.

2 Definition and features of random-coefficient
pure states (RCPS)

2.1 Definition of an RCPS

First considering the classical framework, the following concepts should be kept
in mind. Beyond a scalar deterministic (i.e. fixed) value X, a random variable
(RV) may be defined as a function X whose scalar value X (o) depends on an
outcome « of the considered probability space €2. That outcome « is randomly
drawn and, once selected, it completely defines the corresponding (complex or
real) value X (a) of X. One may thus e.g. model an experiment where a die is
cast, each of its faces corresponds to an outcome «, and the user’s numerical
gain X («) associated with each given face « in a game is fixed (beyond that
simple case, one may consider situations where the possible values X (a) do
not have the same probability or even span a continuous set). More generally,
a random vector is a vector whose components are RV, i.e. all their values are
fixed by the considered single outcome .

Now moving to the quantum framework, the simplest states considered in
the literature, called pure states, are deterministic in the sense that they have
deterministic coefficients: such a deterministic-coefficient pure state (DCPS)
may be defined as a ket

d—1
) = cxlk) (1)
k=0
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where the kets |k) form an orthonormal basis of the considered d-dimensional
space (with d = 2% for Q qubits) and the corresponding complex-valued coef-
ficients ¢ are fixed for a given state |¢). In our above-mentioned papers, we
extended that concept to random-coefficient pure states, or RCPS. Such a
state may be defined as a ket

d—1
) = culk) (2)
k=0

where the complex-valued coefficients cx are RV, i.e. they depend on a ran-
domly drawn outcome . Once a single o has been selected, all corresponding
coefficient values ci(a) are fixed, as in a classical random vector. A given
outcome « thus yields a fixed, i.e. deterministic-coeflicient, pure state

d—1
() = erl@)lk). 3)
k=0

Such RCPS |¢) and their realizations |(«)) can actually be faced in prac-
tice. For instance, in [7], we showed how to create an RCPS for a single electron
spin 1/2, placed in a Stern-Gerlach device with a randomly drawn direction for
the magnetic field. A second example is introduced here for quantum commu-
nications. In this scenario, the receiver gets a pure state with coefficient values
that he does not know in advance, because he does not know which data were
used by the emitter to prepare the pure state that he sent. The receiver may
then describe the coefficients of the received pure state with RV cy.

Whatever the considered RCPS, the coefficients cx(a) of each state
realization (3) have the same constraints as those of usual, i.e. deterministic-
coefficient, pure states (1): the state |1)(«)) is normalized, so that

d—1

S Jer(a) =1 (4)

k=0

and |¢(a)) is defined up to a global phase factor, so that cyp(a) may be
restricted to a real non-negative value r(«). In particular, setting d = 2 in the
above equations, an RCPS of a single qubit reads

%) = r(0) + V1 - r2e"|1) ()
where r and ¢ are real-valued RV and r is non-negative (as stated above,

in [7] we detailed a physical procedure for creating such RV, with arbitrary
distributions).
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2.2 RCPS preparation and measurements

Information about deterministic-coefficient or random-coefficient pure states
can be extracted by means of measurements. For a given deterministic-
coefficient pure state (1) or (3), one may first use measurements in the
computational basis {|k)}, which e.g. consists of measuring the s, spin com-
ponent for an electron spin 1/2 whose state is expressed in the standard basis.
The results of these measurements have a random nature, but their possible
values and the probabilities of these values are fixed for a given deterministic-
coefficient pure state: for state (3), the probability of the result associated with
the basis vector |k) is

pr(@) = e (@)]2. (6)
Estimates of these probabilities may be obtained, especially by preparing K
copies of |1(a)), performing one (possibly multiqubit) measurement per copy
and computing the sample frequencies of all possible measurement results over
all these state copies [9, 10].

Now consider a random-coefficient pure state 1) defined by (2). For any
given basis vector |k), the probability pr(«) depends on the randomly drawn
outcome «, so that this type of probability itself becomes random-valued! It
defines an RV, that is denoted as px and that may be expressed as

Pk = [ex|”. (7)
For instance, for the single-qubit RCPS (5), this yields

po = 1’ (8)
p1=1-r>=1-po. (9)

Measurements may be used in a two-level procedure to extract information
about an RCPS defined by (2). At the higher level, N values of the set of
coefficients {co(a),...,cq—1(a)} associated with an outcome a are randomly
drawn. This yields N deterministic-coefficient states [1)(«)) defined by (3).
Then, at the lower level, for each such state |i(«)), one uses K copies of
[¥(a)) to estimate all px(a) as described above for deterministic-coefficient
pure states. For any index k, the overall set of N estimates of pi(a) thus
obtained yields an estimate of the statistical distribution (i.e. law) of the RV
Px- One may then e.g. derive the corresponding histogram, which is an estimate
of the probability density function (pdf) of px.

The above procedure involves randomness at two levels, instead of one level
for usual (i.e. deterministic-coefficient) pure states: a) in the selection of the set
of coefficients {co(c), . .., ca—1(c)}, i.e. in the selection of an outcome a, and b)
in the result provided by a single (possibly multiqubit) measurement performed
for a given, i.e. deterministic-coefficient, state. In our previous papers, we first
called that approach the “Repeated Write/Read” or RWR approach, with
“write” referring to state preparation and “read” referring to measurements
(see e.g. [1, 3]). We then called it the “multiple-preparation” (per state |¢(«)))
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approach [2], as opposed to the “single-preparation approach” that we later
proposed in [2, 6, 11] and that is considered in Section 4.

We stress that the multiple-preparation approach requires what we call “seg-
mented data”, in the following sense: to use an RCPS with the above procedure,
in the overall set of NK prepared states defined above, one should know
which subset composed of K prepared states corresponds to a given state
value [¢(a)), in order to estimate each corresponding value pi(a) as a sam-
ple frequency over only that subset. That segmentation is typically performed
by successively preparing the K copies corresponding to the first drawn state
[(a)), then the K copies corresponding to the second drawn state, and so on,
with a known value K. The case of “unsegmented data” is discussed in Section
4.

As stated above, from the point of view of someone aiming at using an
RCPS (i.e. at reading it in our RWR procedure), the outcomes a are considered
to be randomly drawn. How they are drawn, and therefore which statistical
distributions are obtained for these outcomes and for the set of coefficients
{co(@),...,cq—1(a)}, depends on the considered application. For instance, in
the above-mentioned communication scenario, the receiver is the “reader” of
our RWR procedure, whereas the emitter is the “writer”, who prepares the
states to be sent to the receiver. The emitter may know the statistical dis-
tribution of the states he prepares, especially because the coefficients of the
emitted ket may be defined by classical RV that may have known statistical
distributions. Then, when the emitted ket is transferred through the consid-
ered quantum channel to define the received ket, the statistical distribution of
the ket coefficients is altered by that channel. Similar considerations apply to
the quantum parameter estimation problem discussed in Section 3, where the
method used for drawing the considered RV is described.

