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Abstract

Blind Quantum Source Separation (BQSS) deals with multi-qubit states, called “mixed states”, obtained by applying an unknown

“mixing function” (which typically corresponds to undesired coupling, e.g. between qubits implemented as close electron spins 1/2)

to unknown multi-qubit “source states”, which are product states (and pure in the simplest case, considered in this paper). Some

other properties are also possibly requested from these source states and/or mixing function. Using mixed states, BQSS systems

aim at restoring (the information contained in) source states, during the second phase of their operation (“inversion phase”). To this

end, they estimate the unmixing function (inverse of mixing function), during the first phase of their operation (“adaptation phase”).

Most previously reported BQSS systems first convert mixed states into classical-form data, that they then process with classical

means. Besides, they estimate the unmixing function by using statistical methods related to classical Independent Component

Analysis. On the contrary, the new BQSS systems proposed here use only quantum-form data and quantum processing in the

inversion phase, and they use classical-form data during the adaptation phase only. Moreover, their unmixing function estimation

methods are essentially based on using unentangled source states during that phase. They mainly consist of disentangling the

output quantum state of the separating system (for a few source states). Afterwards, they can also restore entangled source states.

They yield major improvements over previous systems, concerning restored source parameters, associated indeterminacies and

approximations, number of source states required for adaptation, numbers of source state preparations in adaptation and inversion

phases. Numerical tests confirm that they accurately restore quantum source states.

Keywords: separation and restoration of quantum states, entanglement, disentanglement, blind or unsupervised quantum

processing, control of quantum adaptive system, cylindrical-symmetry Heisenberg coupling

1. Introduction

Blind (or unsupervised) Source Separation (BSS) is a generic

classical (i.e. non-quantum) signal processing problem, which

may be briefly defined as the estimation of a set of source

signals which have unknown values but some known proper-

ties, using known values of a set of mixed signals which result

from the application of an (almost) unknown mixing function to

these source signals. Depending on the considered source sig-

nal properties and/or type of mixing function, various classes

of BSS methods, including Independent Component Analysis

(ICA), have been developed and are e.g. detailed in the books

[7],[9],[14] [31],[35] or encyclopedia [23]. These publications

also present quite varied applications of BSS methods. Such

applications are described in Appendix A.1 and Appendix A.2.

Beyond the above diversity of classical signals which lead

to BSS problems, one may anticipate that “quantum signals”

will require quantum extensions of BSS methods, as the field of

Quantum Information Processing [3],[26],[38],[40],[47] keeps

on extending in the coming years. Quantum signals are espe-

cially defined in terms of quantum bit (i.e. qubit) states, with

qubits e.g. physically implemented as electron spins. There-

fore, quantum BSS methods are expected to involve “mixtures”

of qubit states, where the term “mixtures” is used in the above

classical BSS sense1, i.e. combinations of these states, e.g. due

to electron spin coupling. Such coupling may occur in future

quantum computers, when qubit registers involve electron spins

situated close to one another.

This led us to introduce the field of Quantum Source Separa-

tion (QSS), and especially its Blind version2 (BQSS), first pro-

posed in [11] and then especially detailed in [17] and [21] (see

Appendix A.3 and Appendix A.4 for applications of BQSS).

The BQSS problem thus consists of restoring the information

contained in individual quantum source states which have un-

known values but some known properties, using known values

of the mixtures of these source states which result from their

undesired3 coupling, when the coupling operator is unknown

(or only partly known). One may think of restoring the source

states by transferring their available mixtures through the in-

verse of the coupling operator. However, this cannot be straight-

forwardly performed, because this operator is unknown. This

1We are not considering quantum states which are statistical mixtures.
2See [17] for more details about its non-blind version, which is not consid-

ered in the present paper.
3On the contrary, a two-qubit gate using liquid NMR takes advantage [46]

of the scalar coupling.
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may suggest one to first identify (i.e. estimate the parameters

of) this coupling operator but, again, this is not straightforward,

because its input values are unknown. Besides, as detailed in

[17], quantum state tomography and quantum process tomog-

raphy (QPT) techniques reported so far [38], which were e.g.

used in [48] for two-qubit systems, cannot achieve BQSS (QPT

and its blind extension are discussed in more detail in Appendix

A.4).

In almost all our previous works, we solved the BQSS prob-

lem by first converting the known mixed quantum data into

classical-form signals [21] and then processing the latter sig-

nals with classical means. We thus first introduced a simple

but somewhat constraining BQSS algorithm focused on first-

order statistics [11],[17]. We then developed a more advanced

approach derived from the maximum likelihood principle [12]

(see also different considerations about this approach in [21]).

Next, we proved the “separability” (defined below) in the sense

of ICA, of the considered nonlinear mixing model [16], which

allowed us to develop a first BQSS method based on ICA of

these classical-form data [13], and then its approximate ver-

sion using Edgeworth expansion [15]. Finally, we developed

a method focused on second-order statistics, which combines

various attractive features [21]. A survey of all these methods

and of their numerical performance is provided in [21].

The above methods allow one to efficiently process the data

derived from quantum/classical conversion. However, this ini-

tial conversion itself yields significant limitations, as detailed

below. To reduce them, we here investigate a very different

approach, which consists of using quantum processing, espe-

cially in the “inverting block” (defined below) of the separating

system. In the short conference papers [19] and [20], we only

briefly introduced the first versions of such systems combining

quantum processing and blind adaptation. These preliminary

versions yield limitations. In the current journal paper, we re-

duce them and extend this Blind Quantum-Processing Source

Separation (BQPSS) framework much further.

As in classical BSS [14], [23], the development of complete

BQPSS methods consists of defining the following items for

each version of the proposed methods: the considered mix-

ing model (see Section 2 below), the proposed separating sys-

tem structure (Section 3), the proposed separation principle (see

Section 4, where the separability properties resulting from this

separation principle are also analyzed), the proposed separa-

tion criterion (Section 5) and the proposed separation algorithm

(Section 5). In this paper, starting from the proposed separation

principles, we derive different associated scenarios in terms of

separation criterion and algorithm. We then present the numer-

ical performance of two BQPSS methods thus obtained in Sec-

tion 6. In Section 7, we summarize the features of this class

of methods and compare them with those of our previous ap-

proaches. We eventually draw conclusions from this overall

investigation in Section 8.

2. Mixing model

In [17], we first detailed the required concepts for a sin-

gle qubit and then presented the type of coupling between two

qubits that we also consider here and that defines the “mixing

model”, in (Q)SS terms, of the current investigation. We here-

after summarize the major aspects of that discussion, which are

required in this paper.

A classical bit has two allowed values only, usually denoted

0 and 1. On the contrary, a qubit with index i considered at

a given time t0 has a quantum state and, if this state is pure,

it may be equal to any unit-norm vector belonging to a two-

dimensional space Ei (see Appendix B.1). This state may then

be expressed as

|ψi(t0)〉 = αi| + 〉 + βi| − 〉 (1)

in the basis of Ei defined by the two orthonormal vectors that

we hereafter4 denote | + 〉 and | − 〉, where αi and βi are two

complex-valued coefficients.

In the BQSS configuration studied in this paper, we first con-

sider a system composed of two distinguishable qubits, called

“qubit 1” and “qubit 2” hereafter, at a given time t0. This sys-

tem has a quantum state. If this state is pure, it belongs to

the four-dimensional space E defined as the tensor product (de-

noted ⊗) of the spaces E1 and E2 respectively associated with

qubits 1 and 2, i.e. E = E1 ⊗ E2. We hereafter denote as

B+ the basis of E composed of the four orthonormal vectors

| + +〉, | + −〉, | − +〉, | − −〉, where e.g. | + −〉 is an abbreviation

for |+〉 ⊗ |−〉, with |+〉 corresponding to qubit 1 and |−〉 corre-

sponding to qubit 2. At time t0, any pure state of this two-qubit

system may be expressed as

|ψ(t0)〉 = c1(t0)| + +〉 + c2(t0)| + −〉 + c3(t0)| − +〉
+c4(t0)| − −〉 (2)

with complex-valued coefficients c1(t0) to c4(t0) which are such

that this state has unit norm. This state may also be represented

by the corresponding vector of components in basis B+, which

reads

C+(t0) = [c1(t0), c2(t0), c3(t0), c4(t0)]T (3)

where T stands for transpose.

In particular, we study the case when the two qubits are inde-

pendently initialized (i.e. prepared), with states defined by (1),

with i = 1 for qubit 1 and i = 2 for qubit 2. We then have

|ψ(t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 (4)

= α1α2| + +〉 + α1β2| + −〉 + β1α2| − +〉
+β1β2| − −〉 (5)

and

C+(t0) =
[

α1α2, α1β2, β1α2, β1β2

]T
. (6)

Besides, we consider the case when the two qubits physi-

cally consist of two electron or nuclear spins 1/2, which have

undesired coupling after they have been initialized according to

4These vectors |+ 〉 and |−〉 are often respectively denoted as |0〉 and |1〉 (see

e.g. [38]). We had to use the notations |+ 〉 and | − 〉 in [17], to avoid confusion,

and we keep them here.

2



(4). The considered coupling is based on the Heisenberg model

(see Appendix B.2) with a cylindrical-symmetry axis collinear

to Oz, the direction common to the applied magnetic field and

to our first chosen quantization axis. The time interval when

these spins are studied is supposed to be short enough for their

coupling with their environment to be negligible [30]. We de-

note as C+(t) the counterpart of (3) at an arbitrary time t > t0,

associated with the coupled state

|ψ(t)〉 = c1(t)| + +〉 + c2(t)| + −〉 + c3(t)| − +〉 + c4(t)| − −〉 (7)

of the two-qubit system at that time. The effect of the above

Heisenberg coupling upon the qubit pair state, from C+(t0) to

C+(t), may then be represented as (see Appendix B.3)

C+(t) = MC+(t0). (8)

In basis B+, the temporal evolution of the system’s quantum

state from t0 to t is thus represented by the matrix M of (8).

Then [17]:

M= QDQ−1 = QDQ (9)

with

Q = Q−1 =
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and D equal to
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(11)

where i is the imaginary unit. The four real (angular) frequen-

cies ω1,1 to ω1,−1 in (11) depend on the physical setup. Their

values are unknown in practice (see Appendix C) and suppos-

edly constant over time.

In this paper, we thus consider the following situation. The

values of a set of coupled states |ψ(t)〉 are known, and it is also

known that each of them is derived from a corresponding state

|ψ(t0)〉, defined by (5), through the coupling model (8), with M

defined above. However, only the class of functions (defined

by (9)-(11)), to which this coupling model belongs, is initially

known, whereas the values of its parameters ω1,1 to ω1,−1 are

initially unknown. Moreover, the values of all states |ψ(t0)〉 are

also unknown and we aim at estimating them (up to some resid-

ual transforms if such transforms cannot be avoided). We thus

face a BQSS problem, as defined in Section 1. The unknown

source state vector and known mixed state vector involved in

this problem are, respectively, defined by |ψ(t0)〉 and |ψ(t)〉, and

the mixing model is (8), with M defined by (9)-(11). The scalar

form of that mixing model is provided in Appendix D.

3. Separating system structures

3.1. Overall structures and phases of operation

As outlined in Section 1, the BQSS problem essentially con-

sists of developing a separating system which eventually oper-

ates as follows. This system receives quantum states (or as-

sociated measurement results), that it therefore knows and that

are mixtures of quantum source states (or of their parameters)

that it does not know. It aims at recovering these source states

(or some of their parameters), from their known mixtures only.

BQSS is therefore an inverse problem, and the separating sys-

tem contains an “inverting block”, which essentially receives

the known mixed states and outputs the estimated source states.

Besides, we consider cases when the mixing function is

only partly known: the separating system knows that the mix-

ing function belongs to a given class of functions which de-

pend on a set of mixing parameters, but this system initially

does not know the (supposedly constant) parameter values of

the encountered mixing function. The separating system then

includes corresponding tunable separating parameters, whose

values are initially undefined and must be selected, so as to

“match” the parameter values of the mixing function. To this

end, the separating system also includes an “adapting block”,

and the operation of the overall separating system typically

consists of two successive phases. First, during the adapta-

tion phase, the adapting block uses a set of mixed states, in

order to select the values of the separating parameters. Then, in

the inversion phase, the separating parameters remain fixed to

their above-defined values, and the corresponding function im-

plemented by the inverting block is used to restore the source

states (or their parameters) from the mixtures received by this

block. More precisely, the source states are thus restored, but

possibly only up to some residual transforms, as detailed further

in this paper.

Different configurations may be developed, using invert-

ing and adapting blocks which have classical and/or quantum

forms. The “least quantum” configurations operate as follows.

One first converts the above coupled quantum states |ψ(t)〉 into

data which have a classical form (but whose properties reflect

their quantum origin). To this end, for each considered state

|ψ(t)〉, one first repeatedly prepares |ψ(t)〉 and performs mea-

surements for that state, and one then derives the frequencies of

occurence of these measurement results, which are estimates

of the probabilities of these measurement results. This “re-

peated write/read” (RWR) procedure is e.g. detailed in [11],

[17]. One then processes these estimated probabilities with

classical means only. We used this approach in almost all

our previous investigations: see [11], [12], [13], [15], most of

[17] and the survey in [21]. The main features of this class

of classical-processing BQSS methods are summarized in Ta-

ble 1 (see p. 11), when comparing these features with those

introduced throughout this paper for the new class of BQSS

methods proposed in this paper. The latter methods are quite

different from the previous ones from several points of view.

In particular, their separating system structure is based on a
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quantum-processing inverting block5, combined with an associ-

ated adapting block, as detailed in the remainder of this Section

3. Moreover, this class of methods uses new separation princi-

ples, leading to associated separation criteria and algorithms, as

explained in the subsequent sections.

3.2. Quantum-processing inverting block

As stated above, the separating system proposed in this paper

uses a fully quantum inverting block. The output quantum state

of that block is expressed as

|Φ〉 = c1| + +〉 + c2| + −〉 + c3| − +〉 + c4| − −〉 (12)

in the standard basis associated with the output of the inverting

block. This state may also be represented by the corresponding

vector of complex-valued components of |Φ〉, denoted as

C = [c1, c2, c3, c4]T . (13)

The input of this inverting block is directly (i.e. without quan-

tum/classical conversion) the available quantum state |ψ(t)〉 de-

fined by (7), which corresponds to C+(t). Then

C = UC+(t) (14)

where the matrix U defines the unitary quantum-processing op-

erator applied by the inverting block to its inputC+(t). It should

be noted that the quantum mixing model (8) and the quantum

separating sub-system defined by (14) are thus linear and there-

fore simpler than the classical-form nonlinear mixing model

and the associated classical-form nonlinear separating system

used in our previous classical-processing BQSS methods. Be-

sides, during the inversion phase, the separating sub-system de-

fined by (14) restores each source quantum state by using only a

single prepared instance of the quantum state |ψ(t)〉 correspond-

ing to this source state. On the contrary, with our above-defined

classical-processing BQSS methods, the restoration of a single

source vector during the inversion phase requires one to per-

form many (typically 104: see [17]) source qubit preparations

in our “repeated write/read” (RWR) procedure, and the restored

source parameters are obtained with estimation errors due to

this procedure.

