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Abstract. We here extend the field of blind (i.e. unsupervised) quan-
tum computation into two directions. On the one hand, we introduce a
new class of blind quantum source separation (BQSS) methods, which
perform quantum/classical data conversion by means of spin component
measurements, followed by classical processing. They differ from our pre-
vious class of classical-processing BQSS methods by using extended types
of measurements (three directions, possibly different for the considered
two spins), which yield a more complete nonlinear mixing model. This
allows us (i) to develop a new disentanglement-based separation proce-
dure, which requires a much lower number of source values for adapta-
tion and (ii) to restore a larger set of sources. On the other hand, these
extended measurements motivate us to introduce a new research field,
namely Blind Quantum Process Tomography, which may be seen both as
the blind extension of its existing non-blind version and as the quantum
extension of classical blind identification of mixing systems.

Keywords: Blind quantum system identification and inversion · Non-
linear mixture · Disentanglement-based separation principle · Unsuper-
vised unmixing · Multidirectional measurements of spin components

1 Prior Work and Problem Statement

Source Separation (SS), also called signal separation, is a generic Information
Processing (IP) problem, where the inverting block of a separating system even-
tually receives signals, which are mixtures of source signals that it does not
know, and aims at recovering these source signals only from their known mix-
tures [2]. In the ideal case, the separating system initially completely knows the
mixing function. On the contrary, in many applications, this system initially
knows which class the mixing function belongs to, but does not know its para-
meter values. This system therefore contains an adapting block which is initially
used to tune the parameter values of the inverting block so that the latter block
achieves the inverse of the mixing function (possiby up to some indeterminacies).
This adapting block thus typically aims at estimating the parameter values of
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the mixing function. The SS problem is thus closely linked to the Mixture Iden-
tification (MI) problem (see e.g. [1], and [2] pp. 65–66), which may be seen as a
multiple-input multiple-output system identification problem.

The above initial adaptation/identification may be performed in two modes.
In the less demanding, i.e. non-blind, mode, the adapting block receives both a
set of known source values and the associated values of the mixed signals. The
more challenging mode corresponds to the Blind (or unsupervised) Source Sep-
aration (BSS) [2] and associated Blind Mixture Identification (BMI) problems.
In this blind mode, the adapting block only receives values of the mixed signals.
The sources have unknown values, but they are requested to possess some known
properties (e.g. they are mutually statistically independent for ICA methods).

Until recently, all (B)SS and BMI investigations were performed in a “classi-
cal”, i.e. non-quantum, framework. Independently from them, another growing
field within the overall IP domain is Quantum Information Processing (QIP) [7].
QIP is closely related to Quantum Physics (QP). It uses abstract representations
of systems whose behavior is requested to obey the laws of QP. This already made
it possible to develop new and powerful IP methods, which manipulate the states
of so-called quantum bits, or qubits.

In 2007, we bridged the gap between classical (B)SS and QIP/QP, by intro-
ducing a new field, namely Quantum Source (or Signal) Separation (QSS) [3].
The QSS problem consists in restoring the information contained in individual
quantum source signals, eventually only using the mixtures (in SS terms [4]) of
states of these qubits which result from their undesired coupling. We especially
developed two main classes of Blind (i.e. unsupervised) QSS (BQSS) methods
for qubits implemented as spins 1/2. Briefly, in the first class (see e.g. [3–5]), we
first perform a quantum/classical conversion by using monodirectional spin com-
ponent measurements and then process the resulting data with classical means.
In the second class (see e.g. [6]), we only use quantum processing means in the
inverting block, whereas the adapting block preferably performs bidirectional
spin component measurements and then classical processing.