The ket coefficients ck in (2) may be expressed in polar form as

i = rie’®x (10)

as also illustrated by the simplified single-qubit form in (5). The measurements
in the computational basis considered so far only allow one to access (i.e.
estimate) the modulus parameters r, since (7) yields

Pk = (I‘k)Q. (11)

This also appears in the simplified single-qubit form in (8)-(9). Besides, mea-
surements in bases other than the computational basis (see p. 22 of [12], and
[13]) provide information about the phase parameters ¢y, since one thus esti-
mates the squared modulus of linear combinations of the coefficients cy. This
e.g. corresponds to measuring s, spin components for electron spins 1/2 whose
overall state is expressed in the standard basis, as detailed in [13]. In the present
paper we only consider measurements in the computational basis, whereas
other types of measurements for RCPS will be addressed in future papers.
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The very general and major result obtained so far in this paper is that
the RCPS framework with measurements in the computational basis makes it
possible to access (estimates of ) the above-defined probabilities px, that are RV,
and this then makes it possible to exploit all their statistics, e.g. to perform
QIP tasks. The remainder of this paper shows the wealth provided by these
statistics. This will be especially appreciated by contrasting the capabilities
thus reached with those of the restricted approach to RCPS that is obtained
by employing only the usual tools of quantum mechanics. Therefore, we first
define that restricted approach hereafter.

2.3 The density operator associated with an RCPS

In Chapter IV of his famous book [14], von Neumann first considers
(deterministic-coefficient) pure states and claims (p. 295): “we succeeded in
reducing all assertions of quantum mechanics to the statistical formula ...”,
where that formula defines the expectation (i.e. mean value) of a physical
quantity A and reads R

E{A}yy = (W[AlY) (12)
with our notations, including those defined in Section 1, and where E{.} stands
for expectation, here calculated for the considered state |1). Then considering
mixed states (p. 296), von Neumann further claims that the density operator
“characterizes the mixture of states just described completely, with respect
to its statistical properties” and von Neumann then provides a formula that
defines the expectation of A for a mixed state and that here reads

E{A}, = Tr(pA) (13)

with the above-defined notations.

Whereas the latter claim refers to the usual mixed states p considered by
von Neumann, one may wonder whether, for our RCPS too, one only has to
consider the mean of a physical quantity A and whether it can still be expressed
as Tr(pfl). This leads to the preliminary question: starting from and RCPS,
can one associate a density operator p with it? To this end, one should keep
in mind that, for a deterministic-coefficient pure state (1), we have

p =) (14)
so that the elements of the corresponding density matrix read

Pre = CrCy (15)
where * stands for complex conjugate, and k and ¢ range from 0 to (d — 1) as

in (1). Therefore, as explained in [7, 8], with an RCPS defined by (2), one can
associate a density matrix whose elements read

Pkt = E{CkCg*}. (16)



Springer Nature 2021 IWTEX template

8 Ezxploiting the higher-order statistics of random-coefficient pure states

In particular, its diagonal elements read
pe = Eflex|*} = E{pi}- (17)

If A is diagonal, Tr(pfl) only depends on these diagonal elements pg of p.

Eq. (17) shows that the diagonal of the density matrix only allows one
to access very limited information about the RV ¢y and pg. The quantity in
(17) may first be seen as a second-order statistical parameter of cy, whose
classical counterpart is often called the “mean power” when considering its
extension to a random signal instead of an RV [15-20]. For a real-valued RV
Ck, this parameter E{cy?} is also the second-order (non-centered) moment of
this RV (for a complex-valued cy, Eq. (17) therefore corresponds to the second-
order moment of the RV |ck|). Eq. (17) may also be seen as the first-order
moment (i.e. expectation) of px. The off-diagonal elements (16) of the density
matrix may yield additional information, but anyway (i) this information is
also limited to the second-order statistics of the RV cy, i.e. to a second-order
joint moment which is their cross-correlation and (ii) as mentioned above,
this information cannot be accessed when one only considers Tr(p/i) and A is
diagonal.

In contrast, our approach, based on RCPS themselves, yields much richer
information because it allows one to access all the statistics of py, as detailed
further in this paper. Besides, performing measurements in the computational
basis for a d-dimensional RCPS (2) yields estimates for d RV py defined by
(7), with 0 < k < d — 1. Among these RV, up to (d — 1) may be statistically
independent because they sum to one, as shown by (4). For d > 2, one may
therefore wonder whether this set of (d — 1) > 1 quantities provides richer
information than the single scalar value Tr(p/i) only considered in the usual
approach. This topic will be investigated in future papers but, in Section 3, we
show that, even for d = 2, our approach to RCPS based on the probabilities pk
is more powerful than the approach based on the associated density operator.

2.4 Exploiting higher-order statistics of RCPS

As outlined above, the statistics respectively accessible with the RV py asso-
ciated with an RCPS and with the approach based on its density operator p
and Tr(p/i) yield a fundamental difference, which will be better appreciated
by first considering the classical counterpart of this phenomenon. Statistical
methods for processing classical random signals, images or other types of data
are often limited to the use of two types of parameters. The first one is their
first-order statistics, especially the first-order moment, or expectation, F{X}
of an RV X. The second one is their second-order statistics, which especially
include (i) the second-order moment E{XY™*} of RV X and Y, and (ii) the
associated centered second-order moment, i.e. covariance, E{X?*} of X and
Y, with the centered version of X defined as X = X — E{X} and the same for
Y. Second-order statistics also include the restriction of the above parameters
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to a single RV, i.e. when X = Y, which is connected with mean power and
variance, as partly discussed above.

The above parameters were sufficient for developing powerful methods, such
as Principal Component Analysis (PCA) [21, 22] or Adaptive Noise Cancella-
tion (ANC) [23, 24]. ANC typically makes it possible to restore an unknown
signal of interest from a measured signal that is a so-called “mixture”, i.e.
combination, of that useful signal and of noise, but ANC requires that another
measurement provide the noise signal alone.

In contrast, more difficult classical signal processing problems need more
advanced tools, closely related to so-called higher-order statistics or HOS (see
e.g. the surveys in [19, 20] and more details in [16-18, 25]). “Higher” here
means “higher than 2” and refers to the fact that these methods (also) exploit
other parts of the information contained in the data than the above-defined
first-order and second-order parameters. In a basic form, this means exploiting
mth-order moments with m > 3, these moments being defined as E{X™} for
one real RV X and E{X"™Y™2} with m; + my = m for joint moments of
two real RV X and Y (and so on for more than two RV). Here again, the
corresponding centered moments are obtained by replacing X and Y by their
centered versions X and Y. HOS methods also use (i) higher-order cumulants,
that may be expressed as specific combinations of moments having attractive
properties, (ii) generalized moments F{g(X)} and E{g(X)h(Y)} where g and
h are arbitrary nonlinear functions and (iii) other quantities, that exploit all
the pdf fx or joint pdf fx vy of RV, such as differential entropy or mutual
information [16-20, 25]. Besides, all these parameters extend to more than two
RV, as illustrated below for their quantum version (see (19)).

In particular, the above tools have been used for classical Independent
Component Analysis (ICA) for so-called i.i.d. signals. ICA is a major class
of methods for solving the Blind Source Separation (BSS) well-known signal
processing problem, which consists of extracting a set of source signals from
measured signals that all are “mixtures”, i.e. combinations, of these source sig-
nals. ICA is a required extension of PCA and ANC because, for i.i.d. signals,
the above-defined BSS problem cannot be solved with only second-order sta-
tistical methods, including PCA and ANC, but it can be solved by exploiting
the additional information that is provided by HOS for non-Gaussian signals
and that is used in ICA (see details e.g. in Chapter 7 of [16] or in Chapter 12 of
[18]). This problem is also closely related to blind system or mixture identifi-
cation [26-28], because BSS and hence ICA essentially require one to estimate
the inverse of the function, i.e. “system”, that mixes the source signals.