The inverting (or unmixing) matrix U is selected as follows.

Let us first consider the ideal case, i.e. the situation when the

mixing matrix M defined by (9) is completely known, which

means that the values of all four parameters ω1,1 to ω1,−1 of the

class of functions (9)-(11) are known. The matrix U is then di-

rectly set to the inverse of the known matrix M, because this

guarantees that the output |Φ〉 of the inverting block exactly

restores the unknown source state |ψ(t0)〉: using (9)-(10), this

corresponds to

U = M−1 (15)

= QD−1Q (16)

5In [18], we also introduced another type of BQSS methods, which uses a

hybrid (i.e. quantum + classical) structure for the overall combination of the

mixing stage and inverting block.

and (8) and (14) then show that

C = C+(t0), (17)

i.e.

|Φ〉 = |ψ(t0)〉. (18)

The structure of the ideal inverting block defined by (16) is

shown in Fig. 1, here with

D̃ = D−1. (19)

Mψ
0(t  )>| QDQ

~

mixing stage separating stage

quantum

| φ >

| (t)>ψ

Figure 1: Mixing stage + quantum-processing inverting block of separating

system.

In this ideal case, no parameters of the separating system

need to be tuned, so that this system is restricted to the above

inverting block. Therefore, in this case, not only the sources

(and their available mixture) have a quantum form but also

the whole processing system used to achieve QSS. This con-

figuration therefore corresponds to quantum-source quantum-

processing (only) source separation, or full-quantum source

separation. We introduced that separating system, limited to the

ideal case, in [17], where we also proposed a decomposition of

the quantum operators Q and D−1 into a combination of sim-

pler quantum gates. This quantum-processing system is thus

only based on the usual approach of quantum computing, thor-

oughly presented in the reference book [38], which e.g. states

that “a quantum computer is built from a quantum circuit con-

taining wires and elementary quantum gates to carry around and

manipulate the quantum information” (p. 17).

In the current paper, still using the above quantum processing

framework, we aim at providing solutions for the much more

difficult case when the values of the four mixing parameters

ω1,1 to ω1,−1 involved in D are unknown. We therefore intro-

duce an extended inverting block which contains free param-

eters, that are blindly tuned so that they “match” the unknown

values ofω1,1 to ω1,−1, using an automatic adaptation procedure

which guarantees that |Φ〉 becomes equal to |ψ(t0)〉, or at least

that |Φ〉 has only acceptable differences (called “indetermina-

cies”, as in BSS) with respect to |ψ(t0)〉. This tunable inverting

block should have enough flexibility to be able to handle any

possible value of the considered mixing matrix M. Moreover,

we constrain it as much as possible, i.e. so that it handles only

the class (9)-(11) of possible matrices M, because this simpli-

fies the structure of this inverting block and this reduces the risk
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for its tunable parameters to be set to inadequate values during

their tuning procedure6.

The above principles are applied as follows. In this inves-

tigation, the set of possible mixing matrices M is known to

span the class of matrices defined by (9), where D is a diagonal

matrix, and its diagonal elements have unit modulus and un-

known phases, due to (11). Extending the approach presented

above for the ideal case, the class of tunable inverting matrices

U should here span the inverse of the above-defined class of

matrices M. Therefore, instead of the single value of U defined

by (16) in the ideal case, we here choose the inverting operator

represented by U to belong to the functional class defined by

U = QD̃Q (20)

with

D̃ =





























eiγ1 0 0 0

0 eiγ2 0 0

0 0 eiγ3 0

0 0 0 eiγ4





























(21)

where γ1 to γ4 are free real-valued parameters. The general

structure of this class of inverting blocks defined by (20) is

shown in Fig. 1. It again uses the quantum operator Q. The

tunable block corresponding to (21), introduced in the current

paper, may be decomposed as shown in Fig. 2, where the closed

(i.e. black) and open circle notations respectively indicate con-

ditioning on the qubit being set to one or zero, as in [38] p. 184.

In the approaches defined below, the values of the parameters γ1

to γ4 are controlled by classical-form signals. These parameters

may e.g. be increasing functions of control voltages.

e
iγ

1

e
iγ20

0 e
i

i
e

γ

γ

3

40

0

control

parameter

Figure 2: Implementation of quantum operator defined by matrix D̃, used in

inverting block.

This inverting block, shown in Fig. 1, thus yields a feedfor-

ward data path in our separating system, i.e. it goes from the

input of this system fed with the available mixture |ψ(t)〉 corre-

sponding to C+(t), to the output of this system which yields the

state |Φ〉 corresponding to C.

6On the contrary, simple examples skipped here due to space constraints

show that allowing the separating system to achieve any (linear, memoryless,

unitary) transform would yield unacceptably high indeterminacies.

Setting the free parameters γ1 to γ4 of D̃ so that (19) is met

guarantees that the output state |Φ〉 becomes equal to its desired

value (18). However, condition (19) cannot here be used as a

practical procedure for directly assigning D̃, because we con-

sider the case when D is unknown. Instead, a procedure for

adapting the parameters of D̃ is therefore required. We define

the corresponding adapting block of the proposed separating

system in Section 3.3. Before proceeding to that topic, it is

worth noting that the global, i.e. mixing + separating, operator,

which defines the expression of the output state |Φ〉 of the sepa-

rating system with respect to the source state |ψ(t0)〉, is obtained

by combining (8) and (14), and is therefore defined by

C = GC+(t0) (22)

with

G = UM (23)

= Q∆Q (24)

where

∆ =





























eiδ1 0 0 0

0 eiδ2 0 0

0 0 eiδ3 0

0 0 0 eiδ4





























(25)

and

δ1 = γ1 − γ1d (26)

δ2 = γ2 − γ2d (27)

δ3 = γ3 − γ3d (28)

δ4 = γ4 − γ4d (29)

where we define the “desired values” of γ1 to γ4 as

γ1d = ω1,1(t − t0) (30)

γ2d = ω1,0(t − t0) (31)

γ3d = ω0,0(t − t0) (32)

γ4d = ω1,−1(t − t0). (33)

Without knowing the values of ω1,1 to ω1,−1, we aim at

blindly tuning γ1 to γ4 so that they reach their unknown desired

values γ1d to γ4d, which indirectly forces δ1 to δ4 to become

equal to zero (all this possibly up to some acceptable indeter-

minacies). Thus, as shown by (24), we obtain G = I and there-

fore |Φ〉 = |ψ(t0)〉. The scalar form of the global model (22) is

provided in Appendix E.

3.3. Adapting block for tuning the inverting block

Various structures may be developed for the adapting block

which controls the values of the parameters γ1 to γ4 of the

above-defined quantum-processing inverting block. We here

consider the case when the input of this adapting block is con-

nected to the output |Φ〉 of the inverting block, whose value

depends on the available mixed state |ψ(t)〉 and on the current

values of γ1 to γ4 (similarly, when performing classical BSS

with ICA methods, the input of the adapting block is usually

set to the output of the inverting block). Then, as in the global
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configuration, different options may be considered, depending

on which parts of the adapting block respectively have classical

and quantum forms. Again, the least quantum option consists of

first converting the quantum input |Φ〉 of the adapting block into

classical-form signals, by means of measurements. The consid-

ered separation principle, which defines the constraint set on the

control signals of the sub-block D̃ of the inverting block, is then

expressed with respect to the classical-form signals which result

from the above quantum/classical conversion. The processing

based on these signals then uses classical means. The result-

ing structure of the adapting block and corresponding global

configuration are shown in Fig. 3 (the adapting block is in the

lower part of the figure). The adapting block thus yields a feed-

back data path in the separating system, from the output of this

system (which is also the output of the inverting block) to the

adaptive sub-block D̃ of that inverting block.

The states |Φ〉 derived by the inverting block for successive

values of the source state |ψ(t0)〉 thus have two possible uses:

(i) they may be used as the final outputs of the complete sepa-

rating system, (ii) they may be used as the inputs of the adapt-

ing block. This deserves special care, because these |Φ〉 are

quantum states, which must therefore fulfill the no-cloning the-

orem [38], which has no equivalent in the classical framework,

and which is related to the fan out operation for the output of

a quantum circuit: a single instance of an unknown quantum

state (here |Φ〉) cannot be copied to be used as the inputs of

several subsequent sub-systems. Therefore, a single instance of

|Φ〉 cannot be sent both to the output of our complete separating

system (dash-dotted line in rightmost part of Fig. 3) and to its

internal adapting block (dashed line in lower part of Fig. 3).

This therefore requires us to investigate whether the opera-

tion of the complete separating system structure in Fig. 3 is

compatible with the above constraint. We here prove that it

is, by introducing a simple two-phase procedure for using this

structure. Starting from arbitrary values of the separating sys-

tem parameters γ1 to γ4, we first adapt them (with the methods

proposed further in this paper), at this stage using the outputs

|Φ〉 of the inverting block only as the inputs of the adapting

block. This corresponds to the adaptation phase of the sepa-

rating system. We then freeze these parameters γ1 to γ4 (i.e.

we freeze the signals, provided by the adapting block to sub-

block D̃ of the inverting block, which control γ1 to γ4) and do

not send states |Φ〉 anymore to the adapting block. We then start

the inversion phase of the separating system. During this phase,

the above fixed values of γ1 to γ4 thus remain such that, for any

value of the source state |ψ(t0)〉, the corresponding output |Φ〉
of the inverting block is equal to that source state |ψ(t0)〉 (pos-

sibly up to some indeterminacies due to the considered adap-

tation method, and assuming this method provided a relevant

solution). During the inversion phase, we therefore use these

outputs |Φ〉 of the inverting block only as the outputs of our

complete separating system, to be sent to a subsequent system.

Another structure for the adapting block is also considered

at an intermediate stage, further in this paper. It is described in

Appendix F.

4. Separation principles

4.1. Overall approach and disentanglement principle

The next step of the procedure that we defined in Section 1

for developing a complete BQPSS method consists of specify-

ing its separation principle. For the innovative approach pro-

posed in this paper, this requires a long analysis. The interme-

diate stages of that analysis are therefore detailed in Appendix

G, whereas we here only summarize them and detail the final

outcome of that analysis, to be used in the next steps of this

investigation.

So, as detailed in Appendix G.1, we take advantage of the

approaches which were used in classical BSS for developing

separation principles. This leads us to develop a first original

BQSS separation principle, called the “disentanglement prin-

ciple” because it consists of adapting the tunable parameters of

the inverting block of the separating system so that the quantum

states |Φ〉 available at the output of that block become disen-

tangled for at least two (non-redundant) source states |ψ(t0)〉.
The investigation of that separation principle is presented in

Appendix G.2. This principle is expressed with respect to

quantum-form data, namely the coefficients of the states |Φ〉:
a state |Φ〉 defined by (12) is unentangled if and only if

c1c4 = c2c3. (34)

This separation principle therefore corresponds to the global ar-

chitecture of Fig. F.6 but is not directly applicable to the target

architecture of Fig. 3, which controls the inverting block by

means of a property expressed with respect to classical-form

signals.

Two modified separation principles suited to the latter archi-

tecture are then derived by taking advantage of the results pre-

viously obtained for the above disentanglement-based princi-

ple. The first of them is based on a preliminary method, which

only performs measurements along the above-defined Oz axis

for the states |Φ〉, and which yields too limited separation ca-

pabilities. We therefore then extend it by also performing other

measurements for (other instances of) the states |Φ〉, along the

Ox axis orthogonal to Oz. That second measurement-based

separation principle is shown to be equivalent to the above

disentanglement-based principle and thus to yield the required

separation capabilities, in addition to being directly applicable

to the separating structure of Fig. 3. Therefore, respectively

in Sections 4.2 and 4.3 below, we detail the definition of these

preliminary and final versions of the measurement-based sep-

aration principle eventually selected in this paper. Their prop-

erties, including their separation capabilities, are addressed in

more detail in Appendix G.3 and Appendix G.4.

4.2. Method based on measurements along Oz axis

As announced above, we here consider the separating sys-

tem structure shown in Fig. 3, and we now aim at complet-

ing the definition of its adapting block. This first consists of

defining the type of measurements performed by the first sub-

block of that adapting block. To this end, we especially take

into account our previous classical-processing QSS methods,
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Figure 3: Global (i.e. mixing + separating) configuration including a quantum-processing inverting block and a classical-processing adapting block. Each quantum

state |Φ〉 is used only once (no cloning): see p. 6.

which first perform repeated (preparations, and) measurements

along the Oz axis for the coupled qubits (see e.g. [11], [17]).

We here adapt these methods by again performing repeated

(preparations, and) measurements along the Oz axis, but now

for the two output qubits of our separating system. Applying

the “repeated write/read” (RWR) procedure of [11], [17], sum-

marized in Section 3.1, to these two qubits shows that each such

couple of measurements here has four possible results, namely

(+ 1
2
,+ 1

2
), (+ 1

2
,− 1

2
), (− 1

2
,+ 1

2
) and (− 1

2
,− 1

2
) in normalized units.

Their probabilities are respectively denoted as P1z, P2z, P3z and

P4z. As explained e.g. in [11], [17], these probabilities are

equal to the squared moduli of the associated coefficients in the

expression (12) of the overall output state |Φ〉 of the separat-

ing system corresponding to an initialization of the considered

source state |ψ(t0)〉, that is

P1z = |c1|2, P2z = |c2|2, P3z = |c3|2, P4z = |c4|2. (35)

Considering one or several values of the source state |ψ(t0)〉,
we thus obtain (estimates of) one or several sets of the resulting

four probability values defined by (35). We eventually have to

define a method for using these probabilities in the classical-

processing sub-block of the adapting block of Fig. 3, in or-

der to adapt the tunable parameters γ1 to γ4 of the inverting

block. Ideally, we would like to enforce the above-defined dis-

entanglement condition (34), which may be seen as composed

of modulus-based and phase-based sub-conditions that are de-

tailed in the appendices of this paper: see (G.2) and (G.15).

However, (35) shows that P1z to P4z only give access to the

moduli of the complex-valued coefficients c1 to c4 involved in

conditions (34), (G.2) and (G.15). Therefore, the best use we

can make of P1z to P4z consists of using them to tune γ1 to γ4

so that condition

P1zP4z = P2zP3z (36)

is met: we select this condition because (35) shows that it is

equivalent to the modulus-based sub-condition (G.2) involved

in the above-defined single-state disentanglement principle.

This approach yields a potential separation principle, defined

by (36). Appendix G.3 details its properties and limitations,

which lead us to extend it as follows.

4.3. Method based on measurements along Oz and Ox axes

We here still consider the separating system structure of Fig.

3, which performs measurements for the output of that system.