In this paper, we first introduce a new mixing model (Sect. 2), defined by our
already used spin coupling model and an extended set of spin component mea-
surements (along three directions, that may moreover be different for the two
spins). We then present major extensions of the above quantum-source process-
ing methods, into two directions. On the one hand, we introduce a new class of
BQSS methods (Sects. 3 and 4), which use classical processing after the quan-
tum/classical conversion performed by the above measurements, as in our first
class of methods, but which take advantage of this new set of measurements to
achieve additional capabilities. On the other hand, these capabilities motivate us
to explicitly introduce a new research field in Sect. 5, namely Blind (or unsuper-
vised) Quantum Process Tomography (BQPT). This field may be seen both as
the quantum counterpart of classical BMI when applied to separately initialized
qubits as in this paper, and as the blind extension of the field of (non-blind)
QPT, previously developed in the framework of QIP [7]. Conclusions are drawn
from this investigation in Sect. 6.
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2 New Mixing Model

2.1 Heisenberg Quantum Coupling

As stated above, qubits are used instead of classical bits for performing compu-
tations in the field of QIP [7]. In our previous papers (e.g. [3,4]), we first detailed
the required concepts for a single qubit and then presented the type of coupling
between two qubits that is involved in the “mixing model”, in (B)SS terms, of
our investigation. We hereafter summarize the major aspects of that discussion,
which are required in the current paper.

A qubit with index i considered at a given time t0 has a quantum state. If this
state is pure, it belongs to a two-dimensional space Ei and may be expressed as

|ψi(t0)〉 = αi| + 〉 + βi| − 〉 (1)

in the basis of Ei defined by the two orthonormal vectors that we hereafter denote
|+ 〉 and |−〉, whereas αi and βi are two complex-valued coefficients constrained
to meet the condition

|αi|2 + |βi|2 = 1 (2)

which expresses that the state |ψi(t0)〉 is normalized.
In the QSS configuration studied in this paper, we first consider a system

composed of two qubits, called “qubit 1” and “qubit 2” hereafter, at a given
time t0. This system has a quantum state. If this state is pure, it belongs to
the four-dimensional space E defined as the tensor product (denoted ⊗) of the
spaces E1 and E2 respectively associated with qubits 1 and 2, i.e. E = E1 ⊗ E2.
The considered basis of E is composed of the four orthonormal vectors |++〉, |+
−〉, | − +〉, | − −〉, where e.g. | + −〉 is an abbreviation for |+〉 ⊗ |−〉, with |+〉
corresponding to qubit 1 and |−〉 corresponding to qubit 2. Any pure state of
the above two-qubit system may then be expressed as

|ψ(t0)〉 = c1(t0)| + +〉 + c2(t0)| + −〉 + c3(t0)| − +〉 + c4(t0)| − −〉 (3)

and has unit norm. In particular, we study the case when the two qubits are
separately initialized, with states defined by (1) respectively with i = 1 and
i = 2. Then

|ψ(t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 (4)
= α1α2| + +〉 + α1β2| + −〉 + β1α2| − +〉 + β1β2| − −〉. (5)

Moreover, we consider the case when the two qubits correspond to two elec-
tron or nuclear spins 1/2, called “spin 1” and “spin 2”, which have undesired
coupling after they have been initialized according to (4). The considered cou-
pling is based on the Heisenberg model with a cylindrical-symmetry axis collinear
to Oz, the direction common to the applied magnetic field and to our first chosen
quantization axis [4]. Due to that coupling, and for negligible coupling with the
environment, the state of the above system at any time t > t0 reads [4]

|ψ(t)〉 = c1(t)| + +〉 + c2(t)| + −〉 + c3(t)| − +〉 + c4(t)| − −〉, (6)



Blind Quantum Source Separation to Blind Quantum Process Tomography 187

with

c1(t) = α1α2e
−iω1,1(t−t0) (7)

c2(t) =
1
2

[
(α1β2 + β1α2)e−iω1,0(t−t0) + (α1β2 − β1α2)e−iω0,0(t−t0)

]
(8)

c3(t) =
1
2

[
(α1β2 + β1α2)e−iω1,0(t−t0) − (α1β2 − β1α2)e−iω0,0(t−t0)

]
(9)

c4(t) = β1β2e
−iω1,−1(t−t0). (10)

where all four (angular) frequencies ωk,l are unknown in practical, i.e. non-ideal,
configurations (see also Sect. 5 for more details about this physical model).