Having the above classical data processing background in mind, we now
move to the quantum framework. Our approach based on the RV py associated
with an RCPS may then be expected to be able to solve QIP problems that
cannot be handled by restricting oneself to (i) the density operator p associated
with an RCPS and (ii) Tr(pA), the corresponding mean of observable A. More
precisely, to extend QIP capabilities, one may exploit the HOS of the RV cyk
through the statistics of the RV pyx at orders higher than one whereas, as
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explained above, p and Tr(pfl) essentially access the first-order statistics of px
and anyway only the second-order statistics of cy.

In a basic form, this means exploiting fourth-order parameters of any cy
with 0 < k < d — 1, through the second-order moment, i.e. mean power,
E{(px)?} of px, or through is centered second-order moment, i.e. variance,

E{(px — E{px})*} = E{(px)’} — (E{px})*. (18)

Other statistical parameters of the RV px may also be considered by extending,
to the quantum framework, the parameters that we summarized above for the
classical framework. This first includes parameters for a single RV py, such as
various higher-order moments E{(px)™} or generalized moments E{g(px)}
Importantly, this also includes parameters associated with several of these RV,
such as their joint moments

E{]T )™} (19)

kel

where [ is an arbitrary subset of the set of indices & with 0 < k < d—1 and
my, are integers, that define the overall order of the considered moment !.

How the above statistical parameters are used depends on the considered
QIP task. A large set of potential applications deal with the estimation of
parameters of a quantum system (or of a quantum state), therefore with a close
relationship with quantum process (or state) tomography and with Hamilto-
nian estimation. The resulting classes of QIP methods especially include the
quantum extension of so-called moment matching methods used for classical
data processing (see e.g. Section 4.3 of [16]). This consists of expressing the
RV pk, and then some of their moments, with respect to quantities including
the unknown parameters (e.g. of the considered system) to be estimated. Each
such moment thus yields an equation with respect to the unknown parameters.
Estimates of these moments may be derived from measurements as explained
above. One then uses these estimates instead of the actual moments in the
above equations. Considering enough moments thus yields enough equations,
from which the values of the unknown parameters are derived. These values
are therefore those that match the estimated moments, hence the name of this
approach.

Although we did not explicitly mention that quantum moment matching
concept in our application-driven QIP papers, we already used it in several
of them: see e.g. [1-3], [4] (Section 1.7.2), [6]. These applications concerned
the quantum version of BSS, i.e. BQSS, and of blind system and parameter

' The complete class of moments that may be introduced for a given set of ket coefficients ¢y is
defined as the expectation of an arbitrary product of factors, where each factor is freely selected
to be either a coefficient ckx or its conjugate (and both forms may appear for any given ck).
Here, we only consider a subset of these moments. This is due to the fact that we start from
the probabilities px (because they are the quantities that we access with measurements), not the
coefficients ck, and we then build the quantities (19). If expressing these quantities with respect
to ket coefficients, every factor ck in (19) is constrained to appear together with its conjugate,
because (7) shows that pk is the product of cx and its conjugate.
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identification, i.e. BQPT and BHPE. They were focused on a specific type of
quantum process/system (which corresponds to the mixing function of classi-
cal BSS): we considered two qubits coupled according to the Heisenberg model.
In addition, a new application of the above quantum moment matching proce-
dure is detailed below in Section 3. This new investigation has complementary
features with respect to our above-mentioned previous works. First, whereas
we previously only considered the statistics of the probabilities pyx associated
with an RCPS, we here moreover compare the capabilities thus achieved with
those of the appproach to RCPS based on p and Tr(pfl) that we defined in
Section 2.3. We thus explicitly prove that the approach based on the statistics
of pk is more powerful. Besides, we only used first-order moments of px in
the previous works [1-3], [4] (Section 1.7.2), [6] (we also used other statistical
parameters, but for quantities that are only indirectly related to px: see details
in footnote 2). In constrast, we here also take advantage of the second-order
moment of px. Moreover, we here investigate the estimation of parameters of
a quantum process, which is a task closely related to BQPT and BHPE, but
we here consider a different class of processes. That class is much more general
than the above-mentioned Heisenberg process in the sense that it addresses
any energy-preserving process, represented by an arbitrary unitary matrix,
although it is only considered for a single qubit for the sake of clarity. Finally,
we not only propose blind estimation methods, but also non-blind ones.
Before we focus on that QIP task in Section 3, the remainder of the
present section is dedicated to the presentation of other general features of
RCPS. We first stress that a very large number of moments (19), and there-
fore e.g. of moment-based equations in the above quantum moment matching
procedure, may be defined from the same set of measurements. This is very
attractive because it may drastically reduce the number of types of measure-
ments required to estimate the parameters of interest, whereas this is currently
a bottleneck as soon as the dimensionality of the considered system or state
increases. The experimental complexity of performing various types of quan-
tum measurements (e.g. spin components along various directions) will thus be,
at least partly, replaced by additional processing of a reduced set of measure-
ment results on a classical computer, which is much simpler. More precisely,
various previously reported QIP methods use only a single quantity, namely
the first-order moment (i.e. the mean), for each type of measurement, and they
therefore require various types of measurements to obtain enough information

2Qur previous investigations related to BQSS, BQPT and BHPE involve a quantum process.
The above-mentioned papers [1-3], [4] (Section 1.7.2), [6] directly use statistical parameters of
the probabilities px of measurements performed at the output of that process. In contrast, other
investigations, dealing with BQSS, first use the individual values of these classical-form data px
as the input of a classical processing system, called the separating system. The outputs of that
system aim at restoring modulus parameters and combinations of phase parameters of coefficients
of several single-qubit quantum states. These parameters thus have some relationships with the
quantities rx and ¢k in (10). These BQSS methods are based on various statistical parameters of
the outputs of the separating system: their generalized moments are used in Section 1.7.3 of [4] and
their cumulants in [29], whereas their whole pdf are exploited through their mutual information
(see Section 1.5 of [4]), with a connection with the maximum likelihood approach (see Section 1.6
of [4]). All these approaches thus have an indirect link with the higher-order statistics of the rix
and ¢k parameters, and hence with those of pxk.
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about the considered phenomenon. In contrast, our approach based on RCPS
can get enough information with a lower number of types of measurement,
by exploiting various parameters of the quantities py, including their mean
power and higher-order statistical parameters, derived on a classical computer
from all measurement results obtained for each given type of measurement.
We plan to investigate this topic in future papers for general configurations,
but we already illustrate it with an example in Section 3 of the present paper.

2.5 Limitations of usual statistics of observables

We stress that, for a given physical quantity A and a given RCPS |v¢), the
approach proposed in this paper exploits statistical parameters of (one or sev-
eral) RV px, not those of the (single) RV defined by the measured values of A
(note also that the RV py may be continuous-valued or discrete-valued as dis-
cussed in Section 4, whereas the RV defined by A is generally discrete-valued).
Our motivation is that this approach based on the statistical parameters of
interest of px yields much more information than the usual approach based
on A, as will now be shown. To this end, we hereafter first revisit the concept
of the mean of a physical quantity, that we only partly addressed is Section
2.3, but now without resorting to the density operator of an RCPS. This then
allows us to naturally proceed further, by combining the approach used here
with some HOS concepts introduced in Section 2.4.

Let us first consider the mean, hence the first-order statistics, of A. Using an
arbitrary orthonormal basis {|k)}, the RCPS |v) is defined by (2), whereas A is
represented by a possibly non-diagonal matrix whose elements are denoted as
age. The usual expression (12) of the mean of A for a deterministic-coefficient
pure state is here first used for the state |¢)(«)) associated with a single outcome
«. This yields

E{A}ya)) = Zch(a)*Cg(a)akg. (20)
koL

Then using the expectation of the latter quantity over all outcomes « yields
the mean of A for the RCPS |4), which reads

E{A}WJ) = EZE{Ck*Cg}akg. (21)
k¢

That mean of A therefore has two limitations. First, it is only related to
(part of) the second-order statistics of the RV cy, that include two aspects:

1. Moments that each involve a single RV. They correspond to the terms with
k = ¢ in (21), namely to the probabilities px defined by (7).