In our first papers, we used measurements along the Oz axis

only (for other qubits than the above separating system out-

put). Here, we are naturally led to also consider measurements

along other axes, as will now be explained. The disentangle-

ment constraint (34) that we would like to impose concerns the

complex-valued quantities c1 to c4. Moreover, in (35) we saw

that measurements along the Oz axis only give access to the

moduli of these quantities. However, we may hope that mea-

surements along other directions give access to other combi-

nations of these quantities, and thus to combinations involv-

ing the phases of c1 to c4. In our first scenario, we therefore

also perform measurements along the Ox axis7 (orthogonal to

Oz) for other preparations8 of the same (two or more) output

states |Φ〉 as those used for measurements along the Oz axis.

These measurements along the Ox axis are again used in our

“repeated write/read” (RWR) procedure. Each such couple of

measurements again has four possible results, namely (+ 1
2
,+ 1

2
),

(+ 1
2
,− 1

2
), (− 1

2
,+ 1

2
) and (− 1

2
,− 1

2
) in normalized units, but now

with probabilities which are respectively denoted as P1x, P2x,

P3x, P4x, and whose expressions are provided in (I.1)-(I.4).

We then use the probabilities associated with the Oz and Ox

axes by enforcing the output states |Φ〉 to meet not only con-

straint (36), but also its counterpart for the Ox axis, that is:

P1xP4x = P2xP3x. (37)

For the considered two states (at least), the joint condition

(36) and (37) yields more than a partial constraint on the phases

7We hereafter consider the general case of a possibly non-isotropic ex-

change tensor, i.e. possibly Jz , Jxy, using the notations of Appendix C. On

the contrary, when it is known a priori that the exchange tensor is isotropic, i.e.

Jz = Jxy, it may be shown that measurements along the Ox axis can be avoided

for the BQSS method described here.
8The measurements along the Ox axis are performed for other instances of

the same states |Φ〉 than the instances used in measurements along the Oz axis,

since sz and sx do not commute and hence cannot be both measured for the

same arbitrary state instance.
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of c1 to c4: it is completely equivalent to the disentanglement

constraint (34), as shown in Appendix I (for states meeting its

conditions). The method based on (36) and (37), obtained here,

is moreover applicable to the separating system structure of Fig.

3 and is therefore the method used in the remainder of this pa-

per. Appendix G.4 discusses its features in more detail and de-

scribes a second, slighly different, scenario for applying it.

5. Separation criteria and algorithms

Various separation criteria and practical blind adaptation pro-

cedures may then be derived from the above separation princi-

ples. We here focus on a simple version of such procedures.

The first step of this procedure uses a set of source states in-

dexed by n with n ∈ {1, . . . ,Nz} and Nz ≥ 2. The corresponding

probabilities (35) are denoted as P1z(n) to P4z(n) and estimates

of them are used in practice. This step of the procedure aims

at ensuring (36) for all considered source states and thus (G.9).

Due to (27)-(28), this is achieved by adapting one of the param-

eters γ2 and γ3, while the other one, as well as γ1 and γ4, are

set to constant, arbitrary, values9. The separation criterion used

in this adaptation consists of looking for one of the values of

γ2 (or γ3) which correspond to the global minimum of the cost

function

Fz =

Nz
∑

n=1

| fz(n)|p (38)

with

fz(n) = P1z(n)P4z(n) − P2z(n)P3z(n) (39)

and e.g. p = 1 or 2. Using p = 1 is well suited to the sweep-

based algorithm described hereafter. On the contrary, p = 2

is e.g. better suited when the cost function Fz is minimized

by means of gradient-based algorithms, because Fz is thus dif-

ferentiable everywhere. The global minimum of Fz is equal to

zero (when ignoring estimation errors for P1z(n) to P4z(n)). It

is reached for the first solution of (36), and therefore of (G.2)

and (G.3), but not for their spurious solution (again under the

above-mentioned condition on source states).

A simple algorithm for reaching the global minimum value

of Fz is a sweep-based approach: this consists of increasing γ2

(or γ3) with a small discrete step over a wide enough bounded

interval, in computing the values (estimates in practice) of Fz
which correspond to each tested value of γ2, and in keeping the

value of γ2 which minimizes Fz. One then freezes γ2 (and γ3).

Similarly, the second step of our basic procedure uses a set

of source states indexed by n with n ∈ {1, . . . ,Nx} and Nx ≥ 2.

The corresponding probabilities involved in (37) are denoted as

P1x(n) to P4x(n). This step of the procedure aims at ensuring (in

9More precisely, (26)-(29) show that condition (G.9) meets the following

two properties: (i) it does not depend on γ1 and γ4, (ii) it does not depend on

γ2 and γ3 separately but only on their difference γ3 − γ2 . Besides, these two

properties are met not only at the point of interest defined by condition (G.9),

but for any value of the function (38) to be optimized. This may be seen by

combining (38), (39), (35), (E.1)-(E.4) and (26)-(29).

addition to the constraint set by the first step) that (37) is met

for all considered source states and thus that (G.20) is met. Due

to (26) and (29), this is achieved by adapting one of the param-

eters γ1 and γ4, while the other one is set to a constant arbitrary

value, and γ2 and γ3 remain fixed to their values obtained in

the first step of this procedure, as explained above. The sepa-

ration criterion used in this adaptation consists of looking for

one of the values of γ1 (or γ4) which correspond to the global

minimum of the cost function

Fx =

Nx
∑

n=1

| fx(n)|p (40)

with

fx(n) = P1x(n)P4x(n) − P2x(n)P3x(n). (41)

Here again, a simple algorithm for reaching the global mini-

mum value of Fx consists of a sweep on γ1 (or γ4). Two ap-

proaches may be employed to define the set of source states

used in this second step of our procedure. The first approach is

based on the first scenario of Section 4.3 and consists of using

the same set of states as in the first step of our procedure, there-

fore with Nx = Nz. The second approach is based on the second

scenario of Appendix G.4 and consists of using (at least) two

arbitrary states (so that Nx = 2 at least). The latter approach is

less constraining than the former.

This algorithm may then be further extended so as to remove

the remaining indeterminacies, using the approach defined in

Appendix C. Besides, some of its features are discussed in more

detail in Appendix J.

6. Numerical results

We hereafter present the performance of two BQPSS algo-

rithms, namely (i) the basic algorithm defined in the previous

section, with p = 1 in (38) and (40), and (ii) its extension de-

rived from Appendix C. These two algorithms are hereafter

respectively referred to as our “first algorithm” and “second al-

gorithm”10. The physical implementation of qubits is only an

emerging topic, which is beyond the scope of this paper. There-

fore, we here assess the performance of the above BQPSS al-

gorithms by means of tests performed with data derived from

our software simulation of the behavior of coupled qubits. The

version of this software intended for classical-processing QSS

methods was described in [17]. Its fundamental principles are

here extended to quantum-processing QSS methods, so as to

perform each elementary test as follows.

We here use the polar representation of the source qubit pa-

rameters αi and βi in (1), which reads

αi = rie
iθi βi = qie

iφi i ∈ {1, 2} (42)

with 0 ≤ ri ≤ 1 and

qi =

√

1 − r2
i

(43)

10These algorithms may be called BQPSS-D1 and BQPSS-D2, where the

letter “D” refers to the fact that both versions are essentially based on the Dis-

entanglement principle.
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because |ψi(t0)〉 has unit norm. In the adaptation and inversion

phases of each elementary test, our software creates a set of

source states |ψ(t0)〉 defined by (5) and (42), with the follow-

ing parameter values: r1 and r2 are randomly selected with

a uniform distribution over ]0, 1[, q1 and q2 are derived from

(43), and θ1, θ2, φ1 and φ2 are randomly selected with a uni-

form distribution over [0, 2π[. This software then derives a

set of coupled states |ψ(t)〉 corresponding to the above source

states |ψ(t0)〉, coupled according to (D.1)-(D.4) with given val-

ues for their four parameters ωk,l(t − t0). The latter parame-

ters are defined by (C.1)-(C.4). We therefore fix their values

by setting gµeB(t − t0)/~ = 175.8, Jxy(t − t0)/~ = 39.26 and

Jz(t − t0)/~ = 130.9 in the adaptation phase (in the inversion

phase, the above values are kept for our first algorithm but mul-

tiplied by 2 for our second algorithm, as shown by the above

descriptions of these algorithms). The motivations for using

these values are provided in Appendix K.

During the first and second steps of the adaptation proce-

dures, this software uses Nz and Nx above-defined coupled

states |ψ(t)〉, respectively, to blindly adapt the separating pa-

rameters γ1 to γ4. More precisely, a first type of tests is per-

formed with Nz = Nx = 2. This value is selected because it is

the minimum required number of states. However, it may yield

limited performance, due to possible redundancy of the consid-

ered states (see Appendix G.2.1.2 and Appendix I), since these

states are here created randomly, without selecting them so as

to guarantee that the above redundancy is avoided, in order to

be coherent with the targetted blind configuration. Therefore,

another type of tests is also performed, with Nz = Nx = 10,

since this reduces the probability to get such redundant states

(see Appendix G.2.1.2). Still in the adaptation phase, in each

sweep on γ2 (with γ1 = γ3 = γ4 = 0) or on γ1 (with γ4 = 0 for

our first algorithm and γ4 varied according to (C.8) for our sec-

ond algorithm), we use 103 values of the γ j parameter(s) varied

in this sweep. During that adaptation phase, for each choice of

the repeatedly prepared source state and γ j parameters, a set of

K measurements is performed at the output of the separating

system, for each considered direction (Oz or Ox), in order to

derive probability estimates from the relative frequencies of oc-

curence of measured values. This number K of measurements

is varied in the tests reported below.

During the inversion phase, the above software is then used

to successively process 104 other coupled states |ψ(t)〉 with the

above estimates of the separating parameters γ j (multiplied by

2 for our second algorithm). It thus derives estimates |Φ〉 of

the actual source states |ψ(t0)〉 from which these coupled states

|ψ(t)〉 were computed.

For each considered set of conditions and each BQPSS al-

gorithm, we perform 100 above-defined elementary tests with

different sets of source states (so that we perform 100 estima-

tions of the same set of mixing parameter values). Analyzing

the estimated source states |Φ〉 and comparing them to the ac-

tual source states |ψ(t0)〉 then makes it possible to check that

the proposed algorithms succeed in separating these sources,

and to determine the accuracy of this separation, i.e. essentially

the magnitude of the deviation of the estimated source states

|Φ〉 with respect to the actual source states11 |ψ(t0)〉. Based on

this principle, the performance of the tested BQPSS algorithms

is assessed by two criteria, which are detailed in Appendix L.

Briefly, they are related to the Root Mean Square Error (RMSE)

between (i) the coefficients c1(t0) to c4(t0) of the actual source

states |ψ(t0)〉 defined by (2) and (5), and (ii) their respective es-

timates c1 to c4 which are the coefficients of the output state |Φ〉
of the separating system, defined by (12). Moreover, they are

built so as to be insensitive to the intrinsic indeterminacies of

the considered BQPSS algorithms, i.e:

• The first criterion is insensitive to the permutation and

component-wise phase indeterminacies of our first algo-

rithm. It thus only measures the remaining error for the

moduli of the coefficients of the above quantum states. It

is therefore denoted as RMS Em.

• The second criterion completely takes into account the

complex values of the above coefficients, except that it is

insensitive to the global (i.e. on overall quantum states)

phase factor obtained with our second algorithm. It is

therefore denoted as RMS Ec.

The test results thus obtained are shown in Fig. 4 and 5.

They confirm the above theoretical analyses from the follow-

ing points of view. Our first algorithm achieves a low RMS Em
(down to around 10−3) but a high RMS Ec (between 10−1 and 1),

due to its indeterminacies. On the contrary, in the considered

conditions, both RMS Em and RMS Ec can be reduced down to

roughly 10−3 for our second algorithm. This confirms that this

algorithm is especially attractive, because it removes all the in-

determinacies which have a physical influence. Besides, much

lower errors are obtained when using Nz = Nx = 10 source

states in adaptation than when using Nz = Nx = 2. This can

be explained as follows: analyzing the distribution (not shown

in the figures) of the 100 error values obtained over the consid-

ered 100 elementary tests shows that a few of these values are

especially high for Nz = Nx = 2, due to the rare cases when the

considered two source states are close to redundancy, whereas

these errors are more uniformly distributed over lower values

when using Nz = Nx = 10, as expected from Appendix G.2.1.2.

Besides, concerning our second algorithm, it may be noted

that RMS Ec is higher than RMS Em. This is normal, since

RMS Em only takes into account errors related to the moduli of

the quantum state coefficients, whereas RMS Ec takes into ac-

count errors related to their phases in addition. So, as requested,

the performance criterion RMS Ec takes into account all types

of errors which are relevant in the considered application, and

it thus yields higher error values than the performance criterion

RMS Em, because the latter criterion only measures one aspect

of the above errors. Finally, Fig. 4 and 5 show that RMS Ec

11This performance assessment procedure can only be used when developing

and testing the considered BQPSS algorithms, with actual source values |ψ(t0)〉
which are known (but not used in the BQPSS algorithms themselves). On the

contrary, in the actual setup which is to be eventually used, the actual source

states are unknown, and one precisely aims at estimating them ! They cannot

therefore be compared to their estimated values.
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Figure 4: Root Mean Square Errors RMS Ec and RMS Em of our first algorithm

vs. number K of measurements performed for output states, in each direction,

during adaptation. Number of source states used in adaptation: Nz = Nx = 2 or

Nz = Nx = 10, depending on considered plot (see box in figure).
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Figure 5: Same as Fig. 4 for our second algorithm.

and RMS Em decrease when the number K of measurements

is increased. This is expected too, because a higher K yields

more accurate estimates of the required probabilities. In the

considered conditions, setting K ≃ 105 allows one to achieve

RMS Ec and RMS Em around 10−3, which corresponds to quite

accurate quantum state estimation. Modifying K and/or some

other above-defined test parameters makes it possible to even

further reduce estimation errors, if required.

7. Discussion

Having detailed the features of the proposed BQSS systems

in the previous sections, we hereafter summarize them and

compare them with those of our previous approaches.

Most previously reported BQSS systems first convert the

available mixed quantum states into classical-form data, by per-

forming measurements along one direction. They then process

the latter data with classical means only, especially estimating

the unmixing function by using statistical methods related to

classical Independent Component Analysis. The main features

of these BQSS methods are summarized in Table 1.

Table 1 also contains the main features of the new class of

BQSS systems proposed in this paper. These systems use a

quantum-processing inverting block, that therefore restores the

source states in quantum form, which is well suited to con-

necting the output of that block to a quantum-processing com-

puter. They estimate the unmixing function thanks to a sepa-

ration principle based on output disentanglement, which uses

measurements along two directions. They are therefore primar-

ily based on what could be called a (multi-state) “Unentangled

Component Analysis”. As compared with our previous BQSS

systems, the new systems proposed in this paper yield major

improvements in terms of restored source parameters and asso-

ciated indeterminacies and approximations, number of source

states required to perform adaptation and numbers of source

state preparations in the adaptation and inversion phases (see

numerical values in Table 1).