2.2 Extended Quantum/Classical Conversion

Classical-form data may be derived from the above coupled state |ψ(t)〉 by mea-
suring the components of the considered two spins along given directions. In
our first class of QSS methods [3–5], we only used measurements along Oz for
both spins. We explained that this couple of measured spin components has four
possible values only, namely (+1

2 ,+ 1
2 ), (+1

2 ,− 1
2 ), (− 1

2 ,+ 1
2 ) and (− 1

2 ,− 1
2 ) (in

normalized units), with respective probabilities

p1zz = |c1(t)|2, p2zz = |c2(t)|2, p3zz = |c3(t)|2, p4zz = |c4(t)|2. (11)

These probabilities may be estimated by the sample frequencies of the associated
measured values, using the Repeated Write Read (RWR) procedure that we
proposed. This allowed us to derive a nonlinear mixing model, where the mixed
signals are three of these (estimated) probabilities and the sources are the two
moduli |α1| and |α2| and a single combination of the four phases of αi and βi.

In this paper, we extend this nonlinear mixing model by also performing other
types of measurements for |ψ(t)〉 (for additional initializations of the qubits).
More precisely, we first consider the case when one again measures the Oz com-
ponent of spin 1, but now the Ox component of spin 2. QP then tells us that
such measurements again yield the same four possible values as above and that,
in particular, the probabilities of (+1

2 ,+ 1
2 ), and (− 1

2 ,+ 1
2 ) respectively read

p1zx =
1
2
|c1(t) + c2(t)|2 and p3zx =

1
2
|c3(t) + c4(t)|2. (12)

Similarly, the probabilities of the above two values when measuring the Oz and
Oy components respectively of spins 1 and 2 read

p1zy =
1
2
|c1(t) − ic2(t)|2 and p3zy =

1
2
|c3(t) − ic4(t)|2, (13)

and the probabilities for getting the value (+1
2 ,+ 1

2 ), for the two couples of
directions (Ox,Oz) and (Oy,Oz) for spins 1 and 2, are respectively

p1xz =
1
2
|c1(t) + c3(t)|2 and p1yz =

1
2
|c1(t) − ic3(t)|2. (14)
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The output of the mixing stage of the considered QSS configuration consists of
all probabilities in (11)–(14) (more precisely of their estimates derived from our
RWR procedure). It is sent to the input of the inverting block of the separating
system defined in the next section.

3 Inverting Block of Separating System

We hereafter present the five steps of the operation of the classical-processing
inverting block of the proposed separating system, respectively calling “Case 1”
and “Case 2” the ideal and blind (Q)SS configurations defined in Sect. 1.

In both Cases, Step 1 consists in restoring (estimates of: this is not stated
everywhere below) the coefficients cj(t), with j ∈ {1, . . . , 4}, from the (estimates
of) probabilities derived in Sect. 2.2. To this end, we use the polar representation
cj(t) = ρje

iξj of these coefficients. All their moduli ρj are directly derived from
(11). Using (11), (12) and cj(t) = ρje

iξj , it may then be shown that

cos(ξ1 − ξ2) =
2p1zx − p1zz − p2zz

2
√

p1zzp2zz
, cos(ξ3 − ξ4) =

2p3zx − p3zz − p4zz

2
√

p3zzp4zz
. (15)

The sines of the above phase differences may then similarly be derived by using
(13) instead of (12). Finally, using (14) instead, one obtains the cosine and sine
of (ξ1 − ξ3). All differences between the four phases ξj are thus known (modulo
2π). Moreover, a quantum state (here (6)) is only defined up to a phase factor.
One may therefore arbitrarily fix one of the above phases ξj ( e.g. to 0). As an
overall result, we thus know all phases ξj and moduli ρj , i.e. all coefficients cj(t).