2. Joint moments of two RV, that correspond to the terms with & # ¢ in (21).
When A is represented by a diagonal matrix, these terms disappear from
(21).

When the dimension d of the state space is higher than 2, using only the
mean of A yields an additional limitation: estimating that mean yields only
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a single equation with respect to estimates of (some: see above) statistics of
all RV cx*cg, including all py, as shown by (21). In contrast, our approach
based on the probabilities pyx of an RCPS themselves allows one to separately
estimate (all) the statistics of each of these probabilities. In the specific case
when d = 2, i.e. for a single qubit, this difference between the considered
two approaches reduces, because only one independent probability py exists,
as shown by (9), but several statistical parameters of that pyx can still be
exploited, as explained above 3.

One may then try to access richer information by considering the mean
E{g(A)}y) of a function g of A, as the quantum counterpart of the generalized
moments E{g(X)} of classical RV, and similarly to the quantum general-
ized moments F{g(pk)}, both defined in Section 2.4. Here, g is an arbitrary
function, and this e.g. includes the specific case when

9(@) = (x — B{A} )’ (22)

for which E{g(A)} ) is the variance of A for the RCPS [4) (this is consistent
with the corresponding expression of the variance for a usual, i.e. deterministic-
coefficient, pure state: see e.g. p. 295 of [14]). However, even for arbitrary
functions g, that approach based on E{g(A)}y) has limited capabilities, as
will now be shown. Using an arbitrary orthonormal basis {|k)}, the expression
of the matrix that represents g(A) may be derived from the considered physical
quantity A and function g: see e.g. [30]. Its elements are hereafter denoted as
gre and their expressions are not needed here: using the same approach as in
(20)-(21) yields

E{g(A)} iy = Y > E{cx"celgne (23)

k£
again with the connection (7) with the probabilities px for the terms of (23)
with & = £. The main conclusion and limitation that may be derived from (23)
is that this quantity too only depends on the second-order statistics of the coef-
ficients ck: introducing the function ¢ yields a nonlinearity in the expressions
of the matrix elements gx, [30], not in the statistics of the coefficients cx % °.

3Although the mean of an observable is here intentionally analyzed without resorting to the
content of Section 2.3, these two parts of this paper are clearly connected, because (21) is nothing
but the quantity Tr(pA) defined in Section 2.3 for an RCPS, and the discussion provided after (21)
therefore has connections with the comments we made in Section 2.3, mainly about the density
operator p of an RCPS and partly about the resulting Tr(pA).

4It should however be noted that using the above function g has a possibly attractive effect:
(23) allows one to access a different linear combination of the probabilities px (and cross-terms
E{ck"ce}) than (21). Jointly considering (23) for various functions g and solving the corre-
sponding equations might therefore provide a way to separately estimate the expectation of each
probability pkx. Anyway, it then remains that: 1) our approach directly based on these probabil-
ities px also makes it possible to estimate their expectations and that without having to create
and solve the above equations, and 2) the approach based on the mean of observables and of func-
tion of observables only accesses these expectations of pk (and the other second-order parameters
E{ck"ce} of the ket coefficients), not their other statistics, unlike our approach. Our approach
directly based on (all the statistics of) the probabilities px therefore remains of much higher
interest.

5The mean of a function of an observable was not explicitly addressed in Section 2.3 and was
therefore independently detailed in the present section. However, its connection with Section 2.3
may be shown as follows. G = g(A) is nothing but another observable, with an associated operator
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2.6 Another connection of RCPS with density operators

Another connection between RCPS and the usual framework of deterministic-
coefficient pure states is now introduced as follows. Starting from an RCPS
|1)), we consider each associated deterministic-coefficient pure state |y (). We
use its density operator in the usual sense of quantum mechanics: it is defined
by adapting (14) and (15) to |¢(«)) instead of |¢). This yields

pre(a) = cx(a)ce(a)” (24)

where we denote as j(«a) the density matrix and density operator of |¢(«)). We
moreover introduce the original random operator and the associated random
matrix, both denoted as p, as follows: it is the operator/matrix which depends
on the outcome « and whose realization associated with any outcome « is
p(a). The elements of the matrix p then read

p~kg = CkCg*. (25)

This random operator p thus consists of an ensemble of usual density oper-
ators p(a). It should be distinguished from the single, deterministic, density
operator p defined by (16), that we previously associated with an RCPS. Yet,
they are closely connected, since p is the expectation of g, as shown by (16)
and (25). Besides, (25) shows that the diagonal elements of p are nothing but
the quantities px that we previously introduced in (7). This operator p there-
fore also contains the wealth of all the statistics of the random probabilities
Px upon which we focus in this paper, plus its off-diagonal elements to be fur-
ther investigated. The random operator p associated with the above-mentioned
ensemble of p(a) is thus much richer than its plain expectation consisting of
the density operator p of (16).

Besides, it is thus not surprising that we succeeded in associating several
RCPS (in the sense of (16)) with a given density operator in our very recent
investigation [8]: knowing the mean operator p is not sufficient for imposing
all the statistics of the coefficients cx of an RCPS nor those of its random
operator p (similarly, knowing the mean of a classical RV is not sufficient for
imposing all the statistics of that RV).

If one would like to use all p, one would then have to define how to access
related properties in practice, typically by means of measurements, as we did
above for py, i.e. for the diagonal of p. The non-diagonal elements of p will be
analyzed in our future papers, whereas we keep on focusing on py hereafter.

G. Eq. (23) defines the mean E{G}|y) of that new observable, that could also be expressed as

Tr(pG) and that therefore has the limitations that we defined for E{A}|y) = Tr(pA) in Section
2.3 and at the beginning of the present section, when considering an arbitrary observable A.
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3 An application to quantum parameter
estimation

3.1 Considered quantum system and task

A well-known QIP task is Quantum Process Tomography (QPT), especially 6
introduced in 1997 in [9]. QPT is the quantum version of classical non-blind
system identification (see e.g. [12, 31-39]) and is also closely connected with
non-blind quantum channel estimation and phase estimation [2]. It e.g. applies
to a quantum system that here does not interact with its environment, whose
input is here an RCPS |t;,,) equal to the initial state of the system, and whose
output is then an RCPS |1out) equal to the final state of the system. The
process/transform applied by the system to its input is unknown and is to be
identified, i.e. estimated. It is represented by a unitary matrix M: multiplying
the vector of coefficients of the input ket |1);,,) by that matrix yields the vector
of coefficients of the output ket [1out) (see (27) below for an example).

For a given initial-to-final time interval, the expression of the above matrix
M is defined by the Hamiltonian of the quantum system, which may be
known to belong to a given class, whereas the values of the parameters of that
model are unknown and are to be estimated. A related task is therefore (non-
blind) Hamiltonian Parameter Estimation (HPE) [40-42]. Such parameter
estimation problems are also addressed, but often referred to as Hamiltonian
identification, e.g. in [38, 43, 44] and partly [45].

Standard QPT and HPE methods are non-blind in the sense that they
estimate the considered quantities by knowing the input values of the process,
in addition to measurement results associated with its output. We extended
these approaches to their blind version, which is more powerful because it does
not require one to know each value of the applied input but only some of their
statistical properties: see e.g. our previous works in [5, 6, 46] for blind QPT
(BQPT) and [2] for blind HPE (BHPE).