Moreover, in Appendix G.2.2.2 we show that, once the un-

mixing function has been estimated, the proposed systems can

restore any two-qubit pure source state, i.e. entangled or

not. We thus introduced an extended field, that may be called

“Blind Quantum State Restoration” or BQSR (i.e. methods for

restoring any overall multi-qubit source state, not only product

states), which includes the originally considered BQSS field

(i.e. restoration of separate single-qubit states, whose tensor

product is the overall considered source state12).

8. Conclusion

Blind (or unsupervised) Quantum Source Separation (BQSS)

systems address the situation when available multi-qubit

“mixed states” result from the application of an unknown “mix-

ing function” to unknown multi-qubit “source states”, where

each source state is the tensor product of separate single-qubit

components (and each of these components is a pure state in

the simplest case). Some other properties are also possibly re-

quested from these source states and/or mixing function. Using

these available mixed states, BQSS systems aim at restoring

(the information contained in) the source states, during the sec-

ond phase of their operation, called the “inversion phase”. To

this end, they typically start by estimating the “unmixing func-

tion”, i.e. the inverse of the mixing function, during the first

phase of their operation, called the “adaptation phase”. They

are therefore quantum adaptive systems, i.e. quantum systems

which adapt their behavior to the data that they process, as clas-

sical adaptive systems do [32].

In this paper, we proposed a new class of BQSS systems,

whose features are summarized in Section 7. Their performance

12In other words, BQSS always requests (at least) the following known prop-

erty from the multi-qubit source states: they are tensor products of single-qubit

states.
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Feature properties of BQSS methods and references in this paper

previous methods new methods page number

nature of processing means classical quantum 4

of inverting block

type of mixing function nonlinear linear 4

and inverting block

restored source parameters 3 + 2 = 5 real parameters: 4 complex (⇒ 21 (see (G.26)),

(defined in (42)) r1, r2 and 6 meaningful real) 22

∆I = [(φ2 − θ2) − (φ1 − θ1)]; parameters:

qi are then derived from (43) α1, α2, β1, β2

indeterminacies none e.g. only if: none for 16, 21, 22

r1 <
1
2
< r2, 0 ≤ ∆I ≤ π

2
final method

separation principle used statistical, related to disentanglement 18

in adaptation phase Independent Component or associated

Analysis probabilities 21, 21

axes of measurements Oz Oz,Ox 21

of spin components

in adaptation phase

number of states |ψ(t0)〉 ≃ 103 2 (minimum) (19 and) 20,

required 7, 22

in adaptation phase

total number of preparations ≃ 103 × 104 = 107 ≃ 107 (basic algo.) 23

of all states |ψ(t0)〉 or ≃ 104 (improved

in adaptation phase algorithm) 23

accuracy of restored approximation: no approximation 4 (see (18))

source parameters frequencies of occurence for ideal value of

in inversion phase in repeated measurements U

number of preparations ≃ 104 1 4

of each state |ψ(t0)〉
in inversion phase

Table 1: (i) Summary of the general features (defined in Column 1 of this table) of the previous BQSS methods summarized in Section 3.1 (Column 2) and of the

new BQSS methods proposed in this paper (Column 3). (ii) For these new methods, references to the main pages of this paper where the considered features are

presented (Column 4).

was validated by means of numerical tests. Validation with real

coupled qubits will become possible when the corresponding

physical devices are available. For the time being, we plan to

investigate several aspects of the multiple extensions of BQSS

suggested by this paper. In particular, up to now we only con-

sidered two-qubit Heisenberg coupling, both because this is a

concrete and relevant mixing model, and because this first step

already required very detailed investigations for introducing all

BQSS concepts and methods of interest. But the approach thus

proposed is expected to have much wider applicability, and we

especially plan to extend it to other mixing models.

Appendix A. Applications of blind classical and quantum

source separation and system identification

As shown in Section 1, blind classical and quantum source

separation may first be addressed as generic, hence somewhat

abstract, data processing problems. Moreover, both of them

lead to practical applications, that we discuss in this appendix,

where we also show that some of these applications are linked

to system identification.

Appendix A.1. Applications of blind classical source separa-

tion

Different aspects may be distinguished in the applications of

classical BSS (see e.g. the overviews in [8], [21], [23], [31]).

The first one consists of directly providing the human end-user

of the considered application with the output signals of the sep-

arating system, i.e. with the estimated source signals. This

e.g. concerns applications in the audio field: when using a

set of microphones to record signals which are mixtures of a

source signal of interest, that is useful speech, and of interfer-

ing source signals (other speech signals and/or “noise”), one

may process all recorded signals with BSS methods, so as to

especially extract the useful speech signal and to provide it to

the end-user’s ears. Similarly, in the biomedical field, a wide

range of signals, such as electrocardiograms (ECG), electroen-

cephalograms (EEG) or magnetoencephalograms (MEG) con-

tain undesired components in addition to the useful ones. By
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recording a given type of such signals with multichannel data

acquisition means and processing these recordings with BSS,

one may extract or at least enhance the components of inter-

est. These extracted components may then be provided to the

medical human expert’s eyes, thus helping him analyzing these

signals. For instance, this approach was used in [10] to pro-

cess multichannel ECG recordings which are mixtures of large-

magnitude mother’s heartbeats, low-magnitude fetus’s heart-

beats and noise components. This made it possible to extract fe-

tus’s heartbeats, which are hardly visible in the original record-

ings.

A modified version of the above configurations leads one to

the second aspect of applications of classical BSS. In this sec-

ond framework, BSS is used as the pre-processing block of a

more complete automated processing system: BSS then aims

at “denoising” measured signals, i.e. at extracting/enhancing

components of interest, which are then sent to a subsequent

block of the system, which typically analyzes them. For in-

stance, in the audio field, after BSS extracted a speech signal

of interest from “noise” as explained above, this extracted sig-

nal may be sent to an automatic speech recognition system,

which converts speech signal waveforms into the associated

sentences [27], that may then be used to control some actua-

tors (see e.g. voice control of some car functions performed

by a car driver). Similarly, once the above-mentioned ECG (or

EEG, MEG ...) components of interest have been separately

extracted, they may be sent to an automatic medical diagnosis

system. Related applications also exist in other fields, such as

radiocommunications, as e.g. discussed in [21], [23].

Appendix A.2. Connection with blind classical system identifi-

cation

Moreover, the field of classical BSS is closely linked to the

field of blind system identification [1], and more specifically

to blind mixture identification (BMI). This is e.g. discussed in

[23] and may be summarized as follows. Various BSS methods

estimate the inverse of the mixing function applied to the source

signals. They thus allow one to estimate this mixing function

itself. The applications related to BSS thus include various ap-

plications of BMI, as a spin-off.

These BSS and BMI tasks are so closely connected that some

applications need both of them, i.e. they require one to estimate

both the source signals and the mixing transform. For instance,

in the field of Earth observation (often referred to as “remote

sensing”), a hyperspectral imaging sensor e.g. situated on a

satellite provides reflectance spectra. More precisely, the data

typically derived for each pixel of such an image sensor consist

of a reflectance spectrum corresponding to the region of Earth’s

surface seen by this pixel. These data for one pixel thus define

a scalar function which depends on wavelength. Each value of

this function is equal to the fraction of light power reflected by

the considered region on Earth and sent to the considered sen-

sor pixel, with respect to the light power received from the sun

by the considered region on Earth, over the considered narrow

wavelength band. If the considered region is covered with vari-

ous pure materials, the overall spectrum recorded for that region

is, in the simplest case, a linear combination of the reflectance

spectra of the pure materials present in this region (which are

the source signals), with each coefficient of this combination

(mixing coefficient) equal to the fraction of that region cov-

ered with the considered pure material (see details e.g. in [4],

[23]). To analyze the considered scene, one should process the

recorded mixed spectra so as to extract from them both the spec-

tra of the pure materials (BSS task), which define the nature of

the materials present in this region, and the mixing coefficients

(BMI task), which define the abundances of these pure materi-

als in this region.

Appendix A.3. Applications of blind quantum source separa-

tion

Although the above classes of applications only concern

blind classical source separation and system identification, they

are quite enlightening when aiming at determining the applica-

tions of the very general blind quantum source separation and

system identification problems that are already of interest today,

or that are likely to develop in the future. Splitting these appli-

cations in the same way as above, let us first consider those

which are focused on estimating the source “signals” (as op-

posed to the mixing function), i.e. here the source quantum

states, after they were altered by undesired coupling (i.e. “mix-

ing” in the BSS sense). These restored states are then used

as the inputs of subsequent “quantum computing means” in

a broad sense, i.e. processing means which manipulate these

states in quantum form or which convert them into classical-

form data at some stage, by using measurements (the result

of which may then be used by a human operator or stored in

some device). BQSS is thus essentially used as a pre-processing

block in a “quantum computer”, so as to restore non-modified

data before the target task of that computer is carried out with

the latter data.

More specifically, one may anticipate situations where data

will be stored in a register of qubits of a quantum computer,

for subsequent use. Due to non-idealities of the physical im-

plementation of that register, the qubits which form it may be

coupled13. As time goes on, the register state will therefore

evolve in a complicated way due to qubit coupling, thus mak-

ing the final value of that register state not directly usable in the

target quantum application. BQSS may then be used to restore

the initially stored register state, before providing it to the target

application.

Appendix A.4. Connection with blind quantum process tomog-

raphy

Moreover, the above discussion of the relationship between

blind source separation and system (or mixture) identification

13In this appendix, we only aim at outlining general approaches for applying

BQSS methods so as to handle states resulting from a certain type of undesired

coupling. Of course, depending on the considered physical setup and appli-

cation, the type of coupling to be handled may be different from the specific

Heisenberg coupling analyzed in detail in the present paper (it may e.g. involve

more than two qubits), and the proposed general approaches for applying BQSS

should then be refined accordingly.
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in the classical framework suggests the following major spin-off

of blind source separation performed in the quantum domain.

Independently from BQSS, the QIP community already ad-

dressed the quantum version of system identification and called

it Quantum Process Tomography (QPT) [6], [37], [38], [41],

[43], [48]. That problem was only studied in its non-blind ver-

sion, i.e. identifying the considered quantum process by using

not only its outputs but also the associated inputs. Transposing

the above comments about the link between classical BSS and

BMI to the quantum world recently led us to introduce the fol-

lowing idea in [22]14: by estimating the inverse of the mixing

function, BQSS is also essentially able to estimate this function

itself, i.e. the parameters of the considered coupling operator

(possibly up to some residual transforms, called indetermina-

cies as in classical BSS and BMI [9], [23]). Thus, generally

speaking, BQSS opens the way to introducing the blind version

of QPT (called BQPT), i.e. performing QPT essentially with-

out knowing the values of the input quantum states of the con-

sidered process (but e.g. requesting them to be unentangled).

Again transposing to the quantum world our above comments

about classical BSS and BMI, the applications related to BQSS

thus include applications of BQPT, as a spin-off. Such applica-

tions may be defined as follows.

Non-blind QPT is widely recognized to be a major tool for

QIP: for instance, see [6], [37], [38], [41], [43], [48], which

e.g. state that QPT “is considered the gold standard for fully

characterising quantum systems, and in particular for charac-

terising the quantum logic gates that form the basic elements of

a quantum computer” [43] and that “accurate characterization

of two-qubit gates will be critical for any realization of quantum

computation” [48].

The BQPT methods considered when extending the above

standard QPT tool to its blind version therefore especially have

two potential applications. The most natural one is when the

input states of the considered process indeed cannot be known.

BQPT methods could then be of interest for characterizing

quantum gates while they are operating and when only their

results (output states) are available to the user who is to charac-

terize them. This on-line characterization may be useful e.g. if

the transform performed by a quantum gate slowly evolves over

time (e.g. due to aging) and must be monitored, by characteriz-

ing it from time to time. Besides, BQPT may be of even higher

interest in more standard configurations, where the process in-

put states may be prepared and known: BQPT then avoids the

complexity of accurately preparing the specific states which

are required by standard QPT methods, because BQPT can use

any input states (unentangled in the version of BQPT associated

with the BQSS methods proposed in the present paper).

A more detailed analysis of BQPT is beyond the scope of the

present paper: this paper already required detailed derivations

for introducing the proposed class of BQSS methods itself, and

resulting spin-offs for BQPT will be addressed in future papers.

14More precisely, the new field of BQPT defined hereafter was implicitly

present since the first publications dealing with BQSS: see e.g. the estimation

of the mixing parameter in the early paper [11]. But [22] was the first paper

where the emphasis was explicitly put on that BQPT concept and where the

associated terminology was introduced.

Appendix B. About quantum concepts

This appendix aims at bringing both additional information

and suggestions on possible readings to the reader unfamiliar

with quantum physics.

Appendix B.1. The concept of quantum pure state

Surely, as stressed by Peres [39], “quantum phenomena do

not occur in a Hilbert space, they occur in a Laboratory”. How-

ever, the importance of abstract concepts and tools of Quan-

tum Physics (QP) should not be underestimated, as Dirac has

warned us a long time ago [25], writing that e.g. a book on QP

“if not purely descriptive of experimental work, must be essen-

tially mathematical”.

In order to describe the physical state of a quantum sys-

tem, QP uses the concepts of pure state and statistical mixture.

This paper and consequently this appendix are restricted to pure

states. A quantum pure state is the result of a preparation, a con-

cept introduced by Margenau [36]. The mathematical descrip-

tion of the (pure) states of a quantum system is made thanks

to the introduction of a complex Hilbert space, called the state

space, with the corresponding properties of its elements (vec-

tors, or kets) and the existence of a scalar product. The statis-

tical interpretation of QP imposes us to consider only normed

vectors, and two vectors differing by a phase factor eiφ, φ being

any angle, should be considered as describing the same physical

state. The space state of a spin 1/2 is a two-dimensional com-

plex Hilbert space, and that of a pair of distinguishable spins

is the tensor product of the two corresponding state spaces. If

| 1,m1 > and | 2,m2 > (eigenkets of s1z and s2z respectively,

with corresponding eigenvaluesm1 = ±1/2 andm2 = ±1/2) are

basis kets for spins 1 and 2 respectively, abbreviated as | 1,± >
and | 2,± >, a basis of the corresponding state space of the pair

consists of the four kets | +,+ >, | +,− >, | −,+ > and | −,− >,

where e.g. | −,+ > is an abbreviation (also denoted as | −+ >)

for the tensor product ket | 1,−1/2 >⊗| 2,+1/2 >.

