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Abstract

Relatively few results have been reported about the separability of given classes of nonlinear mixtures by means of sta-
tistical criteria such as ICA. We here first prove the ICA separability of a wide class of nonlinear global (i.e. mixing+
separating) models involving “reference signals”, i.e. unmixed signals. We also show the second-order separability of
sub-classes of the above class of models. This work therefore concerns nonlinear extensions of (linear) adaptive noise
cancellation. We illustrate the usefulness of our general results by applying them to a quantum information processing
problem, which involves a model of Heisenberg-coupled quantum states (i.e. qubits). This paper opens the way to
practical ICA-based and second-order blind source separation (BSS) methods for nonlinear mixtures encountered in
various applications. These BSS methods are also outlined in this paper.

Keywords: blind source separation, independent component analysis,nonlinear adaptive noise cancellation,
separability, nonlinear mixture, quantum bit (qubit)

1. Introduction

A generic signal processing problem consists in extractingone or several unknown source signals of interest from
several observations, which are mixtures of these signals of interest and possibly of additional, undesired, source
signals. A first generation of such problems was especially studied by Widrow et al. and e.g. reported in 1975 in
[8]. It is known as adaptive noise cancellation (ANC). It typically corresponds to configurations where almost all
observations are “reference signals”, i.e. unmixed signals. An extended version of this problem, known as blind
source separation (BSS), has then been widely studied sincethe 1980’s [1], [6]. It mainly concerns cases whenall
observations are mixtures of all source signals.

The “mixing model” involved in these problems is most often the functional form which defines the expression
of the vector of observed signals with respect to the vector of source signals and to the parameters of that functional
form. The values of these parameters are unknown in theblind version of the source separation problem. The
development of a complete BSS method for a given mixing modeltypically consists of the following steps. Step 1:
analyze the invertibility of this mixing model if possible,and define a separating model, which essentially aims at
implementing the inverse of the considered mixing model. Step 2: select a separation criterion for estimating the
values of the parameters of the separating model. Step 3 (closely linked to Step 2): determine if this criterion ensures
the separability of the considered models (at least for someclasses of source signals). This consists in determining
if this criterion is met only when the outputs of the separating system are equal to the sources up to “acceptable”
indeterminacies. Step 4: develop practical estimation algorithms associated with the considered criterion.

The above procedure has been widely applied to simple mixingmodels, i.e. linear (and especially instantaneous)
ones. It has been much less explored and is much tougher for nonlinear models [1]. Its Step 1, i.e. the definition of
separatingstructures, has e.g. been addressed for a wide class of nonlinear modelsin [4]. A natural way to tackle
its Step 2 consists in considering Independent Component Analysis (ICA) methods, which have been widely used for
linear mixtures [1], [6]. The relevance of these methods should then be proved for the considered nonlinear models,
by investigatingseparability, which corresponds to Step 3 of the above procedure. Although some general ICA (non-
)separability properties have been reported, very few results are available for the specific models which have been
considered in the literature.
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The above separability issue is the main topic that we address in this paper: in Sections 2 and 3, we respectively
analyze the separability of all considered general nonlinear models by means of ICA-based and second-order criteria.
Then, in Section 4, we outline the practical BSS methods which directly result from the above separability properties.
The details of these BSS methods are beyond the scope of this paper, which is focused on separability. In Section 5,
we then illustrate our general separability results by applying them to a specific model encountered in an application
dealing with quantum signals. In Section 6, we eventually draw conclusions from our overall investigation, which
yields a nonlinear extension of linear ANC.

2. Analysis of ICA-based separability

2.1. ICA-based separability of single-additive-target-source (SATS) global model

2.1.1. Considered global model
In all this paper, we only consider memoryless mixing and separating models, i.e. models whose outputs at a given

time t only depend on their inputs at the same time. Moreover, we do not require the signals to have any temporal
structure (nor do we use it if it exists). Therefore, we omit the argument “(t)” in signal notations hereafter, and we in
fact consider the associated random variables at timet. All configurations studied below involveN source signalssi

which form a vectors = [s1, . . . , sN]T , whereT stands for transpose. These signals are transferred through a mixing
operatorM, which belongs to a given class and depends on a set of parameters which form a vectorθ, whose value is
unknown in the framework of BSS. This yieldsN observed signalsxi which form a vectorx = [x1, . . . , xN]T , defined
as

x = M(s; θ). (1)

These signals are then processed by a separating or unmixingsystem, which corresponds to an operatorU. This
operator belongs to a fixed class and depends on a set of parameters which form a vectorφ. TheN output signalsyi

of the unmixing system form a vectory = [y1, . . . , yN]T , defined as

y = U(x; φ). (2)

The class of operatorU is “matched” to the class of operatorM in the sense that there exists at least one valueφopt

of φ which depends on the considered value ofθ and which is such that, whenφ = φopt, the output signalsyi of the
unmixing system are equal to the source signalssj , up to a set of acceptable transformations, called indeterminacies
(such as permutation, scaling, additive constants).