As stated above, these previous investigations of blind methods were
focused on a specific class of two-qubit processes and associated Hamiltonian,
based on cylindrical-symmetry Heisenberg coupling. In contrast, we here con-
sider a very generic class of processes: we address any unitary process, yet
focusing on single-qubit processes. Single-qubit processes are considered both
for the sake of clarity and to show that our approach to RCPS based on proba-
bility statistics yields better performance than the approach to RCPS based on
the density operator and Tr(pfl) even for a single qubit, i.e. when the wealth
of our approach does not result from the availability of several independent
probabilities px (see Section 2.3).

See also [12] p. 398 for the other earliest references.



Springer Nature 2021 IWTEX template

16 Exploiting the higher-order statistics of random-coefficient pure states

A model representing all single-qubit unitary processes is obtained by
expressing the above matrix M as follows (see [12] p. 176):

i(—v2/2—v4/2) . (U_s _ oi(—v2/24v4/2) (31 (V3
€ COS 2 e Sin 2 )
ei(v2/2—v4/2) sin (1)73) ei(v2/2+v4/2) coS (1)73) . (26)

M =e™

The problem addressed below is the estimation of all or at least part of the
parameters v1 to vg. We detail the proposed blind (hence more challenging)
estimation method and more briefly comment about the proposed non-blind
(hence simpler but more constraining) variant.

Since the output state of the considered process and hence the matrix M
are defined only up to a phase factor, one may anticipate that v; cannot be
estimated (and that this is not an issue). This is confirmed by the operation
of the methods proposed below.

3.2 Considered states and measurements

The random-coeflicient state |1;n) applied to the input of the considered
process is defined by the right-hand term of (5). The resulting output state
|tout) of that process is defined by the right-hand term of (2) with d = 2. Its
coefficients ck here form the vector

[zi]:M[hew] (27)

Measurements are then performed for copies of each realization of the state
|%out) that corresponds to an outcome «. In a practical QIP setup, only some
types of measurements are allowed. To perform a fair comparison of the two
processing methods respectively based on the probabilities px and on the den-
sity operator p, both methods should be considered for the same type(s) of
measurements. We hereafter analyze the case when only measurements in the
computational basis are allowed 7. From a physical point of view, this e.g.
corresponds to implementing the considered qubit as a spin 1/2 and measur-
ing its s, spin component (the basis vectors |0) and |1) in (5) might then be
denoted as |+) and |—)). These measurements have two possible results, whose
probabilities are defined by (7). Using (26) and (27), this may be shown to
yield

1 — cos(v3)

5 — cos(vg + @) sin(vsg)ry/1 — r? (28)
pP1 = 1—po. (29)

po = cos(vs)r® +

7 One may expect that higher performance can be obtained by also considering other types of
measurements, but this is true for both methods and our goal here is not to derive their ultimate
performance depending on the considered measurements but to compare their capabilities for a
given, relevant, type of measurements
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3.3 Approach based on the mean value Tr(pA)

We first investigate an approach based on the principles presented in Section
2.3. In the considered basis, the measured physical quantity, as defined in
Section 3.2, is represented by the matrix

A:[% 0 ] (30)

Therefore
Tr(pA) =

Using (17) and (29), this yields

(poo — p11)- (31)

DN | =

Tr(pA) = Bfpo} 5. (32)

As an example, for all quantum parameter estimation methods investigated in
this paper, we moreover set the same following constraints on the statistics of
the input state |¢;5,) (but not on its individual values). r and ¢ are statistically
independent RV. r has a uniform distribution over the interval [r1,r2] and ¢
has a uniform distribution over the interval [—Bg, Bg|, where 71, 72 and By
are free parameters. In these conditions, (28) yields

E{po} = cos(vs)E{r?} + 1_#3(”3)

— cos(vy) sin(vz) E{cos(¢p) } E{rv/1 — r?}.

(33)

Eq. (32) and (33) lead to the following conclusions. First, Tr(pA) does not
depend on vy, as expected from Section 3.1. Besides, Tr(pfl) turns out not to
depend on vs, due to the considered type of measurements (and this is also
true for po itself, not only for its expectation, as shown by (28)). Therefore,
the approach considered here cannot estimate vy and wve. Finally, by deriv-
ing an estimate of the mean value Tr(pA) from measurements, (32) and (33)
only provide a single equation with two unknowns, namely vz and vy (the
required statistics of r and ¢ are known, as explained in Section 3.4). This
single equation is therefore not sufficient for deriving the values of these two
unknowns, so that this approach fails to solve the considered problem. In con-
trast, we will now show that our approach to RCPS based on probability
statistics succeeds in estimating vs and vy from the same type of measure-
ment results as in the method considered here, by further exploiting these
classical-form data.
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3.4 Approach based on the statistics of the random
probability pg

We here propose an approach that is based on the principles introduced in
Section 2.4 and that therefore exploits statistical parameters of the RV pg. As
shown by (28), this RV and hence its statistical parameters only depend on v
and vy, not on v; and ve. Therefore, we here only aim at estimating vs and vy
(see the above comment about the possible use of other types of measurements
to estimate v9). To this end, we consider two statistical parameters of pg, in
order to define two (independent) equations with unknowns vz and v4. Focusing
on the simplest parameters, we first again consider the first-order moment (33)
of po. In addition, we here use its second-order moment, that is, F{(po)?} .
Due to (7), with respect to the random coefficient cg of the considered quantum
state, the statistical parameters used here are thus E{|co|?} and E{|co|*}, i.e.
second-order and fourth-order statistics of the RV cq.

Considering the same conditions as in Section 3.3, the expression of
E{(po)?} with respect to vz and vy is derived from (28). Then substituting vy
thanks to (33) yields

E{(po)?} = az cos?(v3) + ay cos(vz) + ag (34)
with
ag = i + % (E{r*} — E{r"}) (E{cos(2¢)} — 3)
2
+20, (E{rQ} - %) + by <E{r2} - %) (35)
o = (1= 2(po) (b + 02 (B06%) - 5) ) (36)
ap = E{po} — i + b2 (E{PO} - %)
b3 (1- Bleos(29))) (B} — B{r'}) (37)
where

1 E{r*V1-r2}

R R T Y w
_ E{cos(2¢)} (E{r?*} — E{r*}) . (39)

[E{cos(q&)}E{r\/ 1— r2}] ?

To estimate vz from (34), the required statistical parameters of r and
¢ should be known. To this end, we hereafter focus on a blind estimation

8Using the variance of pg instead would be equivalent, as shown by (18).
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method, i.e. without knowing the value(s) of the input of the considered pro-
cess nor performing any measurements at the input of the considered process
to estimate input value(s), but only using some statistical properties (those
involved in (35)-(39)) imposed on that input °. Blind QPT methods are there-
fore attractive because they can operate when the individual input states of
the considered process are unknown, which avoids the burden of accurately
preparing these input states: only some of their statistical parameters should
be controlled '°. More precisely, since we here again use the statistical distri-
butions of r and ¢ defined in Section 3.3, the statistical parameters of r and
¢ used in (35)-(39) may be shown to read

B{?) = 203 +nirs +73) w0

B} = 204+ 4 o3 ) )

Brv1-17} = 3(742_7_1“) (=)™ = (- (42)
BRI = |5 (=) - (=)

% (G- -0 —7“?)5/2)} (43)

Bcos(@)} = % )

Ef{cos(2¢)) = %ﬁ“ )

Therefore, when 71, 72 and By are fixed to known values and estimates of
E{po} and E{(po)?} are derived from measurements, (34) yields a second-
order polynomial equation with respect to cos(vs).