If a quantum system Σ is first prepared, and can then be con-

sidered as being isolated until it interacts with an apparatus M

chosen to inform us upon one property (to which is formally

attached a so-called observable) of Σ, in an act called a mea-

surement, the measurement generally alters the physical state

of Σ. If it is possible to repeat the preparation in the same pure

state, then the result of each measurement of that observable has

a random behaviour (except in specific situations where the re-

sult is systematically the same one), but a high number of such

measurements allows us to calculate a mean value. The experi-

menter is interested in this result. M obeys the laws of quantum

physics (while the classical approximation should be valid for

its own behaviour when isolated). The description of the be-

haviour of the coupled system consisting of Σ and M, which

obey the laws of QP, is another chapter of QP [39].

Appendix B.2. Origin of the Heisenberg coupling

In its simplest form, the Heisenberg coupling between two

distinguishable neighboring electron spins −→s1 and −→s2 takes the

form −2J−→s1−→s2 (Heisenberg isotropic model). This section aims
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at giving a qualitative idea of the physical origin of this cou-

pling. It originates in the exchange interaction, a purely quan-

tum phenomenon, which appears each time there exists a cou-

pling between two identical particles with a half-integer spin, as

e.g. occurs with the two electrons in the atom of Helium 4 (or in

the Hydrogen molecule), each with a spin 1/2, and coupled by

the Coulomb repulsion. While classical mechanics can distin-

guish two identical particles, e.g. two electrons, through their

trajectories, in the quantum point of view e.g. the two electrons

in the Helium 4 atom are indistinguishable, and this is always

true for two identical particles [25] (this book includes Dirac’s

own contribution to the subject, explaining why one also speaks

of the “Heisenberg-Dirac model”). Moreover, from this fact and

the general principles of quantum theory, any physical quantum

state of a pair of identical particles is either symmetrical in (i.e.

unaffected by) the exchange of the particles, or antisymmetrical

in this exchange (the pair state just changes its sign). Experi-

ence has taught us that when a particle has a half-integer spin,

any physical state of a pair of these particles is antisymmetrical

in the exchange, and these particles are called fermions. Other-

wise (no spin, or integer spin), that state is symmetrical in that

exchange and the particles are called bosons. Any antisymmet-

rical eigenstate of the Hamiltonian of a pair of uncoupled elec-

trons is a product of a symmetrical (resp. antisymmetrical) spa-

tial state with an antisymmetrical (resp. symmetrical) spin state.

If that state involves two distinct one-electron spatial wave-

functions ψ and ϕ (e.g, in the Helium atom, the orbital 1s and

2s states), one gets another eigenstate with the same energy just

by exchanging the electrons: this degeneracy is called exchange

degeneracy. Considering the Helium 4 atom, one may accept a

rough treatment through perturbation theory, considering now

that these electrons are not independent, but coupled by the

Coulomb repulsion. This repulsion partially lifts the exchange

degeneracy and generates a singlet level and a triplet level (three

linearly independent stationary states). Each of these four states

is still antisymmetric. In the singlet level, the state is a prod-

uct of an antisymetrical spin state and a symmetrical spatial

(so-called orbital) state, and the states of the triplet level are

the product of one and the same antisymmetrical orbital state

with three different symmetrical spin states. Two integrals, K

and J, respectively called the Coulomb and the exchange in-

tegrals, appear in the calculation. K may receive a classical

interpretation, describing the Coulomb repulsion between two

charges with respective densities e | ψ(−→r1) |2 and e | ϕ(−→r2) |2.

J then describes the Coulomb repulsion between two charges

with respective densities eϕ∗(−→r1)ψ(−→r1) and eϕ(−→r2)ψ∗(−→r2), a for-

mal interpretation, through the concept of so-called exchange

charges, without classical analog. One may then show that the

results are formally identical with that which would exist if two

(now distinguishable) electron spins were coupled by a Hamil-

tonian −2J−→s1−→s2 [5], [42]. This Hamiltonian therefore does not

describe a true coupling between the electrons, but is an effec-

tive Hamiltonian resulting from the indistinguishability of the

electrons, the fact that they are fermions, and the existence of

their Coulomb repulsion. The exchange integral J, related to

the overlap of the involved one-electron orbital wave-functions,

equals zero when these wave-functions do not overlap, and that

coupling is significant only for nearby electrons. Blokhinsev’s

book [5] thoroughly treats the behaviour of identical particles,

the exchange degeneracy and its lifting by the Coulomb repul-

sion, and the Helium 4 atom case. Historically, the exchange

coupling was first identified in Helium 4, through its optical

spectra, by Heisenberg. Shortly afterwards, Heisenberg identi-

fied the exchange coupling as the origin of the previously mys-

terious “molecular field” introduced by Weiss in 1906 in order

to explain the existence of ferromagnetic solids. Stevens [42]

gives a short presentation of the exchange interaction in mag-

netically ordered solids, including the existence of solids with

anisotropic exchange coupling. A detailed treatment, including

more complex exchange interactions than the so-called direct

exchange between two neighboring atoms, and the correspond-

ing models, may be found in [28]. In that context, the Heisen-

berg model with cylindrical symmetry is a rough description of

the effect of magnetic anisotropy upon exchange.

Appendix B.3. Time evolution of an isolated pair of spins 1/2

with a cylindrical Heisenberg coupling

In this paper and in our previous ones, the two qubits were

separately prepared at time t0. We are therefore interested in the

time-behavior of a pair of spins 1/2, after its preparation, at t0,

in a state |ψ(t0)〉 equal to

(α1 | + > +β1 | − >) ⊗ (α2 | + > +β2 | − >). (B.1)

Therefore:

|ψ(t0)〉 = α1α2 | ++ > +α1β2 | +− > (B.2)

+β1α2 | −+ > +β1β2 | −− >

where the kets | ++ >, | +− >, | −+ > and | −− > were defined

in Appendix B.1. We denoted this basis asB+ and we also write

these kets as {| i >}. The state of the pair at time t may then be

written:

|ψ(t)〉 =
4
∑

i=1

ci(t) | i > . (B.3)

The time evolution of an isolated system initially prepared in

some pure state is driven by its Hamiltonian, and predictions

upon this time-behavior necessitate the knowledge of its energy

levels and eigenstates. We first briefly consider a pair of spins

1/2 coupled by an isotropic Heisenberg Hamiltonian −2J−→s1−→s2.
Introducing the total angular momentum

−→
S = −→s1 + −→s2, one first

writes

2−→s1−→s2 = −→S
2
− −→s12 − −→s22

. (B.4)

Then, from elementary quantum mechanics, one gets the fol-

lowing energies for this isotropic Hamiltonian:

E(S ) = −2J[S (S + 1) − s1(s1 + 1) − s2(s2 + 1)] (B.5)

and presently s1 = s2 = 1/2 and therefore S = 0 or 1. A

basis of eigenkets common to
−→
S

2
, S z,

−→s12
and −→s22

are the kets

denoted as | S ,mS >, and the allowed values formS are 1, 0 and

−1 if S = 1 , and only mS = 0 if S = 0. These eigenkets are
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therefore | 1, 1 >, | 1, 0 >, | 1,−1 >, corresponding to a triplet

with energy E(1), and | 0, 0 > corresponding to a singlet with

energy E(0). The | S ,mS > states are related to the | i > states

as follows:

| 1, 1 > = | ++ >, | 1, 0 >= | +− > + | −+ >√
2

, (B.6)

| 0, 0 > =
| +− > − | −+ >√

2
, | 1,−1 >=| −− > . (B.7)

If this pair of spins 1/2 possesses the following internal Heisen-

berg coupling with cylindrical symmetry:

HHC = −2[Jxy(s1xs2x + s1ys2y) + Jzs1zs2z], (B.8)

the | S ,mS > kets are still eigenstates of HHC (an accident oc-

curing for spins 1/2) [18], and this keeps true if a Zeeman term

HZ = gµe(sz1 + sz2)B is added. When B , 0 (static field along

Oz) the triplet is split, and the energies of the states | 1, 1 >,

| 1, 0 >, | 0, 0 > and | 1,−1 > (abbreviated as | j >, with j = 1

to 4) are respectively:

~ω1,1 = gµeB −
Jz

2
, ~ω1,0 =

Jz

2
− Jxy, (B.9)

~ω0,0 =
Jz

2
+ Jxy, ~ω1,−1 = −gµeB −

Jz

2
. (B.10)

Denoting the total Hamiltonian of the pair as H = HHC + HZ ,

the evolution of the system from a state |ψ(t0)〉 to a state |ψ(t)〉
obeys the Schrödinger equation:

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉. (B.11)

When |ψ(t)〉 is developed over the | j > kets, i.e. the | S ,mS >
orthonormal basis eigenkets of H:

|ψ(t)〉 =
4
∑

j=1

b j(t) | j >, (B.12)

then Eq. (B.11) leads to a system of four uncoupled linear dif-

ferential equations:

i~
d

dt
b j(t) = ~ω jb j(t) (B.13)

where ω1 to ω4 is a short writing for ω1,1, ω1,0, ω0,0 and ω1,−1

respectively, with the solutions b j(t) = e
−iω j(t−t0)b j(t0), and

therefore:

|ψ(t)〉 =
4
∑

j=1

e−iω j(t−t0)b j(t0) | j > . (B.14)

Since | 1, 1 >=| ++ > and | 1,−1 >=| −− >, b1(t0) = α1α2 and

b4(t0) = β1β2. The detailed expression of |ψ(t)〉 and a matrix

formulation are given in [17], [18]. It should be clear that the

possibility of a matrix formulation has nothing to do with the

nature of the coupling between the qubits. It results from two

general properties of QP: the existence of the principle of su-

perposition and of the linear character of the Schrödinger equa-

tion. The cylindrical symmetry of the Heisenberg coupling and

the fact that the spins are 1/2 are reflected in the form of the

expression for |ψ(t)〉 and the numerical values of Jz, Jxy and B

are reflected in the numerical values of the ω j.

Appendix C. Removing indeterminacies with additional

constraints

In Appendix G.2.2.2 we show that, for the considered mixing

model and separation principle (multi-state disentanglement),

the class of separating systems defined by (20)-(21) and (10)

yields limited indeterminacies only, namely a permutation of

the two output qubit states and a phase factor between both

components of each output qubit state. We hereafter show

how to remove both indeterminacies, by further constraining

the considered configuration.

It should first be noted that we did not exploit the whole avail-

able knowledge about the considered mixing model yet: we

already stated that the frequenciesω1,1 to ω1,−1 in (11) have un-

known values, but we now take advantage of their properties in

addition. By deriving the expressions of these frequencies from

(B.9)-(B.10) and using (30)-(33), we get

γ1d = ω1,1(t − t0) =
1

~

[

gµeB −
Jz

2

]

(t − t0) (C.1)

γ2d = ω1,0(t − t0) =
1

~

[

−Jxy +
Jz

2

]

(t − t0) (C.2)

γ3d = ω0,0(t − t0) =
1

~

[

Jxy +
Jz

2

]

(t − t0) (C.3)

γ4d = ω1,−1(t − t0) =
1

~

[

−gµeB −
Jz

2

]

(t − t0) (C.4)

where

• g is the principal value of the considered isotropic g ten-

sor and µe is the Bohr magneton, i.e. µe = e~/2me =

0.927 × 10−23JT−1,

• B is the magnitude of the applied magnetic field (which

should be high enough for the considered coupling

model to be relevant),

• Jxy and Jz are the principal values of the exchange tensor.

Eq. (C.1)-(C.4) first entail

γ1d + γ2d + γ3d + γ4d = 0. (C.5)

Since we aim at tuning γ1 to γ4 until they reach values which

meet (C.5), we may constrain them to meet condition

γ1 + γ2 + γ3 + γ4 = 0 (C.6)

throughout this adaptation procedure. Our calculations show

that imposing this condition in addition to the constraints set in

Appendix G.2.2.2 does not reduce the indeterminacies obtained

in Appendix G.2.2.2 enough. Therefore, we do not consider

condition (C.6) hereafter (note that it could be used instead to

reduce the number of degrees of freedom of the separating sys-

tem). Still, the above discussion suggests a useful extension,

which consists of looking for other relationships between γ1d to

γ4d. The relationships of interest are those which do not involve

the parameters, among those of (C.1)-(C.4), whose values are

quite hard to determine experimentally and therefore consid-

ered as unknown, that is Jxy and Jz. On the contrary, the time

interval (t − t0) and the magnitude B of the magnetic field may
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be measured and the principal value g may be experimentally

determined. Eq. (C.1) and (C.4) then yield

γ1d − γ4d =
2

~
gµeB(t − t0) (C.7)

and the value of the right-hand term of that equation is known.

Using the same idea as above, we therefore constrain the pa-

rameters γ1 and γ4 to be jointly tuned, so as to always meet

γ1 − γ4 =
2

~
gµeB(t − t0). (C.8)

Eq. (C.7), (C.8), (26), (29) then guarantee that we always have

δ4 = δ1. (C.9)

In particular, condition (C.9) is met for all solutions (i.e. values

of δ1 to δ4 and associated states |Φ〉) of the separation principle

studied in Appendix G.2.2.2. Eq. (G.21) then reduces to

δ5 = −kπ, (C.10)

so that the phase indeterminacies due to the factors eiδ5 in

the output state expressions (G.22), (G.23) reduce to sign in-

determinacies between both components of each qubit, since

eiδ5 = ±1.

The only remaining indeterminacies at this stage are there-

fore the above signs and the permutation between qubits. Both

of them may be removed as follows. The above adaptation

phase uses a given value of the time interval, denoted (t − t0),

between the preparation of the source qubit state |ψ(t0)〉 and the

use of the resulting mixed state |ψ(t)〉. This adaptation phase

yields a set of values for the separating system parameters γ1

to γ4. In the approach considered up to now, the same values

of (t − t0) and of γ1 to γ4 are then used in the inversion phase.

We here propose a modified approach where, in the inversion

phase, the time interval between source qubit state preparation

and use of resulting mixed state is twice larger15 than the inter-

val (t − t0) used in the adaptation phase, and the values of γ1

15In this paper, it is assumed that the time interval (t−t0) cannot be decreased

freely, otherwise one would choose to set it to zero, which would avoid any

coupling phenomenon and the associated QSS problem. In other words, we are

interested in situations when the existence of a minimum time interval between

the preparation of the source qubit states and the use of their coupled version

is an undesired but unavoidable phenomenon, and this interval is above a fixed

minimum value. In such systems, we can then reasonably assume that one can

increase this interval if required by the considered approach. We here use this

idea in the inversion phase (possibly at the expense of reducing the speed of op-

eration of the overall quantum processing system during the inversion phase).

This approach also requires some cooperation between the mixing and sepa-

rating stages: both stages should simultaneously switch their parameter values

(width of time interval and values of γ1 to γ4), in order to simultaneously switch

from the adaptation phase to the inversion phase. One might argue that, when

adding this principle of operation, the proposed QSS approach becomes “less

blind”. However (i) it is still quite blind, in the sense that the separating system

is not requested to know the values of the source qubit states corresponding

to the mixed states |ψ(t)〉 that it uses, (ii) this approach as well as all classi-

cal BSS methods cannot be claimed to be fully blind anyway, because they set

some conditions on source properties and on the mixing model (which is the

reason why some authors call classical BSS methods “myopic” or “semi-blind”

rather than “blind”, with a degree of blindness which depends on the considered

method).

to γ4 obtained at the end of the adaptation phase are also multi-

plied by two before being used during the inversion phase. Eq.