Combining (1) and (2), the global model from the source signals sj to the unmixing system outputsyi reads

y = G(s; θ, φ) (3)

where the global operatorG = U ◦ M is explicitly defined by

G(s; θ, φ) = U(M(s; θ); φ). (4)

In the separability analyses presented hereafter, we only have to consider the global modelG, i.e. we need not define
the mixing and unmixing modelsM andU from which it is derived. We set the following conditions onG. Whatever
θ andφ, only one of the output signals of the global model (and unmixing system) may be a mixture of source signals,
whereas each of all other output signals only depends on a single source. The possibly mixed output is always the
same, and we assign it index no. 1, i.e. the corresponding signal isy1. Moreover, we request that the components of
the global model may first be expressed as follows, with adequate ordering of the other outputs with respect to the
sources:

y1 = T(s1; θ, φ) + I (s2, . . . , sN; θ, φ) (5)

yi = Hi(si ; θ, φ) ∀ i = 2, . . . ,N. (6)

The output of interest,y1, is thus the sum of: (i) a termT(s1; θ, φ), which only depends on thetargetsource, i.e. on
the sources1 that we aim at extracting fromy1, (ii) an interferenceterm I (s2, . . . , sN; θ, φ), which may depend on all
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sources except the target source, and that we aim at “cancelling”, by properly adjustingφ. Each signalHi(si ; θ, φ) in
(6) is a transformed version of source signalsi . We denote it ass′i , for i = 2, . . . ,N. For i = 1, we define

s′1 = s1. (7)

Moreover, we consider the case when the modelG is such that the termI (s2, . . . , sN; θ, φ) may also be expressed with
respect to the transformed sourcess′2 to s′N, instead of the original source signalss2 to sN (this is especially true when
all operatorsHi are invertible). The global model (5)-(6) may then be reformulated as

y1 = T(s1; θ, φ) + I ′(s′2, . . . , s
′
N; θ, φ) (8)

yi = s′i ∀ i = 2, . . . ,N. (9)

Considering this data model, BSS aims at adjustingφ so as to extract the additive termT(s1; θ, φ) associated with
the target sources1 from the output signaly1 defined in (8)1. The global model (8)-(9) is therefore referred to as the
Single-Additive-Target-Source (or SATS) global model hereafter.

2.1.2. Source properties and goal of investigation
We here aim at determining if the above SATS global model is separable in the sense of ICA, for given source

statistics and operatorsT andI ′. Using the standard ICA formulation for anN-input to N-output global model, this
ICA-separability problem may be defined as follows. We consider the situation when the random variables defined
at time t by all original source signalss1(t) to sN(t) have given marginal statistics and are mutually statistically
independent. The random variables defined at timet by all transformed source signalss′1(t) to s′N(t) are then also
mutually statistically independent. We consider the random variables defined at timet by the separating system
outputsy1(t) to yN(t). We denote these random variables asY1 to YN, and we aim at determining all cases when they
are mutually statistically independent. If this only includes cases when the output signals are equal to the source
signals up to acceptable indeterminacies, then the considered global model is said to be ICA-separable (up to these
indeterminacies), for the considered type of sources.

Note that we thus consider ICA from a BSS perspective, i.e. asone of the possible tools for performing source
extraction in a situation when is it known that the availableobservations result from a given number of source signals
through a mixing model which belongs to a known class (and with unknown parameter values). This should be dis-
tinguished from the case when one applies ICA to observations without any knowledge about whether/how they may
relate to source signals, and one aims at transforming theseobservations into independent output signals, especially
in order to derive a more suitable representation of these observations.

In all this investigation, the source and output random variables are assumed to becontinuous. Their statistics
may therefore be defined by their probability densityfunctions(pdf), i.e. without having to resort to representations
based on distributions. Each of these pdf is non-zero on at least one interval. For such random variables, statistical
independence and the associated ICA-separability criterion may be analyzed by considering the joint and marginal
pdf of Y1 to YN. Therefore, we first derive the expressions of these pdf hereafter. Moreover, we especially consider
the case when the joint pdf ofY1 to YN is continuous at some points of our analysis.