The corresponding solutions for vz € [—m, 7] read

—a1 + € \/a% —day (ap — E{(po)?})
2a2

(46)

V3 = €2 arccos

9Classical Blind Source Separation (BSS) methods are sometimes stated to be “semi-blind”,
rather than “blind”, because they require some prior knowledge about the source signals to be
separated, e.g. these signals may be requested to be statistically independent. That term “semi-
blind” is especially used for methods that are more constraining concerning that prior knowledge,
e.g. methods that constrain some source moments to be known or to belong to known intervals
in addition to requesting source independence. From that point of view, the basic version of the
quantum estimation method proposed hereafter might be stated to be “semi-blind” because, in
addition to requesting r and ¢ to be statistically independent, it uses additional constraints on
the marginal statistics of r and ¢, as detailed in Section 3.3 (in fact, the proposed quantum
estimation method does not require one to know all the statistical distributions of r and ¢ but only
the resulting parameters defined in (40)-(45)). Anyway, it remains that this proposed quantum
estimation method does not require the individual values of the input to be known, which is the
main feature of blind and associated methods.

191n contrast, the non-blind counterpart of the blind method detailed in this paper operates by
performing measurements for (copies of) realizations of the input state |1;,) of the considered
process and then deriving sample statistics for the required statistical parameters of r and ¢.
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with ¢ = +1 and e3 = £1. The value of vy € [—m, x| is then derived from
(33), which yields

—E{po} + Cos(v3)E{r2} + F%Q(“S»)) .

T caneees ( sin(vs) E{cos(¢)} E{rv/I — 12}
with e3 = £1.

First disregarding the choice of €1, €5 and €3, the main result thus obtained
is that (46) and (47) show that our approach succeeds in estimating vz and vy.
We again stress that this is achieved by using E{(po)?}, i.e. the statistics of po
beyond the first order and hence the statistics of ¢g beyond the second order.
In constrast, by only using second-order statistics of cg, the approach based
on the density operator and the associated mean of measurements Tr(pfl) fails
to estimate vg and v4, as shown in Section 3.3.

In the basic version of the method proposed here, estimates of vz and
v4 are obtained up to some so-called indeterminacies, corresponding to the
fact that this method does not define whether each of the parameters €7, €3
and e3 should be set to 1 or —1. Various types of indeterminacies also exist
in classical BSS and blind system/mixture identification, due to the limited
information available in blind methods. Part of these indeterminacies can e.g.
be avoided by requesting some additional prior knowledge, that would here
e.g. correspond to knowing to which intervals the unknown values of vs and
vq belong. Indeterminacies also appeared in the basic version of our previous
BQPT [6] and BHPE methods [2]. We succeeded in removing them in refined
versions of our methods, where we used additional occurrences of the same type
of measurements, but with different statistics for the input quantum states.
One might also investigate the use of such measurements in order to remove
the indeterminacies on vs and vy here, if one would like to solve this problem
completely, i.e. beyond the above illustration of the general capabilities of
higher-order statistics of cg.

3.5 Test results

To validate the blind method of Section 3.4 and to evaluate its accuracy, we
performed numerical tests with data derived from a software simulation of
the considered configuration. Each elementary test consists of the following
stages. We first create a set of N realizations of the random-coefficient pure
input state |¢p;n) defined by the right-hand term of (5). Each of these N
realizations is obtained by randomly drawing the parameters r and ¢ and
then using (5). We then transfer each such realization of |t;,) through the
quantum process to be identified. This corresponds to using (27) with a given
value of the matrix M defined by (26) and hence with given values of the
parameters v to vg. This yields N realizations of the set of coefficients ci of the
state |t¥out). Besides, we eventually use simulated measurements associated
with these states, as defined in Section 3.2. For each of the N realizations
of the set of coefficients cx, Eq. (7) yields the corresponding realization of
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the probability pg, which is used as follows. We use K prepared copies of
the considered realization of the state |¢;n) to simulate K random-valued
measurements, drawn with the above value of the probability pg. We then
derive the sample frequency, over these K measurements, of the measurement
result associated with the ket |0). This sample frequency is an estimate of
the considered realization of pg. Then computing the average of these K-
preparation estimates, over all N realizations of the states |1;,) and hence
[Yout), yields an (N K)-preparation estimate of the probability expectation
E{po}. Similarly, the mean of the squares of the estimates of all N realizations
of po yields an estimate of E{(po)?}. Both expectation estimates are then
used by our quantum parameter estimation method defined in Section 3.4, to
derive estimates of vz and v4.

As an example, the parameters of the matrix M of (26) to be identified were
set to the same values in all tests, namely v; = 7/10, vy = 201, v3 = 3v; and
vg = 4v1. Besides, the RV r and ¢ that define the input state of the considered
process (see (27)) were uniformly drawn, respectively over the intervals [0, 1]
and [—m/4,7/4]. The above parameters N and K were varied as described
further in this section. For each considered set of conditions defined by the
values of N and K, we performed 100 above-defined elementary tests, with
different sets of realizations of the state |t);y, ), in order to assess the statistical
performance of the considered estimation method over 100 estimations of the
same set {vs,vs} of parameter values.

The considered performance criteria are defined as follows. Separately for
each of the parameters vs and v4, we computed the Normalized Root Mean
Square Error (NRMSE) of that parameter over all 100 obtained estimates,
defined as the ratio of its RMSE to its actual (positive) value. The values of
these two performance criteria are shown in Fig. 1, where each plot corresponds
to one of the parameters vz and vs and to a fixed value of N. Each plot
shows the variations of the considered performance criterion vs. K. We here
use the values of €1, €2, and €3 that yield the lowest NRMSE, based on the
considerations provided in Section 3.4.

Fig. 1 first shows that the estimation error decreases when K or IV increase,
as expected. More precisely, each plot for a fixed N shows that the NRMSE
tends to an asymptotic value when is K sufficiently increased. This occurs
because the (fixed number N of) realizations of pg are thus accurately esti-
mated. To further decrease that asymptotic value of NRSME, one should then
increase the number of (estimated) values of po over which averaging is per-
formed, i.e. the value of N, as confirmed by Fig. 1. This figure moreover shows
that the proposed method can achieve quite low NRMSE values, e.g. around
2 x 1072 in the considered range of values of N and K.
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Fig. 1 Estimation of parameters no. 3 and 4 of the matrix in (26), that is, vs and v4:
Normalized Root Mean Square Error (NRMSE) of estimation

4 Comparing discrete RCPS with mixed states

As shown in Section 2, RCPS are defined as an extension of deterministic-
coefficient pure states, that involves probabilistic tools (deterministic-
coefficient pure states already lead to another probabilistic aspect, that
concerns associated measurement results and that is based on Born’s rule,
whose transposition to RCPS appears in (6) and (7)). This introduction of
RCPS is performed without having to refer to the concept of mixed states. One
type of RCPS is however partly related to von Neumann’s initial definition of
mixed states, as will now be explained.

The RV cg, and hence the RV py derived from (7), may be continuous-
valued or discrete-valued. For instance, in the QIP problem analyzed in Section
3, the considered ¢k and py are those of the output state |tont) of the pro-
cess, and the nature (continuous/discrete) of their statistics results from the
nature of the statistics used for preparing the random input state |t);y), i.e.
for drawing its parameters r and ¢, as shown by (28).