Keeping in mind that these restored versions of c1(t) to c4(t) here meet (7)–
(10), we then process them so as to derive successive transformed versions of
this set of four coefficients, which progressively bring us back to the original, or
source, data defined by (1) and (4). The four transformed coefficients obtained
at the output of each processing step n with n = 2 to 4 are denoted as cjn, with
j ∈ {1, . . . , 4}. Step 2 then consists in reducing its input coefficients cj(t) to
expressions which only depend on a single frequency ωk,l. To this end, both in
Cases 1 and 2, we keep c12 = c1(t) and c42 = c4(t), while respectively setting c22
and c32 to the sum and difference of c2(t) and c3(t), moreover rescaled so that
the coefficients cj2 form a unit-norm vector, as in (3) and (6). This yields

c22 =
1√
2
[c2(t) + c3(t)] =

1√
2
(α1β2 + β1α2)e−iω1,0(t−t0) (16)

c32 =
1√
2
[c2(t) − c3(t)] =

1√
2
(α1β2 − β1α2)e−iω0,0(t−t0). (17)

Step 3 then aims at compensating for the phase factors e−iωk,l(t−t0) in the above
cj2. This is achieved by setting cj3 = cj2×eiγj , with j ∈ {1, . . . , 4}, which yields

c13 = α1α2e
iδ1 , c23 =

1√
2
(α1β2 + β1α2)eiδ2 (18)

c33 =
1√
2
(α1β2 − β1α2)eiδ3 , c43 = β1β2e

iδ4 (19)
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with
δj = γj − ωk,l(t − t0). (20)

In Case 2, all parameters γj are adapted as explained in Sect. 4, because all ωk,l

are unknown. In Case 1, all parameters γj are set to the known values ωk,l(t−t0).
All phase factors eiδj thus disappear in (18)–(19). In Step 4, we reduce the above
coefficients to a single product of αi and/or βj parameters in Case 1. To this
end, we use the same approach as in Step 2, i.e. in both Cases we keep c14 = c13,
c44 = c43 and we set

c24 =
1√
2
[c23 + c33], c34 =

1√
2
[c23 − c33]. (21)

In Case 1, this yields

c14 = α1α2, c24 = α1β2, c34 = β1α2, c44 = β1β2. (22)

Step 5 then aims at deriving all source parameters αi and βi (i.e. a larger
set of sources than in our previous classical-processing BQSS methods) from all
coefficients cj4. This is relevant only if these coefficients correspond to a non-
entangled quantum state, i.e. a tensor product such as (4), e.g. as in Case 1.
In the latter case, one computes the moduli of the outputs of this step e.g.
as

√|c14|2 + |c24|2 because (22) and (2) show that this yields |α1| in Case 1.
Moreover, one of the four phases of the parameters αi and βi, say arg(α1), may
be arbitrarily selected. Then combining (22) with the polar expressions of cj4,
αi and βi e.g. yields arg(β1) = arg(α1) + arg(c34) − arg(c14) (modulo 2π). The
calculations for the other source parameters are similar and therefore skipped.

4 Interpretation and Adaptation of the Separating
system

The inverting block of the separating system that we developed in our QSS
method proposed in [6] only uses quantum states and quantum processing means.
It is thus quite different from the inverting block depicted in Sect. 3, which
receives classical-form data (which have quantum properties, however) and
processes them with classical means. Yet, it may be shown that (i) the classical-
form coefficients cj(t) here restored in Step 1 are those of the quantum state
at the input of the inverting block of [6], again up to estimation errors, and
(ii) the quantum processing achieved in that block of [6] is governed by the same
equations as in Steps 2 to 4 above, although they are expressed in a quite differ-
ent way in [6]. Processing Steps 2 to 4 of the block of Sect. 3 may therefore be
considered as a new classical-processing counterpart of the quantum-processing
block of [6] (but they here receive an approximate version of coefficients cj(t)).