2.1.3. Joint pdf of output random variables
When expressing the outputsyi with respect to thetransformedsourcess′j , the global model (3) may be reformu-

lated as
y = G′(s′; θ, φ) (10)

and is explicitly defined by (8)-(9). We consider the case when the operatorG′, defined froms′ to y (in their considered
domains) and for fixedθ andφ, is invertible. The pdf of the random vectorY composed of the random variablesYi

may then be expressed with respect to the pdf of the random vector S′ composed of the random variablesS′i associated
with the transformed sources, as

fY(y) =
fS′ (s′)
|JG′ (s′)|

(11)

1The source signals1 may then be derived fromT(s1; θ, φ) if operatorT is invertible (in the considered domain).
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wherey ands′ are linked by (10) andJG′ (s′) is the Jacobian ofG′, i.e. the determinant of the matrix composed of the
partial derivatives of all components ofG′ with respect to all its argumentss′i (see e.g. [6] for details). The expression
of JG′ (s′) is derived from the explicit form (8)-(9) of the consideredoperatorG′. It may be shown that this yields

JG′ (s′) =
∂T
∂s1

(s1; θ, φ). (12)

Moreover, since all transformed sourcesS′i are independent, we have

fS′ (s′) =
N
∏

i=1

fS′i (s
′
i ). (13)

Taking into account (7), (12), (13) and denoting

O1(s1; θ, φ) =
fS′1(s1)

| ∂T
∂s1

(s1; θ, φ)|
, (14)

Eq. (11) becomes

fY(y) = O1(s1; θ, φ)
N
∏

i=2

fS′i (s
′
i ). (15)

The right-hand term of (15) should be expressed with respectto the output signalsyi . To this end, we first use (9),
which yields

fS′i (s
′
i ) = fS′i (yi) = fYi (yi) ∀ i = 2, . . . ,N. (16)

Moreover, we consider the case when operatorT, which is a function ofs1 with parametersθ andφ, is invertible (in
the considered domain). DenotingT−1 the inverse of this operator, (8) and (9) then yield

s1 = T−1(y1 − I ′(y2, . . . , yN; θ, φ); θ, φ). (17)

Eq. (15) thus becomes

fY(y) = O2(y1 − I ′(y2, . . . , yN; θ, φ); θ, φ)
N
∏

i=2

fS′i (yi) (18)

= O2(y1 − I ′(y2, . . . , yN; θ, φ); θ, φ)
N
∏

i=2

fYi (yi) (19)

where we define operatorO2 by
O2(v; θ, φ) = O1(T−1(v; θ, φ); θ, φ). (20)

2.1.4. Interpretation of operator O2
Before proceeding to the next natural step of our ICA-separability investigation, we here analyze the nature of

operatorO2 in more detail. This shows a feature of this operator that we will then require to derive separability
properties. The target term that we aim at extracting from output signaly1 is equal toT(s1; θ, φ). Let us denote this
component in short asc, and the associated random variable asC. This random variableC is then a function of the
random variableS1 = S′1, defined as

C = T(S′1; θ, φ) (21)

whereT is an invertible transform. The pdf of these random variables are therefore linked by

fC(c) =
fS′1(s1)

| ∂T
∂s1

(s1; θ, φ)|
(22)
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where we have
s1 = T−1(c; θ, φ). (23)

Eq. (22) may therefore be rewritten as

fC(c) =
fS′1(T

−1(c; θ, φ))

| ∂T
∂s1

(T−1(c; θ, φ); θ, φ)|
. (24)

Comparing this expression to (14) and (20) shows that the operator O2 that we were led to introduce in our above
standard ICA analysis is nothing but the pdffC. It is by the way not surprising that this pdffC is eventually a
parameter of importance in our investigation, as opposed tothe pdf ofS1: as shown by (8), the component of output
signaly1 which depends ons1 is not equal tos1 itself, but toc = T(s1; θ, φ).