Considering probabilistic phenomena in general, so-called discrete (i.e.
discrete-valued) RV are especially obtained if the considered probability space
Q) contains a finite number L of outcomes «. This then allows us to obtain a
discrete RCPS especially by considering a situation with L “possible cases”,
i.e. L outcomes «, each with a probability of occurrence P(a). Selecting such
an outcome « completely defines the corresponding values of the coefficients
ci(a) of the asssociated pure state |1)(a)), i.e. the value of « defines that
deterministic-coefficient state |i(«)), that thus has a probability P(a). The
RV ck, and hence the RV px derived from (7), are thus discrete.
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At first sight, the above discrete set of deterministic-coefficient pure states
[¥(a)) and associated probabilities P(a) are reminiscent of how von Neu-
mann introduces mixed states in Chapter IV of [14], before he moves to their
description in terms of a density operator (pp. 295-296). However, the com-
plete definition of how RCPS and mixed states are handled moreover contains
the following major difference, which is the reason why they yield different
properties for QIP tasks. When addressing mixed states, von Neumann con-
siders all deterministic-coefficient pure states |1)(a)) as a whole and he only
computes averages of physical quantities over all these states |1)(a)) (therefore
involving the probabilities P(«)), which corresponds to only considering the
quantity Tr( pA) The corresponding practical procedure is based on observable
measurements, using what we here call “unsegmented data”, i.e. computing a
single observable average over all available data. In contrast, as explained in
Section 2.2, our multiple-preparation practical approach is based on segmented
data. This means that we require the data to be created so that, separately
for each outcome a, one accesses all measurement results for the single state
[¥(a)). For a given «, this then makes possible to estimate all probabilities
pr(a) with 0 < k < d — 1. Then considering the complete set of data differ-
ently, separately for any index k with 0 < k < d — 1, we thus get the set of
(estimated) values pg(«) for all outcomes «. For any k, this defines the whole
statistical distribution of the RV pg. This distribution may then be exploited,
thus providing QIP capabilities that cannot be achieved when only considering
Tr(pA) for a mixed state.

To summarize, richer information and hence better QIP capabilities are
obtained with our random-probability-based RCPS framework than with
mixed states and TI‘(,OA), but at the expense of adding a constraint, that is,
using the above-defined segmented data of our multiple-preparation approach:
this remains compatible with the results that von Neumann obtained in a
different configuration than ours (unsegmented data) and with the idea that
“there is no such thing as a free lunch”, which is reasonable.

In other words, von Neumann defines mixed states by explicitly assuming:
“if we do not even know what state is actually present — for example, when
several states [...] with the respective probabilities [...] constitute the descrip-
tion”, where the “several states” and “respective probabilities” he mentions are
[¥(a)) and P(«) with our notations. In practice, these mixed states are handled
by repeatedly drawing a pure state at random, measuring a given quantity, and
finally averaging all measurement results, as explained above. In our multiple-
preparation approach to RCPS, each pure state |1(«)) is also randomly drawn
but, once it has been selected, many copies of it are created (as discussed in
Section 2.2) and considered apart from all the data associated with any other
deterministic-coefficient pure state that is subsequently also randomly drawn.
This allows us to perform averaging for measurements corresponding to only
the copies of that single state |1(«)). This multiple-preparation approach thus
requires many copies of each pure state [¢)(«)) to accurately estimate the
statistical distributions of all RV py, with 0 < k <d — 1.
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In contrast, we also recently developed single-preparation QIP methods,
intended for BQPT, BHPE, BQSS and related tasks, as well as intrusion detec-
tion in quantum channels: see details in [2, 6, 11, 47]. This single-preparation
approach is different from the multiple-preparation one but does not contra-
dict it, as will now be shown. As suggested by its name, our single-preparation
approach can operate with few or even with only one preparation of each drawn
pure state |[¢)(«)). This is acceptable because, for any index k, we did not use
this approach to estimate the individual probabilities pg(a) for all outcomes
a, but only the expectation E{px}, i.e. the first-order moment of the RV py,
using our procedure that we described in [2, 6, 11, 47]. When we developed
that single-preparation approach, we did not comment about whether it could
be extended to second-order and higher-order statistics of pk, but we expected
that it would be difficult, and possibly infeasible for some of those statistical
parameters, because some linearity properties that we used for E{px} would
not hold for other parameters. We can now extend that comment by taking
into account, as follows, the considerations about von Neumann’s mixed states
that we provided above. We explained that our multiple-preparation approach
to RCPS yields higher capabilities than the use of mixed states, because it
segments the measured data and it is thus able to estimate some parameters
(namely the probabilities pg(«)), for each segment. But when the length of
each segment, i.e. the number of copies of each state |1(a)), decreases down
to one, not only the probabilities pi(«) cannot be individually estimated, but
the concept of segment itself vanishes: we are left we an overall set of states
[ (), with one copy of each such state, and the only averages we can com-
pute are over this complete data set. This corresponds to the higher level of
the two-level procedure that we defined above, after (9), for this multiple-
preparation approach, whereas the lower level here disappears. But, if only
computing an overall average for the complete set of data, we thus get back
to von Neumann’s approach based on mixed states. Therefore, unless we will
disclose another trick for handling the single-preparation configuration differ-
ently for RCPS !, at this stage it seems that it will face the same limitation
as the approach based on mixed states.

Two RCPS-based approaches with complementary features are thus cur-
rently available. The first one is the multiple-preparation approach, which has
the above-defined advantages, that result from the use of the second-order and
higher-order statistics of the probabilities px and the drawback of requiring
multiple and segmented preparations. The second one is the single-preparation
approach, which yields simpler operation or is even required in some applica-
tions (e.g. statistical intrusion detection), as detailed e.g. in [2, 6, 11, 47], but
which currently applies only to QIP problems that can be solved by only using
the expectation, i.e. first-order statistics, of px.

1One may also wonder whether continuous RCPS yield different properties than discrete ones.
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5 Other related works

The above-defined topics of this investigation also compare as follows with
previous works from the literature. The first topic is the concept of RCPS
themselves and hence its relationships with “random quantum states” in a
broad sense. Of course, usual concepts of quantum mechanics already involve
randomness, because a measurement performed for a deterministic-coefficient
pure state usually yields a random result. In the present section we do not
address that basic type of randomness (which corresponds to the lower level of
our multiple-preparation procedure of Section 2.2), but the types of random-
ness that may be defined in addition to that basic type and to von Neumann’s
concepts related to mixed states that we presented in Section 4 (for our
RCPS, the additional type of randomness corresponds to the higher level of
our multiple-preparation procedure of Section 2.2). This yields the following
three aspects.

First, not yet focusing on RCPS, some papers from the literature contain
limited statements about “random quantum states” in a broad sense. In par-
ticular, [48] especially deals with quantum thermal states and considers that
“a random state [...] can be used to represent the outcome of a measurement
process, or to describe the statistics of an ensemble” but does not use the con-
cept of RCPS as defined in the present paper (for the quantum framework,
[48] only mentions “random phases”).