(26)-(33) show that the values of δ1 to δ4 used in the inversion

phase are thus equal to the double of the corresponding values

obtained in the adaptation phase. This factor of two between

the values used in these two phases therefore also exists for

any linear combination of δ1 to δ4 with fixed coefficients. In

particular, let us consider the two combinations which appear

in the left-hand terms of (G.9) and (G.20). In the adaptation

phase, they are respectively constrained to become equal to mπ

and 2kπ by the multi-state disentanglement principle, as shown

in Appendix G.2. Therefore, the corresponding combinations

of the values of δ1 to δ4 used in the inversion phase are respec-

tively equal tom′π and 2k′π, withm′ = 2m and k′ = 2k. In other

words, during the inversion phase, when still using an unentan-

gled state as the source state and the above-defined conditions

for the mixing and separating stages, the corresponding separat-

ing system output again meets (G.9) and (G.20), but it should

be understood that all quantities in this use of (G.9) and (G.20)

refer to their version during the inversion phase, i.e. their ver-

sion “with a prime sign in all notations”. Therefore, the integers

m and k used in the inversion phase are equal to the double of

those obtained in the adaptation phase and are thus guaranteed

to be even, which was our goal.

In this inversion phase, since (G.9) and (G.20) are met, one

then derives in the same way as in Appendix G.2.2 that (G.21),

(G.22), (G.23) are met. Using in addition the constraint (C.8)

in this inversion phase (therefore implicitly “with a prime sign

in all notations”), condition (G.21) again reduces to (C.10). Fi-

nally, one should take into account that, in this inversion phase,

m and k (“with a prime sign”) are guaranteed to be even. There-

fore (i) among the two solutions (G.22) and (G.23), it is guar-

anteed that the obtained solution is (G.22) and (ii) the phase

parameter δ5 is a multiple of 2π and therefore the phase factor

eiδ5 in (G.22) is equal to one. As an overall result, the output

state (G.22) of the separating system reduces to (G.26). Adding

the constraints proposed in this appendix to the approach of Ap-

pendix G.2.2.2 therefore guarantees that the separating system

restores the unentangled source states without any indetermina-

cies.

Appendix D. Scalar form of mixing model

The scalar form of the mixing model defined in Section 2

may be derived from the equations of that section and was pro-

vided in [17]. It reads

c1(t) = α1α2e
−iω1,1(t−t0) (D.1)

c2(t) =
1

2

[

(α1β2 + β1α2)e−iω1,0(t−t0)

+(α1β2 − β1α2)e−iω0,0(t−t0)
]

(D.2)

c3(t) =
1

2

[

(α1β2 + β1α2)e−iω1,0(t−t0)

−(α1β2 − β1α2)e−iω0,0(t−t0)
]

(D.3)

c4(t) = β1β2e
−iω1,−1(t−t0). (D.4)
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Appendix E. Scalar form of global model

The scalar form of the global model (22) may be derived ei-

ther directly from the equations of Sections 2 to 3.2, or more

easily as follows. Comparing (24) to (9) shows that the global

model has the same expression as the mixing model, except that

the exponentials in (11) are replaced by those in (25). Applying

the same substitution to the scalar form (D.1)-(D.4) of the mix-

ing model therefore yields the scalar form of the global model,

which may eventually be expressed as

c1 = α1α2e
iδ1 (E.1)

c2 =
1

2
eiδ2
[

(α1β2 + β1α2)

+(α1β2 − β1α2)ei(δ3−δ2)
]

(E.2)

c3 =
1

2
eiδ2
[

(α1β2 + β1α2)

−(α1β2 − β1α2)ei(δ3−δ2)
]

(E.3)

c4 = β1β2e
iδ4 . (E.4)

Appendix F. Adapting block using a quantum-form prop-

erty

Beyond the adapting block detailed in Section 3.3, the very

next step towards increasingly quantum approaches consists of

considering a separation principle, i.e. a property here again im-

posed on the separating system output, which is directly defined

with respect to the quantum form |Φ〉 of that output, as shown in

Fig. F.6. In the framework of Section 3.3, i.e. when addressing

the second step of the procedure that we defined in Section 1 for

developing a complete BQPSS method, using such a quantum-

form property is still a conceptual idea (this property is there-

fore shown inside an elliptic box in Fig. F.6), as opposed to

practical processing blocks (represented in square boxes in this

and previous figures). This still leaves open how this property

is used to close the feedback loop of Fig. F.6 (as shown by

the “?” in the adapting block of that figure). One may convert

the quantum data into classical-form signals at some stage of

this feedback loop. One might instead wonder whether all this

feedback processing could be performed in quantum form but,

again, the quantum nature of this feedback structure deserves

some care: [38] p. 23 e.g. states that “There are a few fea-

tures allowed in classical circuits that are not usually present in

quantum circuits. First of all, we don’t allow ‘loops’, that is,

feedback from one part of the quantum circuit to another”. In

Section 4 and in the associated appendix, i.e. when addressing

the third step of the procedure that we defined in Section 1 for

developing a complete BQPSS method, we describe the separa-

tion principle that we propose for the approach of Fig. F.6, and

we complete the description of its feedback loop, using quan-

tum/classical conversion.

Appendix G. Developing the separation principles

Appendix G.1. From classical to quantumBSS separation prin-

ciples

As explained in Section 4, we here detail the third step of the

procedure that we defined in Section 1 for developing a com-

plete BQPSS method. This step consists of specifying the con-

sidered separation principle. To this end, we may take advan-

tage of the following two results, available in classical BSS.

First, a specific approach to classical BSS is defined for ran-

dom sources and is based on the independence principle used

in ICA methods, which consists of forcing the statistical mu-

tual independence of the separating system outputs. This ap-

proach may be justified as follows. In ICA methods, the un-

known source signals are requested to be stochastic and mutu-

ally statistically independent. The resulting known mixtures of

these source signals are not independent however, due to the

mixing phenomenon. The mixing operator therefore destroys

the independence property of the original source signals. This

suggests one to tune the parameters of the associated class of

separating operators so as to restore in the separating system

outputs the property met by the source signals, i.e. to tune them

so that the separating system outputs become independent. One

then hopes that this constraint is sufficient to force the separat-

ing system outputs to become equal to the source signals, or

at least equal to them up to residual transforms (called indeter-

minacies) which correspond to limited, and therefore accept-

able, modifications of the source signals. If this behavior is in-

deed obtained for the considered mixing operator, this mixing16

model is stated to be ICA separable. Therefore, for a given mix-

ing model, once a separation principle has been proposed, such

as the independence principle, one must then analyze whether

that model is separable from the point of view of that principle.

This has been performed for various mixing models in classi-

cal BSS, thus showing that only part of them are ICA separable

(see e.g. [8], [9], [33], [44], [45]).

Still in the classical framework, one may build other sepa-

ration principles by just transposing the interpretation that we

provided above for the independence principle to other source

properties. A general approach thus consists of exhibiting a

property met by the source signals in the considered config-

uration but lost in their available mixtures, and in tuning the

parameters of the separating system so that the outputs of that

system meet the above property. This allows one to propose the

separation principle based on the selected property. One must

then analyze whether that property guarantees separability (i.e.

yields acceptable indeterminacies) for the considered mixing

model. Some classical BSS methods are based on this general

approach, although this is most often not stated explicitly in

their description.

Taking into account the above state of the art for classical

BSS suggests several approaches for building separation prin-

16More precisely, ICA separability is a property of the combination of (i)

the considered mixing model and (ii) the separating model which is selected

accordingly. It is therefore a property of the considered global (i.e. mixing +

separating) model.
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Figure F.6: Global configuration using a quantum-processing inverting block, and a quantum-form property in the separation principle of the adapting block (this

separation principle controls sub-block D̃). Each quantum state |Φ〉 is used only once (no cloning): see p. 6.

ciples in the framework of BQPSS. The most conservative ap-

proach consists of sticking as much as possible to the com-

monly used “specific approach” described above, namely clas-

sical ICA. One then uses classical-form outputs of the separat-

ing system, as in Fig. 3 (the type(s) of measurements performed

to derive them should then be defined), and adapts the param-

eters of the separating system so that the above classical-form

signals become mutually statistically independent. We will not

initially base our developments on this approach, because there

is no a priori guarantee that this separation principle remains

relevant when moved in an ad hoc way from the classical to

the quantum framework. Nevertheless, we will come back to

this approach, as a by-product of the other solutions considered

hereafter.

The BQSS separation principles that we propose below are

based on the “general approach” that we defined above for clas-

sical BSS. They rely on the observation that, in all variants of

the BQSS problem studied in this paper, the source state (4)

meets a property which is lost in the corresponding available

mixed state defined by (7) and (D.1)-(D.4): this source state

is not entangled. The first separation principle that we propose

therefore consists of adapting the tunable parameters of the sub-

block D̃ of our separating system so that the quantum output |Φ〉
of this system becomes disentangled. This separation principle

is therefore called the “disentanglement principle” hereafter. It

is based on a property of quantum states and therefore corre-

sponds to the separating structure shown in Fig. F.6. It is ini-

tially more justified than the above BQSS approach based on

sticking to classical ICA, because it is derived from the fun-

damental property of the quantum sources faced here, namely

their unentanglement. This approach then requires us to ana-

lyze whether that disentanglement principle guarantees separa-

bility for the considered mixing model. That principle (applied

to one and then several states) and its separability properties are

studied in Appendix G.2.

Before moving to the analysis of the above disentanglement

principle, we here complete the definition of all separation prin-

ciples studied in this paper. Modified versions of the above

disentanglement-based approach are derived by replacing the

above quantum property (that is: output disentanglement) by

other properties which have a direct relationship with it, but

which concern associated classical-form signals (this corre-

sponds to Fig. 3). This yields different versions, depending

on which types of measurements are performed to derive these

classical-form signals and how these signals are exploited. Ap-

pendix G.3 and Appendix G.4 describe two such versions and

make the connection with the above disentanglement-based ap-

proach.

Appendix G.2. Method based on disentanglement principle

In this Appendix G.2, we consider the adaptation phase (ex-

cept at the end of Appendix G.2.2.2, starting from the paragraph

including (G.25), where we also make the connection with the

inversion phase). We here analyze the properties of the first

method proposed above for adapting the parameters γ1 to γ4

of sub-block D̃ of the separating system during the adaptation

phase. In other words, these parameters are here tuned so that

the output state |Φ〉 is forced to be unentangled, considering

a single state |Φ〉 as a first step (our investigation then leads

us to consider two such states). Starting from the very general

expression (12) of that state, it may be shown17 that this unen-

tanglement condition reads

c1c4 = c2c3. (G.1)

We now investigate whether this constraint guarantees sepa-

rability, i.e. whether it forces the output state |Φ〉 to become

equal to the source state |ψ(t0)〉 up to acceptable indetermina-

cies. Condition (G.1) involves complex-valued parameters. It

may equivalently be expressed in terms of two sub-conditions,

respectively concerning the moduli and phases of these pa-

rameters. We first study the modulus-based sub-condition and

then combine it with the phase-based sub-condition, in order to

eventually analyze the complete unentanglement condition.

17We introduced condition (G.1) in [19], [20] and we then justified it in more

detail in [24].
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Appendix G.2.1. Modulus-based sub-condition of disentangle-

ment principle

Appendix G.2.1.1 Single-state modulus-based sub-condition.

We start by considering a single output state |Φ〉 and analyzing

the first of the above-defined sub-conditions, which reads

|c1c4| = |c2c3|. (G.2)

Appendix H shows that18 (G.2) is equivalent to

sin(δ3 − δ2) [B1 sin(δ3 − δ2) + B2 cos(δ3 − δ2)] = 0 (G.3)

with δ2 and δ3 defined in (27) and (28), and

B1 =
(

A2
1 − A2

2

)2 − 4 sin2(ξ1 − ξ2)A2
1A

2
2 (G.4)

B2 = 4A1A2(A2
1 − A2

2) sin(ξ1 − ξ2) (G.5)

where we use the polar representations

α1β2 = A1e
iξ1 (G.6)

β1α2 = A2e
iξ2 . (G.7)

Condition (G.3) has two solutions, respectively corresponding

to

sin(δ3 − δ2) = 0 (G.8)

and to the cancellation of the second factor of (G.3). The first

solution, corresponding to (G.8), is

δ3 − δ2 = mπ (G.9)

where m is an integer. The corresponding output of our sepa-

rating system is defined by (E.1)-(E.4). It may easily be shown

that, when (G.9) is met, (E.2)-(E.3) become

c2 = α1β2e
iδ2 if m even (G.10)

c2 = β1α2e
iδ2 if m odd (G.11)

c3 = β1α2e
iδ2 if m even (G.12)

c3 = α1β2e
iδ2 if m odd. (G.13)

Comparing these expressions, Eq. (E.1), (E.4), and the associ-

ated state (12) to (5) shows that the output state |Φ〉 of our sep-

arating system then partly succeeds in restoring the source state

|ψ(t0)〉: c1 to c4 are equal to the corresponding coefficients in (5)

up to two phenomena which correspond to usual indetermina-

cies in classical BSS, namely a possible permutation of c2 and

c3, depending whetherm is odd or not, and some phase factors.

Due to these phase factors, |Φ〉 may still be entangled. This

means that only setting this single-state modulus-based con-

straint on the separating system output would yield excessive

indeterminacies (on the contrary, a global phase on |Φ〉 is not

an issue, since it has no physical consequence).

The second solution of (G.3), corresponding to the cancella-

tion of its second factor, reads

δ3 − δ2 = −Arctan
B2

B1

+ mπ (G.14)

18Some calculations in this paper require all four coefficients c1 to c4 in (G.2)

to be non-zero. This is not mentioned everywhere.

where m is an integer. It therefore generally has a more com-

plex expression than (G.9), so that the corresponding output

state |Φ〉 of our separating system does not seem to restore the

source state |ψ(t0)〉 up to acceptable indeterminacies. This sec-

ond solution of (G.3) therefore appears to be a spurious one

from the point of view of BQSS. If the parameters γ1 to γ4 of

the separating system were controlled only so as to ensure that

condition (G.2) is met, the existence of this second solution of

(G.3) would be an issue, because the considered control proce-

dure would not guarantee which of the two solutions of (G.3)

is reached by the values taken by γ1 to γ4, and this procedure

could therefore provide the above spurious solution. We now

show how to avoid this issue.

Appendix G.2.1.2 Multi-state modulus-based sub-condition.