2.1.5. Marginal pdf of output random variables
Due to (9), the pdf ofY2 to YN are equal to those of the corresponding transformed sources. The pdf ofY1 is then

obtained by integrating the joint pdf of all output random variables, i.e.

fY1(y1) =
∫

RN−1
fY([y1, v2, . . . , vN]T)

N
∏

i=2

dvi . (25)

Inserting (18) in (25), we obtain

fY1(y1) =
∫

RN−1
O2(y1 − I ′(v2, . . . , vN; θ, φ); θ, φ)

N
∏

i=2

fS′i (vi)
N
∏

i=2

dvi . (26)

2.1.6. Condition for independent outputs: general properties
The random variablesYi are statistically independent if and only if

fY(y) =
N
∏

i=1

fYi (yi). (27)

This condition is initially requested to be met for anyy in R
N. However, it may be studied only for a subset ofR

N,
as will now be explained. The marginal pdffYi (yi) of any output random variableYi may be expressed with respect to
the joint pdf fY(y) of all output random variables as

fYi (yi) =
∫

RN−1
fY(v)

∏

j=1,...,N, j,i

dvj (28)

with
v = [v1, . . . , vi−1, yi, vi+1, . . . , vN]T . (29)

Let us assume that, for a given value ofv, we havefY(v) , 0, and thereforefY(v) > 0. Then, if fY(.) is assumed to be
continuous, we also havefY(y) > 0 for anyy in a neighbourhood ofv. Moreover, for anyy in R

N, we havefY(y) ≥ 0.
The right-hand term of (28) is then strictly positive, and sois thus its left-hand term, i.e.fYi (yi) > 0. This proves,
conversely, that if a marginal density is such thatfYi (yi) = 0 for a givenyi , then we have

fY(v) = 0 ∀[v1, . . . , vi−1, vi+1, . . . , vN]T ∈ R
N−1, (30)

with v still defined by (29). So, let us denote asD1,N the subset ofRN composed of all vectorsy = [y1, . . . , yN]T which
are such that

fYi (yi) , 0 ∀ i = 1, . . . ,N. (31)
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For anyy which doesnot belong toD1,N, we have the following properties. On the one hand, (31) is not met, which
implies

N
∏

i=1

fYi (yi) = 0. (32)

On the other hand, (30) yields

fY(y) = 0. (33)

Therefore, ify does not belong toD1,N, Condition (27) holds for that vectory, and this is true whatever the random
variablesYi (with a continuous joint pdf), i.e. not depending whether they are independent or not. Therefore, when
using Condition (27) to determine in which cases the random variablesYi are independent, one only has to consider it
for y ∈ D1,N.

2.1.7. Condition for independent outputs: specific properties
The considerations about independence that we presented above apply to any random variables. We now proceed

to more specific properties, i.e. properties which only apply to the outputs of the SATS global model that we consider
in this paper. Taking into account (19), Eq. (27) becomes

O2(y1 − I ′(y2, . . . , yN; θ, φ); θ, φ)
N
∏

i=2

fYi (yi) =

N
∏

i=1

fYi (yi). (34)

Condition (34) is initially considered for anyy in R
N and may then be simplified as follows. Let us denote asD2,N

the subset ofRN−1 composed of all vectors [y2, . . . , yN]T which are such that

fYi (yi) , 0 ∀ i = 2, . . . ,N. (35)

Whatever the random variablesYi , Eq. (34) is met for anyy1 and any vector [y2, . . . , yN]T which does not belong to
D2,N, because its left-hand and right-hand terms are then both equal to zero. The independence constraint actually set
by (34) therefore reduces to

O2(y1 − I ′(y2, . . . , yN; θ, φ); θ, φ) = fY1(y1)

∀ y1 ∈ R,∀ [y2, . . . , yN]T ∈ D2,N (36)

where fY1(y1) is defined by (26).

2.1.8. Consequences for ICA-based separability
Let us consider the case when the output random variablesYi are independent. We aim at determining how these

random variables are linked to the transformed source random variablesS′i when this independence condition is met.
We showed above that we only have to consider this condition for the values of [y2, . . . , yN]T which belong toD2,N,
i.e. which are such that all corresponding pdffYi (yi), with i = 2, . . . ,N, are non-zero. We mentioned in Section 2.1.2
that this constraintfYi (yi) , 0 is met at least over one interval of valuesyi , separately for each random variableYi .
So, let us consider the situation wheny2 to yN arevariedwithin such intervals wherefYi (yi) , 0, whereasy1 takes an
arbitrary fixed value. In that situation, the output independence condition may be expressed as in (36) for these output
valuesyi , i.e.