To blindly adapt the parameters γj of the inverting block of Sect. 3, we then
propose a procedure which is partly related to the one introduced in [6]. We
here take advantage of the availability of the complex-valued coefficients cj4

in classical form. On the contrary, in [6] their counterpart is only available in
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quantum form, which required us to develop an adaptation criterion based on
related real-valued probabilities. The new adaptation procedure proposed here
consists in tuning all γj so as to enforce the quantum disentanglement condition

c14c44 = c24c34 (23)

for (at least) two (non-redundant [6]) source states (5). QP calculations skipped
here show that condition (23) above implies the probability-based separation
conditions (17) and (24) of [6]. As shown in [6], the latter conditions themselves
entail

δ3 − δ2 = mπ, δ1 + δ4 = 2δ2 + 2kπ, (24)

where m and k are arbitrary integers, and these conditions ensure separability,
so that they here force the coefficients cj4 to become equal to those in (5), up to
some permutation and phase indeterminacies. This approach thus yields a new
classical-processing BQSS method, which only requires a very limited number
of source states for adaptation, by using the disentanglement condition (23). On
the contrary, our previous, statistical, methods related to ICA [5] need hundreds
to thousands of (also repeatedly prepared) source states.

5 Blind Quantum Process Tomography

The considered cylindrical-symmetry Heisenberg quantum coupling model was
initially defined by the corresponding Hamiltonian (see e.g. [4]). We showed that
this yields the coupled state expression in (6)–(10), moreover with

ω1,1 =
1
�

[
GB − Jz

2

]
, ω1,0 =

1
�

[
−Jxy +

Jz

2

]
(25)

ω0,0 =
1
�

[
Jxy +

Jz

2

]
, ω1,−1 =

1
�

[
−GB − Jz

2

]
. (26)

In these expressions, � is the reduced Planck constant and G = gμe, where g
is the principal value of the considered isotropic g tensor and the constant μe

is the Bohr magneton [4]. The value of g may be experimentally determined.
B is the magnitude of the applied magnetic field, which can be known thanks
to measurements. Jxy and Jz are the principal values of the exchange tensor,
which are unknown in practice. The frequencies ωk,l are thus unknown.

QPT, mentioned in Sect. 1, is a generic, therefore complex, procedure for
identifying the behavior of a quantum system by applying known input states
(thus in the non-blind mode) to this system and measuring its corresponding
outputs. We here aim at developing an extension of QPT tailored to the Heisen-
berg Hamiltonian and operating in the blind mode, i.e. with unknown input
states. To this end, we analyze the BMI capabilities of the adaptation procedure
proposed in Sect. 4. Eqs. (24), (20) and (25)–(26) then yield

Jxy =
�

2(t − t0)
(γ3 −γ2 −mπ), Jz =

�

2(t − t0)
(γ2 +γ3 −γ1 −γ4 +2kπ −mπ).

(27)
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The only unknown values of the considered Hamiltonian, namely Jxy and Jz,
may therefore be derived from the values γj provided by the proposed adaptation
procedure for given but unknown source states (5). For BQPT, k and m only
yield sign indeterminacies in the exponentials of the process (6)–(10). Moreover,
they can be set to zero if all other terms of (27) are known to be small enough.

This yields our first reported method for performing complete BQPT (with
the above indeterminacies) with classical processing means. Related BQPT capa-
bilities could however be derived from our previous BQSS methods. First, our
method in [6] here also yields (27), but that BQSS method requires quantum
processing means and it is much more difficult to implement them than classi-
cal ones. Second, our previous classical-processing BQSS methods only estimate
the single parameter of their mixing model, which is different from here because
they only use measurements along one direction. This parameter only yields Jxy.
These BQSS methods then achieve complete BQPT for the isotropic Heisenberg
model (Jxy = Jz) of [3], but only partial BQPT for the general cylindrical-
symmetry Heisenberg model (arbitrary Jxy and Jz) used in [4,5].

6 Conclusion

Our contributions in this paper are twofold. We first proposed a new class of
BQSS methods, by introducing an extended set of spin component measure-
ments, which allowed us to restore an estimate of the entangled state |ψ(t)〉
and to develop corresponding classical-processing inverting and adapting blocks
of the separating system. We then explicitly introduced a new research field,
namely Blind Quantum Process Tomography (BQPT), as the extension of its
existing non-blind version. Although not detailed in our previous papers, BQPT
could be obtained as a spin-off of our corresponding BQSS methods, but with
limitations (only partial identification or need for quantum processing means),
which are here avoided. We plan to further develop this new class of BQSS and
BQPT methods and to test their performance with simulated data.
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