Second, [49] mainly considers a random quantum pure state as a whole,
i.e. as a vector, without explicitly providing its mathematical expression in a
given basis: that paper is not very detailed. It briefly mentions “the compo-
nents of the state vector, in some fixed basis” but does not refer to random
variables for these components. Moreover, it is restricted to specific probability
distributions for the above quantities, namely to the case when “pure states
are distributed uniformly over the unit sphere” and possibly in addition e.g.
“subjected to the restriction that all the components of the state vector in the
given basis be real.” In contrast, in the present paper, we allow arbitrary prob-
ability distributions for the ket coefficients. This is very important, because
it is required for being able to address a wide range of QIP problems, espe-
cially blind (i.e. unsupervised) processing problems, where some probability
distributions may be unknown.
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Similarly, some papers (see e.g. [50-52]) start from the concept of a (single)
density operator as a whole and then extend it by considering an ensemble!?
associated with such density operators, involving a probability density func-
tion or probability measure over density operators. The concept used in those
papers thus has a lower similarity with our RCPS that the one in the paper
[49] cited above, because not only do they start by considering a quantum state
as a whole, as opposed to our approach explicitly based on (ket) coefficients,
but moreover the quantum state they start from is a mixed state (defined by a
density operator), whereas we and [49] do not need that concept: we start from
the concept of a deterministic-coefficient pure state (DCPS). Those papers
[60-52] moreover differ from ours in the use that they then make of their type
of “random quantum state”: they do not consider higher-order statistics and
they do not address practical quantum information processing algorithms such
as quantum process tomography, and especially blind algorithms (those papers
deal with quantum information theory and the measurement process itself).

Finally, quite a few papers, published more recently than our first papers
(that include [1]), have closer relationships with our work: although they do
not use the term RCPS, they use that concept or closely related ones, i.e.
a ket whose coefficients are random variables, or at least related to random
variables. More precisely, in [53] the ket coefficients are defined as “functions of
complex-valued random variables £€” where £ is a vector, whereas in [54] these
coefficients themselves “are chosen at random from some given probability
distribution”. Moreover, both [53] and [54] then only focus on quite specific
probability distributions: see the symmetries and constraints on even and odd
functions imposed in [53], together with the three specific probability densities
defined in its Table I, e.g. leading to states that are uniformly distributed over
the unit sphere ; instead, [54] states that it “consider[s] the [ket coefficients] as
iid (real, complex or quaternion-real) Gaussian variables with zero mean” 3.
In contrast, as stated above, we allow arbitrary probability distributions for
the ket coefficients.

12The terminology in [50-52] should be correctly interpreted with respect to the present paper
and to other papers from the literature. What is explicitly called a quantum state in these papers
[50-52] is restricted to a usual von Neumann mixed state, completely described by its density
operator. More precisely, [50] states that it considers “the convex subset of density operators,
i.e. positive operators with unit trace, also called quantum states”. Similarly, [51] states that it
deals with “density operators (quantum states)” and that “p is a density operator, this is called
the quantum characteristic function of the state p”. Finally, [52] states: “A quantum state of the
system is given by a density operator p”. These three papers then consider what they call an
“ensemble” or “quantum ensemble”, defined by a probability density function or probability mea-
sure over a family of such density operators. As compared with the general concept of various
types of “random quantum states” considered in the present paper and in papers from the litera-
ture cited in the present section, the concept from [50-52] that should be considered as what we
call an overall type of “random quantum state” is their “ensemble” (of what they call “quantum
states”, i.e. density operators).

3 More precisely, the above sentence in [54], just before its Eq. (19), suggests that the ket
coefficients themselves have a Gaussian distribution, which cannot be an accurate model of actual
behavior: the modulus of a ket coefficient is upper bounded by one, so that this coefficient cannot
have an unbounded Gaussian density. However, in a private communication, the first author of
[54], S. Kumar, explained that the above sentence of [54] might be misleading: a normalization is
moreover used and the Gaussian distribution in fact applies to the matrix X that appears in Eq.
(1) of [54].
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Let us then focus on the only above-mentioned papers from the literature
that are connected with RCPS, namely [53, 54] and, to a much lower extent,
[49]. Those papers completely differ from the present one concerning its other
topics, beyond the RCPS concept. First, the core feature analyzed in this paper
consists of the second-order and especially higher-order moments of the random
ket coefficients and associated random probabilities, including their practical
estimation. Instead, [53] only mentions a very limited set of moments (see the
three moments in Table I), whereas [49, 54] do not mention them at all. Second,
apart from quantum theory, the present paper aims at exploiting the above
moments for performing various QIP tasks, e.g. related to QPT and quantum
parameter estimation. In contrast, [53] has other goals (quantum numerical
simulation) and only mentions (quite a few) moments as a by-product.

Finally, we stress that some papers from the quantum literature mention
concepts related to higher-order moments, but in quite different frameworks
than ours. In particular, in [55] Mielnik considers non-standard frameworks as
announced in his title: “Generalized quantum mechanics”. He especially imag-
ines what could be done in “hypothetical theories” where one would “assume
that the class of observables F' is not the set of the quadratic forms like in
orthodox theory but the set F5, of all the continuous 2n-th order forms”.
He thus develops “higher order schemes” and comments about “higher order
multipole moments”. This is quite different from our approach, that has the
following features. We stick to orthodox measurements for each deterministic-
coefficient pure state considered in the lower level of our procedure, so that
each outcome probability is equal to (the modulus of) a “quadratic function
of a ket coefficient”. This relates to Mielnik’s statement: “one might define the
orthodox quantum mechanics as a theory of such a c-number wave for which
only the quadratic forms are the observables”. But, unlike Mielnik, we perform
our complete set of orthodox measurements for our new type of states, namely
RCPS, i.e. we organize these measurements according to the higher level of
our procedure. Our complete approach is thus compatible with the orthodox
theory, but yields a new feature: it allows us to introduce the higher-order
moments associated with the (random) ket coefficients of the considered new
type of states. Besides, Mielnik explains that “Since the quadratic character
of the observables is conditioned by the linearity of the evolution processes the
most obvious [situation where the orthodox quantum theory would not apply]
consists in hypothetical evolution processes in which the quantum mechanical
wave function would undergo a non-linear change”. This leads him to “non-
linear versions of quantum mechanics in which a non-linear wave equation
would play the role of the Schrédinger equation”. In contrast, our approach
is fully compatible with Schrédinger’s picture of quantum mechanics and our
“higher-order effects” come from the advanced use of the statistics of random
ket coeflicients, allowed by the existence of RCPS themselves.
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6 Conclusion

As explained in Section 2.3, when considering mixed states, von Neumann
claimed that one only needs to use the density operator p and the mean of
observable Tr(pfl). In the present paper, we first provide a detailed theoretical
analysis of another type of states, that we repeatedly used since 2007 in our
papers dedicated to practical quantum information processing (QIP) tasks. We
call these states “random-coefficient pure states” or RCPS, since their coef-
ficients cx in a given basis are random variables (we compared RCPS with
mixed states in Section 4). With these RCPS too, one can associate a density
operator. However, restricting the use of RCPS to that operator p and more-
over possibly to a mean of observable Tr(pfl) would result in only considering
the second-order statistics of the random variables cx and therefore in ignor-
ing a large part of the information available from RCPS. Instead, we proposed
to exploit the higher-order (i.e. higher than 2) statistics of ¢y, through the
second-order and higher-order statistics of the associated random probabilities
Pk = |ck|?. We showed that this allows one to access much richer information
and to solve QIP problems that cannot be handled with the mean value Tr(pA)
only. We illustrated that phenomenon for one concrete QIP problem, related
to the well-known quantum process tomography task. Many other potential
applications of RCPS exist. Some of them were suggested above and we plan
to investigate such applications in future work.

So, having in mind Feynman’s general statement that “There’s plenty of
room at the bottom” e.g. for computing, we may summarize our main claim in
this paper as follows: to exploit the wealth of the information available from
random-coefficient pure states, there is plenty of room at the higher orders (of
the statistics of the random coefficients ¢y of these quantum states).
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