O2(y1 − I ′(y2, . . . , yN; θ, φ); θ, φ) = fY1(y1). (37)

The major phenomenon in Eq. (37) is then that (i) the argumentsy2 to yN of I ′(y2, . . . , yN; θ, φ) in the left-hand term
of (37) vary, (ii) meanwhile, the complete right-hand term of (37) remains constant: that term does not depend ony2

to yN, as shown not only by the notationfY1(y1) used for that term, but also by its explicit expression (26). We can
then derive consequences of this phenomenon by also taking into account the following property of operatorO2. We
showed above that operatorO2 is equal tofC, i.e. it is a pdf. We here consider the case when this pdffC is continuous,
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as explained in Appendix A. Therefore, there exists at leastone interval of values ofv whereO2(v; θ, φ) is non-zero
and varies with respect tov. We then consider values ofy1 to yN such that, wheny2 to yN are varied (in intervals
such thatfYi (yi) , 0), the resulting valuev = y1 − I ′(y2, . . . , yN; θ, φ) is situated inside an interval whereO2(v; θ, φ)
is non-zero and varies with respect tov. As explained above, the right-hand term of (37) thus remains constant, and
therefore its left-hand termO2(v; θ, φ) also remains constant. This implies that, althoughy2 to yN are varied,v remains
constant, and thereforeI ′(y2, . . . , yN; θ, φ) also remains constant. Eq. (8) then shows that the output signaly1 is equal
to the target termT(s1; θ, φ) that we aim at extracting, up to a constant term (see comments in Appendix B), which
is equal toI ′(s′2, . . . , s

′
N; θ, φ). This proves that, under the above-defined mild conditions, the global model analyzed

in this section is ICA-separable, i.e. output independenceimplies that the output signals are equal to the transformed
source signalss′i , up to an additive constant and an invertible function for the first output.

2.2. ICA-based separability of SATS global model with splitinterference term (SATS-SI)

We now consider a type of global models which is a sub-class ofthe SATS global model, that we defined by (8)-(9)
and that we studied above. This sub-class corresponds to thesituation when the interference termI ′(s′2, . . . , s

′
N; θ, φ)

in (8) is split as the product of two factors, where the first factor only depend on the vectorsθ andφ of mixing and
separatingparameters, whereas the second factor only depends on thesourcesignals, i.e.

I ′(s′2, . . . , s
′
N; θ, φ) = I ′p(θ, φ)I ′s(s

′
2, . . . , s

′
N). (38)

This sub-class of the SATS global model, with a Split Interference (SI) term, is therefore denoted as the SATS-SI
global model hereafter.

Since we proved above the ICA separability of the overall SATS class, this obviously allows us to directly con-
clude that its SATS-SI sub-class is also ICA-separable. Thereason why we introduce this sub-class however is that,
when investigating thesecond-orderseparability of several classes of models further in this paper, we will show
that focusing on the SATS-SI class yields additional attractive properties. For the same reason, we introduce a last
sub-class of models hereafter, and we comment on its ICA-separability properties.

2.3. ICA-based separability of SATS-SI global model with fixed target source term (FSATS-SI)

We eventually consider a type of global models which is a sub-class of the SATS-SI global model, that we defined
above by (8), (9) and (38). This sub-class corresponds to thesituation when, in addition to the above properties, the
termT(s1; θ, φ) of y1, which appears is (8) and which corresponds to the target sources1, is a “fixed” function of that
source, i.e. it depends on the (unknown but) fixed vectorθ of mixing parameters, but not on the tunable vectorφ of
separating parameters. This termT(s1; θ, φ) then reduces to

T(s1; θ, φ) = T(s1; θ). (39)

This sub-class of the SATS-SI global model, with aFixedsingle-additive-target-source term, is therefore denoted as
the FSATS-SI global model hereafter. This FSATS-SI sub-class is also ICA-separable, for the same reason as in the
case of the SATS-SI model considered above.

3. Analysis of second-order separability

3.1. Motivation

The main historical approach for solving BSS problems is ICA. In the previous section, we derived new results
concerning ICA-based separability, by considering a particular class of models, i.e. SATS global models, and by
showing that they are ICA-separable. This completed our separability analysis from the ICA point of view. However,
BSS may be achieved by other criteria than ICA in some configurations. In particular, ANC may be considered as a
special type of linear BSS problem, and it is well-known thatthis specific problem may be solved by only resorting to
second-order statistics, instead of the more general ICA criterion and its approximations, which involve higher-order
statistics in various ways. One may therefore wonder whether the SATS global model, or its sub-classes, that we are
considering in this paper are also separable by only using second-order statistics, or whether the ICA-based approach
that we derived above is the only solution for these models, when the source signals are only assumed to be stochastic
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and statistically independent2. This question is especially relevant for our SATS global model, since it is essentially a
nonlinear extension of ANC, as stated above in Section 1 and illustrated below in Section 5 by means of an example.
So, the question is: does the NANC problem introduced in thispaper result in second-order separability, in addition
to its ICA-based separability that we showed above ? The answer to this question is not only of theoretical interest:
showing the second-order separability of the considered model means that one can then develop associated second-
order BSS algorithms, which are simpler than ICA methods (but possibly less accurate or robust, especially for highly
nonlinear models).