The above spurious solution is avoided by introducing an ex-

tended version of our BQSS method, which uses two (or more)

source states |ψ(t0)〉, and which adapts the single set of param-

eters γ1 to γ4 so as to ensure that (G.2) is met for each of these

two source states, instead of the single state considered up to

this point. This extended method removes the spurious solution

of (G.2) and (G.3) as follows.

The second solution of (G.3) depends on the values of the

parameters B1 and B2 and therefore on the considered source

state. Therefore, a single set of parameters γ1 to γ4 cannot si-

multaneously correspond to the second solution of (G.3) for two

source states, provided these states yield parameter values B1

and B2 resulting in different values for this second solution of

(G.3). These states are then stated to be non-redundant. This

non-redundancy assumption is hereafter assumed to be met for

the considered data. Besides, more than two source states may

be jointly used, to increase the probability that they do not all

yield the same second solution of (G.3), i.e. that they are non-

redundant.

On the contrary, the first solution of (G.3) is defined by (G.9)

and therefore applies to any source state. So, by tuning the

adaptive parameters γ1 to γ4 of our separating system in such

a way that (G.2) is guaranteed to be met for both (or all) non-

redundant source states, we guarantee that these parameters γ1

to γ4 become such that the first solution of (G.3) is reached.

Appendix G.2.2. Complete condition of disentanglement prin-

ciple

Appendix G.2.2.1 Single-state complete condition.

We here first consider the phase-based sub-condition involved

in (G.1), for a single output state |Φ〉. This sub-condition

reads19

arg(c1c4) = arg(c2c3) + 2kπ (G.15)

or equivalently

arg
(

c1c4c
∗
2c
∗
3

)

= 2kπ (G.16)

19As stated above, some calculations in this paper assume all coefficients c1
to c4 to be non-zero. This is especially required for the phase of the complex

numbers involved in (G.15) to be defined.
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where ∗ stands for conjugation and k is an integer. Moreover, for

any output state |Φ〉 of our separating system, Eq. (H.1)-(H.2)

yield

c1c4c
∗
2c
∗
3 = c5e

i(δ1+δ4−2δ2) (G.17)

with

c5 = α1α2β1β2

[

α1α2β1β2 +
1

4
(α1β2 − β1α2)2

×
(

1 − ei2(δ3−δ2)
)]∗

. (G.18)

We now analyze the case when both the phase condition

(G.16) (with (G.17)-(G.18)) and the modulus condition (G.2)

are met, for the considered output state |Φ〉. As shown in Ap-

pendix G.2.1.1, due to the constraint set by the modulus condi-

tion (G.2), |Φ〉 can only correspond to one of the two solutions

of (G.3). We therefore successively consider each of these two

solutions of (G.3), and we combine its modulus condition with

the phase condition (G.16) in order to obtain the overall dis-

entanglement condition for that state. We start with the first

solution of (G.3), which is defined by (G.9). Combining that

condition with (G.18), the latter equation reduces to

c5 = |α1α2β1β2|2 (G.19)

which is a real positive number. Due to (G.17), condition (G.16)

then reads

δ1 + δ4 − 2δ2 = 2kπ. (G.20)

The complete disentanglement condition for the first solution

of (G.3) therefore consists of (G.9) and (G.20).

Inserting (G.20) into (G.10)-(G.13) and using (E.1) and (E.4)

then makes it possible to express the components of the result-

ing output state of our separating system with respect to δ1 and

δ4 only. This state is defined by (12). Denoting

δ5 =
δ4 − δ1

2
− kπ, (G.21)

additional manipulations then show that this state may be ex-

pressed as follows if m is even:

|Φ〉 = eiδ1

(

α1|+〉 + β1e
iδ5 |−〉

)

⊗
(

α2|+〉 + β2e
iδ5 |−〉

)

(G.22)

whereas, if m is odd

|Φ〉 = eiδ1

(

α2|+〉 + β2e
iδ5 |−〉

)

⊗
(

α1|+〉 + β1e
iδ5 |−〉

)

. (G.23)

For this first solution of (G.3), the disentanglement principle

is therefore such that, for the resulting values of γ1 to γ4, the

output state |Φ〉 obtained for any unentangled source state (4)

is also unentangled. In addition, (G.22) and (G.23) show that

this output meets another property: the factors of this tensor

product (G.22) or (G.23) are respectively equal to each of the

source qubit states (1), possibly up to two transforms, defined

as follows. The first transform is a permutation: for instance,

the first output qubit corresponds to the first factor in the tensor

products (G.22) and (G.23) so that, for the solution defined by

(G.23), it depends on α2 and β2, i.e. it restores information cor-

responding to the second source qubit. The second transform is

a phase eiδ5 for the second qubit state component with respect

to the first one, separately for each output qubit (the phase eiδ1

should be ignored, since it applies to all qubit state components

and therefore has no physical consequence). Output permuta-

tions and constant factors (here reduced to phases) are also very

common in classical BSS, where they are called “indetermina-

cies”. We will show how to remove them, for the proposed

BQSS method, in Appendix G.2.2.2.

Before that, we now investigate the output state obtained,

with the single-state complete disentanglement condition, for

the second solution of (G.3). That second solution corresponds

to the cancellation of the second factor of (G.3). This fixes the

value of tan(δ3 − δ2), and therefore the value of (δ3 − δ2) up to

a multiple of π. That value depends on the considered source

state. Eq. (G.18) then shows that this fixes c5, to a value which

depends on the considered source state. Let us denote as φ5 the

corresponding phase of c5. Using (G.17), Eq. (G.16) becomes

φ5 + δ1 + δ4 − 2δ2 = 2kπ. (G.24)

The second, spurious, solution of (G.3), obtained in Appendix

G.2.1.1 for the single-state modulus-based sub-condition,

therefore here does yield an associated solution (which depends

on the considered source state) for the single-state complete dis-

entanglement condition. However, as in Appendix G.2.1.1, the

solution obtained here has a complex expression, so that the

corresponding output state |Φ〉 of our separating system does

not seem to restore the source state |ψ(t0)〉 up to acceptable in-

determinacies. The second solution obtained here therefore ap-

pears to be a spurious one from the point of view of BQSS. In

other words, the single-state disentanglement principle is not

sufficient for solving the considered BQSS problem in a satis-

factory way. As in Appendix G.2.1, we will now show how to

solve this issue by considering more than one source state.

Appendix G.2.2.2 Multi-state complete condition.

In the first multi-state scenario proposed hereafter, we use the

unentanglement condition (G.1) for output states |Φ〉 corre-

sponding to two (or more) source states. To this end, we start by

taking into account that the modulus-based sub-condition (G.2)

is met for these states |Φ〉. Appendix G.2.1.2 then shows that

(G.9) is met, i.e. we thus avoid the above-defined spurious so-

lution, which is our motivation for considering more than one

source state. We then combine the constraint (G.9), i.e. the

first solution of the modulus-based sub-condition considered

in Appendix G.2.2.1, with the phase-based sub-condition de-

fined in that appendix, i.e. (G.16). We thus obtain the complete

disentanglement condition for these two (or more) states |Φ〉.
The calculations required for the above-mentioned combination

were already performed in Appendix G.2.2.1: we here consider

two states instead of one, but since their modulus-based sub-

conditions here yield (G.9), Appendix G.2.2.1 here shows that

also taking into account the phase-based sub-condition for both

states yields (G.20)20. Therefore, the resulting output state of

our separating system is here again defined by (G.22) or (G.23).

20One may wonder whether imposing the above disentanglement condition

for more than two (non-redundant) source states entails more constraining con-
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In a second scenario, we again first use (at least) two states

|Φ〉 in order to impose the constraints (G.2) and thus (G.9), but

we then use a single and arbitrary state |Φ〉, on which we im-

pose the constraint (G.16) in addition to (G.9). The same anal-

ysis as above shows that the overall set of constraints thus im-

posed on the parameters of the separating system again con-

sists of (G.9) and (G.20), which then again leads to (G.22) or

(G.23). This second scenario is less constraining than the first

one because, in the second part of its operation, it uses one state

instead of two, and this state may be arbitrary instead of using

the same states as in the first part of its operation.

In both scenarios, the output state of our separating system

has the permutation and phase indeterminacies which appear

in (G.22) and (G.23) and which were discussed in Appendix

G.2.2.1. As explained in Appendix C, these indeterminacies

may here be removed, by adding two constraints to the con-

sidered configuration. Their effects during the inversion phase

may be summarized as follows. The first constraint guarantees

that

δ4 = δ1, (G.25)

which simplifies (G.21). To put it briefly, the second constraint

entails that, during the inversion phase, the above integers k

and m are even. All this guarantees that only solution (G.22),

as opposed to (G.23), is reached, and that it reduces to

|Φ〉 = eiδ1 (α1|+〉 + β1|−〉) ⊗ (α2|+〉 + β2|−〉) . (G.26)

This restores the state (4) up to a global phase which has no

physical consequence. It should be noted that the BQSS method

proposed at this stage only requires a few quantum source states

in the adaptation phase, whereas the classical-processing meth-

ods mentioned in Section 3.1 typically need 103 source states

[17]. We discuss the properties of the resulting practical algo-

rithms in Appendix J.

We stress that the above BQSS method only requires the

source states to be unentangled during the adaptation phase,

not during the inversion phase. More precisely, as shown above,

by using unentangled states during the adaptation phase, this

method fixes the parameters γ1 to γ4 of the separating system so

that, during the subsequent inversion phase, conditions (G.9),

(G.20) and (G.25) are met, and k and m are even. Combining

all these conditions, Eq. (24), (25) and (10) show that G be-

comes equal to the identity matrix (up to the phase factor eiδ1 ,

which should be ignored, as explained above). Therefore, dur-

ing the inversion phase, for any two-qubit source state |ψ(t0)〉,
entangled or not, (22) shows that the corresponding output state

|Φ〉 of our separating system is equal to |ψ(t0)〉 (up to the phase

factor eiδ1 ).

The above theoretical investigation leaves one question open:

we are considering the global architecture of Fig. F.6 and we

ditions for the separating system parameters than conditions (G.9) and (G.20)

obtained here for only two states. The answer is no: in [24], we showed that

imposing the above disentanglement condition for all possible pure and unen-

tangled source states yields conditions (G.9) and (G.20) only. However, using

more than two source states may here be of interest for the same reason as

in Appendix G.2.1.2, i.e. when aiming at ensuring the above-mentioned non-

redundancy of these source states.

still have to define how the quantum-form property considered

here, namely the disentanglement condition (G.1) applied to

two (or more) states in the above first scenario, may be used

in practice to complete the feedback loop of Fig. F.6. This is-

sue is addressed in Appendix G.3 and Appendix G.4, where we

first consider other separation principles, which then allows us

to connect them to the above one.

Appendix G.3. Using measurements along Oz axis in

disentanglement-related principle

Back to the separating system structures introduced in Sec-

tion 3, we here start from the version shown in Fig. 3, and we

now aim at completing the definition of its adapting block. The

first method that we propose to this end is presented in Sec-

tion 4.2. This approach yields a potential separation principle,

defined by (36), which is initially justified by disentanglement-

based considerations. In addition, it has relationships with clas-

sical ICA, as shown in [19]. The BQSS methods based on this

principle may thus be considered as Quantum-Source Indepen-

dent Component Analysis (QSICA) methods. The other meth-

ods presented in this paper are also related to QSICA, but this

topic is not discussed in more detail here (see also [20]), to limit

the length of this paper.

Once we have selected the approach based on Condition (36),

we must analyze whether it yields a relevant separation princi-

ple, i.e. whether it guarantees separability. This requires no

additional calculations here because, as mentioned in Section

4.2, that separation principle is equivalent to the modulus-based

sub-condition (G.2) involved in the above-defined single-state

disentanglement principle, and we already analyzed the sepa-

rability properties of sub-condition (G.2) in Appendix G.2.1.1,

and even of its multi-state extension in Appendix G.2.1.2. This

shows that, even when applying the constraint (36) to several

source states so as to avoid the spurious solution defined in Ap-

pendix G.2.1.1, this only guarantees that the output state of the

separating system meets (E.1), (E.4), (G.10)-(G.13). As already

noted in Appendix G.2.1.1, this state succeeds only partly in

restoring the source state and may still be entangled. To avoid

these restrictions, we hereafter extend the approach based on

(36).

Appendix G.4. Using measurements along Oz and Ox axes,

link with disentanglement principle

The first scenario that we propose for a BQSS method based

on measurements performed along the Oz and Ox axes is de-

scribed in Section 4.3. It compares as follows to the method

of the first scenario of Appendix G.2.2.2, which concerns the

initial disentanglement principle: as stated in Section 4.3, al-

though they started from different points of view, these meth-

ods lead to the same solution. Besides, they are complementary

rather than redundant, as will now be explained. The approach

of Appendix G.2.2.2 was first needed, to introduce the most

natural separation principle, that is the disentanglement con-

straint (G.1) (eventually applied to several output states). How-

ever, it did not yield a practical procedure for tuning the pa-

rameters of the separating system so as to ensure this property
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(G.1), which involves quantum-form data. The approach then

used in Appendix G.3 (including Section 4.2) and extended in

the current appendix (including Section 4.3) relies on the re-

sults of Appendix G.2.2.2, while bringing an additional feature:

the constraints (36) and (37) that it uses concern classical-form

data, namely probabilities, which may be accessed (estimated)

in practice, and therefore used to tune the parameters of the

separating system. The approach introduced in this appendix

thus opens the way to a practical implementation (here again,

the remaining indeterminacies are eventually removed by using

the method defined in Appendix C). This implementation is de-

scribed in Section 5. Since this approach is equivalent to the

disentanglement-based approach of Appendix G.2.2.2 we here

also made the final required step for the latter approach, that is,

we also defined a way to implement it.

This equivalence of these two approaches also implies that

the probability-based approach proposed here yields the same

expression as in the first scenario of Appendix G.2.2.2 for the

separating system output, that is (G.22)-(G.23) or its refined

version (G.26) when using the principle of Appendix C.

The probabilities involved in (36) and (37) may also be used

in a second scenario, based on a two-stage approach. In the first

stage of that approach, we again impose the constraint (36) on

two states |Φ〉. Because of (35), Eq. (36) is equivalent to (G.2).

The analysis of Appendix G.2.1 then implies that (G.9) is met.

Then, in the second stage of that approach, we require (G.9) to

still be met and we consider two (or more) states |Φ〉, which

are not necessarily the same as in the first stage and on which

we impose the constraint (37) in addition. Due to (G.9), these

states also meet (36). Here again, Appendix I then shows (for

states meeting its conditions) that (G.20) is met, in addition to

(G.9). The separating system output is thus here again defined

by (G.22)-(G.23), or its refined version (G.26) when using the

principle of Appendix C, for any output state resulting from an

unentangled source state.