The analysis of second-order separability that we present below consists of two main steps. We first describe the
most natural approach to this problem, i.e. we consider: (i)the general SATS global model, as defined above, and (ii)
the second-order cross-statistics of its outputs. We show by means of an example that this basic approach does not
always guarantee separability. We then proceed further by considering sub-classes of the above model and, possibly,
statistics associated with reformulated versions of thesemodels. We thus show that separability is achieved by only
resorting to second-order statistics for several sub-cases. Let us insist again that, in all this investigation, we only
consider the signals at a single time and we set no restrictions on their temporal structure (as in Section 2). This
should be constrasted with second-order BSS methods for general linear instantaneous mixtures, such as SOBI, which
set constraints on source temporal structure.

3.2. Covariance-based non-separability of original global models: an example

For the sake of clarity, let us consider a specific mixing and separating configuration which yields a global model
belonging to the SATS class, and also to its SATS-SI and FSATS-SI sub-classes. This configuration involves two
observations defined as follows, again at a given timet:

x1 = s1 + a(s2)β (40)

x2 = s2 (41)

wheres1 ands2 are the source values at the considered time,a is an unknown real-valued constant mixing coefficient,
and the exponentβ is a known non-zero real-valued constant. Therefore, the vectorθ of unknown mixing parameters
is here restricted to the scalar parametera.

The most natural separating system for restorings1 ands2 (s2 is already available here) from the above observa-
tions has two outputs defined as

y1 = x1 − b(x2)β (42)

y2 = x2 (43)

whereb is the only real-valued tunable coefficient of the separating system, which corresponds toφ defined in Section
2.

Combining the above mixing and separating equations, the resulting global model reads

y1 = s1 + (a− b)sβ2 (44)

y2 = s2. (45)

This model therefore indeed belongs to the SATS class definedin (8)-(9). It also belongs to its SATS-SI sub-class,
since it meets condition (38). Besides, it belongs to its FSATS-SI sub-class, because it also meets condition (39),
moreover with no actual dependency ofT(s1; θ) with respect toθ here. Note that this model is also a simple nonlinear
extension of the basic version of the ANC model: forβ = 1, the configuration considered here reduces to (linear)
instantaneous ANC with two sources.

For the considered global model, BSS is achieved when

b = a. (46)

2We do not consider the other main classes of BSS methods in this paper, especially sparse component analysis and non-negative matrix
factorization, which require other source properties.
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We here aim at determining if forcing the separating system outputsy1 andy2 to have zero covariance guarantees
thatb becomes equal to the value defined by (46), when the source signalss1 ands2 are assumed to be statistically
independent. As an example, let us consider the case whens2 is a zero-mean signal. The covariance of the separating
system outputs is then easily shown to be

Cy1y2 = (a− b)E{sβ+1
2 } (47)

where we use the standard definition of the covariance of two random variablesX andY, i.e.

CXY = E{(X − E{X})(Y − E{Y})} = E{XY} − E{X}E{Y}. (48)

This yields two possible cases:

1. the first case is when the source signals2 is such thatE{sβ+1
2 } , 0. Then, the covariance of the separating system

outputs is equal to zero only ifb = a. Therefore, in this case, the considered global model is separable by means
of separating system output decorrelation.

2. The second case is when the source signals2 is such that

E{sβ+1
2 } = 0. (49)

Then, the covariance of the separating system outputs remains equal to zero whatever the value ofb. Therefore,
the sources cannot be separated by using this covariance parameter in that case. Note that condition (49) may
actually be met in practice: this e.g. occurs whenβ is an even integer ands2 has an even pdf.

The above example shows that directly using the covariance of the outputs of the original global model does not
always guarantee separability, even for the most specific sub-class of global models that we considered above, i.e.
the FSATS-SI model. A first solution to this problem may however be developed by modifying the way we handle
the initial global model, i.e. by post-processing it (in practice, this means that this post-processing is applied to the
outputs of the separating system involved in the original global model). This solution may appear in a rather natural
way in the above simple example, but is much more general, as will now be shown.

3.3. Covariance-based separability of post-processed SATS-SI global model
We here investigate the situation when a global model has been derived from the considered mixing model and

from the separating system which was originally designed for it. We consider the case when this global model
belongs to the SATS-SI class, i.e. when it may be expressed according to (8)-(9) and it meets condition (38). We
showed above that cancelling the covariance of the outputs of this model does not always guarantee separability, but
we now claim that this separability is guaranteed when one cancels the covariance of an adequatepost-processed
versionof the outputs of the above model. More precisely, we start from the original outputs (9), equal tos′2, . . . , s

′
N,

and we combine them according to theknownoperatorI ′s involved in (38). Note that this procedure can be applied
to the SATS-SI model because the interference termI ′(s′2, . . . , s

′
N; θ, φ) meets (38), so that its factorI ′s(s

′
2, . . . , s

′
N) can

be computed without knowing the value of the vectorθ of mixing parameters. On the contrary, for a global model
which only belongs to the overall SATS class, the value ofI ′(s′2, . . . , s

′
N; θ, φ) cannot be computed before estimating

θ, so that the approach described in this section cannot be applied. This approach is therefore only proposed for the
SATS-SI sub-class.

The above combination of the signalss′2, . . . , s
′
N yields one output,I ′s(s

′
2, . . . , s

′
N), of our modified separating and

associated global models which include post-processing. The other output of these models is equal toy1, defined by
(8), to which we apply no post-processing. We denote asz1 andz2 the two outputs of our modified global model,
which is obtained by combining (8)-(9) and (38) with the above-defined post-processing stage. This modified global
model reads as follows (again at a given timet):

z1 = T(s1; θ, φ) + I ′p(θ, φ)I ′s(s
′
2, . . . , s

′
N) (50)

z2 = I ′s(s
′
2, . . . , s

′
N). (51)

Using the modified model (50)-(51) that we derived above, theapproach that we propose then uses the covariance
of the outputs signalsz1 andz2 as the separation criterion. When considering independentsource signals, it is easily
shown that this covariance reduces to

Cz1z2 = I ′p(θ, φ)σ2
I ′s(s′2,...,s

′
N) (52)
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whereσ2
X = CXX denotes the variance of a random variableX.

Let us first make it clear that the specific case when the variance of I ′s(s
′
2, . . . , s

′
N) is zero is not of interest, but

yields no problem: in that case,I ′s(s
′
2, . . . , s

′
N) is essentially a constant, therefore (38) shows thatI ′(s′2, . . . , s

′
N; θ, φ) is

a constant, and (8) proves thaty1 always (i.e. whatever the value of the vectorφ of separating parameters) provides
the target termT(s1; θ, φ), up to an additive constant.

Now consider the case of interest, i.e. whenσ2
I ′s(s′2,...,s

′
N) , 0. Eq. (52) then shows that adapting the vectorφ of

separating parameters so as to cancelCz1z2 forcesI ′p(θ, φ) to become equal to zero. Eq. (38) and (8) then prove thaty1

becomes equal to the target termT(s1; θ, φ). This means that thepost-processedSATS-SI global model is separable
by means of output decorrelation (whatever the marginal source statistics).

As a consequence, the above result especially applies when considering the FSATS-SI global model and using the
above post-processing. In addition, an alternative second-order approach may also be developed specifically for that
FSATS-SI global model, as will now be shown.

3.4. Variance-based separability of original FSATS-SI global model

For two-source (linear) instantaneous ANC, it is well-known that separation may be achieved by two alternative
second-order approaches:

• the first approach consists in cancelling the covariance ofbothoutput signals. This approach has a relationship
with linear symmetric ICA, e.g. based on mutual informationcancellation, whose separation criterion also
involvesall outputs.

• The second approach consists in minimizing the variance ofone output signal, i.e. of the signal which is
unmixed only when the separating parameters are tuned so as to cancel the interference term in this output.
This approach is more similar to linear deflation-based statistical BSS, e.g. based on the maximization of the
negentropy (or of the absolute value of the normalized kurtosis) of asingleoutput.

In Section 3.3, we extended the multi-output, i.e. covariance-based, ANC approach to a class of nonlinear mix-
tures. We will now show that the single-output, i.e. variance-based, approach can be extended to the FSATS-SI global
model (without post-processing). To this end, we consider the output signal of interest of this model, defined by (8),
(38) and (39), which yield

y1 = T(s1; θ) + I ′p(θ, φ)I ′s(s
′
2, . . . , s

′
N). (53)

When considering independent source signals, it is easily shown that the variance of this signal reduces to

σ2
y1
= σ2

T(s1;θ) + [ I ′p(θ, φ)]2σ2
I ′s(s′2,...,s

′
N). (54)

Therefore, this variance reaches its minimum value when thevectorφ of separating parameters is adapted to as to
achieve

I ′p(θ, φ) = 0. (55)

Eq. (53) then shows that the output signaly1 becomes equal to the target termT(s1; θ). This means that the FSATS-SI
global model is separable by means of output variance minimization (whatever the marginal source statistics).