Appendix H. Transforming the single-state modulus-based

sub-condition

We here show how to derive (G.3). Starting from (E.1)-(E.4)

lengthy calculations yield

c1c4 = α1α2β1β2e
i(δ1+δ4) (H.1)

c2c3 = ei2δ2

[

α1α2β1β2 +
1

4
(α1β2 − β1α2)2

×
(

1 − ei2(δ3−δ2)
)]

. (H.2)

Condition (G.2) then becomes

|α1α2β1β2| =
∣

∣

∣

∣

∣

α1α2β1β2 +
1

4
(α1β2 − β1α2)2

(

1 − ei2(δ3−δ2)
)

∣

∣

∣

∣

∣

.

(H.3)

Using (G.6)-(G.7), Eq. (H.3) may be rewritten as

|A1A2| =
∣

∣

∣

∣

∣

A1A2 +
1

4

(

A1e
i(ξ1−ξ2)/2 − A2e

i(ξ2−ξ1)/2
)2

×
(

1 − ei2(δ3−δ2)
)

∣

∣

∣

∣

. (H.4)

This equation may be solved by considering its connection with

the generic equation

|a1| = |a1 + (a2 + ib2)| (H.5)

where a1, a2 and b2 are real numbers. The latter equation is

equivalent to

a2
2 + 2a1a2 + b

2
2 = 0. (H.6)

In the specific case when this generic equation is applied to

(H.4), some calculations yield

a1 = A1A2 (H.7)

a2 =
1

4

{[(

A2
1 + A

2
2

)

cos(ξ1 − ξ2) − 2A1A2

]

× (1 − cos [2(δ3 − δ2)])

+
(

A2
1 − A2

2

)

sin(ξ1 − ξ2) sin [2(δ3 − δ2)]
}

(H.8)

b2 =
1

4

{(

A2
1 − A2

2

)

sin(ξ1 − ξ2) (1 − cos [2(δ3 − δ2)])

−
[(

A2
1 + A

2
2

)

cos(ξ1 − ξ2) − 2A1A2

]

× sin [2(δ3 − δ2)]} . (H.9)

Inserting these expressions in (H.6), simple but lengthy calcu-

lations show that (H.6) is equivalent to (G.3).

Appendix I. Links between probability-based and

disentanglement-based separation condi-

tions

We here consider quantum states |Φ〉 defined by (12) and

moreover constrained to be created by starting from un-

entangled states (5) and successively applying to them the

cylindrical-symmetry Heisenberg mixing and unmixing oper-

ations (8) and (14), with (20). Appendix G.3 showed that, if

condition (36) is met for (at least) two (non-redundant) source

states, then (E.1), (E.4), (G.9) and (G.10)-(G.13) are satisfied.

In this appendix, we derive the additional conditions which

are met when using the approach proposed in the first scenario

of Appendix G.4, i.e. when also constraining the above quan-

tum states |Φ〉 to meet condition (37). Standard quantum cal-

culations show that the probabilities involved in that condition

(37) read

P1x =
1

4
|c1 + c2 + c3 + c4|2 (I.1)

P2x =
1

4
|c1 − c2 + c3 − c4|2 (I.2)

P3x =
1

4
|c1 + c2 − c3 − c4|2 (I.3)

P4x =
1

4
|c1 − c2 − c3 + c4|2. (I.4)

By combining (37) and (I.1)-(I.4), one can express condition

(37) as

ℜ[(c21 + c
2
4 − c22 − c23)(c1c4 − c2c3)∗] = 0 (I.5)

where ℜ[.] stands for real part. This condition may then be

transformed in the case when, in addition, condition (36) is met
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for the above-mentioned states |Φ〉. To this end, we insert (E.1),

(E.4) and (G.10)-(G.13) into (I.5), which thus becomes, what-

ever m

ℜ[(α2
1α

2
2e

i2δ1 + β2
1β

2
2e

i2δ4 − α2
1β

2
2e

i2δ2 − β2
1α

2
2e

i2δ2 )

×(α1α2β1β2)∗(ei(δ1+δ4) − ei2δ2 )∗] = 0.

(I.6)

We constrain our separating system to meet this condition for

several source states, indexed by n with n ∈ {1, . . . ,Nx} and

Nx ≥ 2. These states are defined by the values of the corre-

sponding parameters α1(n), β1(n), α2(n), β2(n). Inserting these

parameters into (I.6) yields a set of Nx equations. The solutions

of these equations are determined by introducing the following

property, which may be proved by considering the polar repre-

sentation of the considered complex numbers.

Property 1. Let d be a non-zero complex number. Let d(n),

with n ∈ {1, . . . ,N} and N ≥ 2, be a set of non-zero complex

numbers such that

ℜ[d(n)d∗] = 0 ∀n ∈ {1, . . . ,N}. (I.7)

Then the phases of the complex numbers d(n) are all equal, up

to multiples of π.

We apply this property to (I.6) by selecting

d(n) = [α2
1(n)α2

2(n)ei2δ1 + β2
1(n)β2

2(n)ei2δ4 − α2
1(n)β2

2(n)ei2δ2

−β2
1(n)α2

2(n)ei2δ2][α1(n)α2(n)β1(n)β2(n)]∗ (I.8)

d = ei(δ1+δ4) − ei2δ2 (I.9)

and by considering the case when (I.7) is met with N = Nx ≥ 2,

the complex numbers d(n) are non-zero and do not all have the

same phase up to multiples of π. Then, Property 1 guarantees

that d = 0, i.e.

δ1 + δ4 = 2δ2 + 2kπ (I.10)

where k is an integer.

As an overall result, constraining the considered states |Φ〉
to meet the probability-based conditions (36) and (37) imposes

conditions (G.9) and (I.10) on the separating system parame-

ters. The latter two conditions turn out to be exactly the same

as conditions (G.9) and (G.20) obtained when constraining the

separating system according to our multi-state disentanglement

principle. The latter principle and the probability-based prin-

ciple analyzed here are thus shown to be equivalent in the

cylindrical-symmetry Heisenberg case.

Appendix J. Features of separation algorithms

The overall separation algorithm defined in Section 5 de-

serves the following comments.

First, the sweeps on parameters γ j described in Section 5 de-

fine the principle of the algorithm, but its practical operation

also contains the following aspect: to tune each γ j of the quan-

tum circuit which implements the sub-block D̃, what is con-

trolled in practice is not γ j itself but the value of a physical

quantity, hereafter denoted V j, which may e.g. be a voltage.

Each resulting parameter γ j is thus a function g j(.) of the con-

trol quantity V j:

γ j = g j(V j) j ∈ {1, . . . , 4}. (J.1)

These functions g j(.) are preferably invertible (e.g. increasing).

An attractive feature of the algorithm considered here is that it

does not require these functions to be known: in practice, this

algorithm just performs sweeps over physical quantities V j and

keeps their values which minimize the cost functions Fz and Fx.

Besides, even when neglecting the estimation errors for the

probabilities involved in (39) and (41), the accuracy of this al-

gorithm is intrinsically limited by its sweep-based principle:

this algorithm does not find the values of V j (and thus γ j) which

exactly cancel Fz and Fx; instead, it only keeps the values of V j
which are the closest to this minimum, among the discrete set of

tested values of V j. The accuracy of the solution thus obtained

depends on the step-size used in the sweeps on V j. This ap-

proach therefore yields a trade-off between accuracy and com-

putational complexity: using many values of V j (i.e. a small

step-size over the fixed bounded domain of V j to be tested)

yields better accuracy but requires many state preparations and

measurements.

The typical complexity of this algorithm is thus non-

negligible. For each source state, the estimation of the prob-

abilities involved in (39) typically requires 104 qubit prepara-

tions [17]. If this is performed 103 times, in order to com-

pute the values of Fz for 103 values of a parameter V j, this

yields a total amount of 107 required qubit preparations (and

the same holds for Fx). The overall typical required number

of qubit preparations obtained here (107, possibly multiplied

by a few source states and two cost functions) turns out to be

almost the same as with the classical-processing BQSS meth-

ods summarized in Section 3.1. However, it should be clear

that the approach obtained here thus keeps different advantages,

highlighted throughout the whole present paper, with respect to

classical-processing methods. In particular, unlike our previous

methods, this new approach requires repeated qubit prepara-

tions during the adaptation phase only, whereas it then com-

pletely avoids them during the inversion phase, as explained

in Section 3.2. Moreover, although both types of methods re-

quire almost the same overall number of qubit preparations in

the adaptation phase, the new approach needs much fewer dif-

ferent source states (therefore each prepared a larger number

of times), that is, a few states instead of typically 103. It thus

requires “less information” about the sources, which may e.g.

be attractive in applications where waiting for this information

to be available is an issue. In other words, the limitation of

this method is not due to its separation principle (which only

requires a few source states), but to its algorithm considered at

this stage (which requires these states and the resulting mixed

states to be prepared many times). Indeed, still using the same

separation principle, other more advanced algorithms may be

developed in order to use a much lower number of qubit state

preparations. Such an algorithm will be detailed elsewhere, to

limit the length of the present paper. It uses around 104 qubit

preparations to perform adaptation.
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Appendix K. Parameter values used in tests

Conventional ESR generally operates at X or Q Bands

(around 10 and 35 GHz respectively). For electron spins with

g = 2, at 35 GHz, the resonance field is near 1.25 T . In the

simulations, we used the values g = 2, B = 1T , (t − t0) = 10−9

s, whence gµeB(t − t0)/~ = 175.8.

Concerning the exchange coupling, we chose Jz/kB = 1 K,

and Jxy/kB = 0.3 K (cf. Appendix E of [17] and [29]), which

lead to Jz(t − t0)/~ = 130.9 and Jxy(t − t0)/~ = 39.26.

Appendix L. Performance criteria

We here show how to derive the performance criteria used

in Section 6. As explained above, our first BQPSS algorithm

yields permutation and phase indeterminacies, so that each out-

put state |Φ〉 obtained with this algorithm during the inversion

phase is defined (apart from errors due to the estimation of γ1

to γ4) by (G.22) or (G.23), which may also be expressed as fol-

lows. If m is even

|Φ〉 = eiδ1α1α2| + +〉 + ei(δ1+δ5)α1β2| + −〉
+ei(δ1+δ5)β1α2| − +〉 + ei(δ1+2δ5)β1β2| − −〉 (L.1)

whereas, if m is odd

|Φ〉 = eiδ1α1α2| + +〉 + ei(δ1+δ5)β1α2| + −〉
+ei(δ1+δ5)α1β2| − +〉 + ei(δ1+2δ5)β1β2| − −〉. (L.2)

These two possible values of |Φ〉 should be compared to the

considered source state, defined by (5). Let us first consider the

case when the output state (L.1) is obtained, up to estimation

errors. Each estimate of a coefficient c j in (L.1) is equal to

the coefficient c j(t0) in (5), up to estimation errors and up to a

specific phase factor which should here not be considered as an

error, but as an intrinsic indeterminacy of our first algorithm.

These phase differences are therefore not taken into account in

our first performance criterion. Hence, only the moduli of c j(t0)

and c j are compared in that criterion. For (an estimate of) the

state |Φ〉 defined by (L.1), this criterion is therefore based on

the Mean Square Error (MSE) for these moduli, which reads

1

4

4
∑

j=1

[|c j(t0)| − |c j|]2. (L.3)

The case when the output state (L.2) is obtained leads to the

same considerations, except that the coefficients corresponding

to the states |+−〉 and |−+〉 are permuted between (L.2) and (5).

The corresponding MSE for coefficient moduli is then defined

as

1

4

{

[|c1(t0)| − |c1|]2 + [|c2(t0)| − |c3|]2 + [|c3(t0)| − |c2|]2

+[|c4(t0)| − |c4|]2
}

. (L.4)

For a single source state |ψ(t0)〉 and an obtained output state |Φ〉,
since the latter state may correspond either to (L.1) or to (L.2),

we define the overall MSE between the moduli of the coeffi-

cients of |ψ(t0)〉 and |Φ〉 as the minimum between the quantities

(L.3) and (L.4). Then, for all the source states |ψ(t0)〉 used in

one elementary test, since the above permutation occurs for no

states or all of them (depending on the value of m that they

share), the overall MSE for that test is obtained by first sepa-

rately computing the two mean values of (L.3) and (L.4) over

all states and then deriving the minimum between these two

mean values. Then computing the mean of the latter minimum

over all considered elementary tests yields the overall MSE for

all elementary tests. Finally taking the square root of the lat-

ter MSE yields the Root Mean Square Error (RMSE) for these

moduli over all considered elementary tests. This RMSE for

moduli is denoted as RMS Em in this paper.

The above criterion is also applicable to our second BQPSS

algorithm (moreover, the state (L.2) need not be considered

then, since our second algorithm only yields the state (L.1)).

However, that criterion only characterizes the quality of the

moduli of the coefficients c j provided by any BQPSS algorithm.

Since our second algorithm is also supposed to achieve phase

properties for these coefficients, we derived a second perfor-

mance criterion for also characterizing the quality of the phases

of the coefficients c j. If our second algorithm was supposed

to make all complex-valued coefficients c j respectively equal

to c j(t0) up to estimation errors, its modulus and phase perfor-

mance would be assessed by just computing the usual RMSE

for these complex-valued quantities. But the situation is slightly

different here: for our second algorithm, each output state |Φ〉 is

theoretically equal to the corresponding source state |ψ(t0)〉 up
to a global phase factor, as shown by (G.26). This phase factor

should not be considered as an error of our second algorithm,

because quantum states are only defined up to a phase factor.

Therefore, we define the actual MSE of a state |Φ〉 obtained in

practice, with respect to a given state |ψ(t0)〉, as

MSE(|ψ(t0)〉, |Φ〉) = 1

4
||C+(t0) − eiϕoptC||2, (L.5)

which is thus expressed with respect to the coefficient vectors

(3) and (13) associated with the above states, and where ϕopt is

the value of the phase parameter ϕ which minimizes the quan-

tity 1
4
||C+(t0)− eiϕC||2. In other words, we measure the distance

between the above states considered up to a phase factor by tak-

ing into account the class of states eiϕ|Φ〉 corresponding to all

possible values of ϕ and selecting the state in this class which

yields the lowest difference or “best fit” with respect to |ψ(t0)〉.
This approach is similar to the more usual method used to find

the best fit between signals up to a scale factor (see e.g. [14] p.

30). When deriving the analytical expression of ϕopt, one is led

to introduce the phase

ϕext = −arctan















∑4
j=1 |c j(t0)c j| × sin(arg(c j) − arg(c j(t0)))
∑4
j=1 |c j(t0)c j| × cos(arg(c j) − arg(c j(t0)))















.

(L.6)

It may then be shown that

MSE(|ψ(t0)〉, |Φ〉) =
1

4
min
(

||C+(t0) − eiϕextC||2,

||C+(t0) + eiϕextC||2
)

. (L.7)
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The above definition (L.7) of this type of MSE is then straight-

forwardly extended to (i) all states used in one elementary test

and then (ii) all elementary tests. Eventually taking the square

root of the value thus obtained yields the RMSE for complex

state coefficients, denoted as RMS Ec in our paper.
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