We thus obtained a variance-based separability criterion only for the simplest of the global models considered in
this paper. Note that the above derivation does not extend tothe other two classes, as will now be shown. For the
SATS-SI model, (39) does not hold any more and (53) is replaced by

y1 = T(s1; θ, φ) + I ′p(θ, φ)I ′s(s
′
2, . . . , s

′
N) (56)

which leads to
σ2

y1
= σ2

T(s1;θ,φ) + [ I ′p(θ, φ)]2σ2
I ′s(s′2,...,s

′
N). (57)

Now, when adaptingφ, not only I ′p(θ, φ) is varied, but alsoσ2
T(s1;θ,φ). Therefore, the minimum ofσ2

y1
in general does

not correspond to condition (55), i.e. to the cancellation of the interference term. The overall SATS class is analyzed
in the same way, starting from (8) and deriving the associated expression ofσ2

y1
. This shows that this model, too,

cannot be separated by minimizingσ2
y1

.
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4. Resulting separation methods

As stated above, this paper is primarily focused on theseparabilityof various nonlinear models, not on practical
separation: we mainly aim at unveiling statistical properties of output signals which ensure separation, not at detailing
associated BSS algorithms. However, we here want to make it clear that, once these statistical properties have been
derived, straightforward ways to develop corresponding BSS methods result from them. These approaches may be
defined as follows, for the two types of separation properties that we respectively showed in Sections 2 and 3.

We first proved in Section 2 that adaptingφ so as to make the outputs of the SATS model independent guarantees
that separation is achieved (under mild conditions). To derive a corresponding BSS criterion, we must then define a
parameter which measures the degree of mutual dependence ofthese output signals. A very natural candidate to this
end is their mutual information, which is zero if the signalsare independent and positive otherwise. The resulting BSS
method for the SATS model then consists in adaptingφ so as to minimize the mutual information of the outputs of the
separating system. This shows that moving from the propertyderived above (i.e. independence of output signals) to a
BSS criterion (minimization of output information) is straightforward for our ICA-based solution to the problem.

Things are even simpler for the two second-order approachesthat we developed in Section 3. We defined the first
proposed solution not only in terms of a statistical property (i.e. uncorrelateness) of the output signals, but also with
respect to a corresponding parameter (i.e. output covariance). Moreover, we presented the corresponding practical
second-order criterion that may first be used to achieve BSS:it just consists in cancelling the output covariance
parameter. Our other second-order approach is directly defined in terms of a constraint imposed to a parameter: it
consists in minimizing the variance of the first output.

The next step of the development of such practical BSS methods then consists in focusing on specific models
belonging to the considered classes, deriving the corresponding expressions of the output information or (co)variance
parameters, and addressing the optimization of these parameters. Depending on the complexity of the expressions
of these parameters, closed-form solutions for their optimization may be obtained, or numerical algorithms must be
considered. While the description of separationalgorithms(or closed-form solutions) for specific models is beyond
the scope of this paper, it is here worth it considering aparticular modelhowever, in order to more explicitly illustrate
the above generalseparabilityresults. This will show that there do exist practical applications where the global model
belongs to several above-defined classes. The separabilityproperties obtained in the previous sections are then of high
importance, because they prove the relevance of the associated practical separation methods that we defined in the
current section. We therefore now proceed to the description of such an application.

5. Application to coupled quantum bits

5.1. Mixing model

We now consider an application which concerns Quantum Information Processing (QIP) [7]. QIP is an emerging
field, which widely uses quantum bits (qubits) instead of classical bits for performing computations [7]. A qubit, with
indexi, has a quantum state expressed as follows (for a pure state):

|ψi >= αi |+ > +βi |− > (58)

where|+ > and|− > are basis vectors, whereasαi andβi are two complex-valued coefficients such that

|αi |2 + |βi |2 = 1. (59)

In [2], [3] we introduced the Blind Quantum Source Separation (BQSS) field, by considering the situation when
two qubits of a physical system are separately initialized with states defined by (58) and then get “mixed” (in the
BSS sense) due to the undesired coupling effect which exists in the considered system (Heisenberg coupling in our
case). We proposed an approach which consists in repeatedlyinitializing the two qubits according to (58) and later
measuring spin components associated with the system composed of these two coupled qubits. We showed that this
yields four possible measured values, with respective probabilities p1, p2, p3 andp4. We derived the expressions of
these probabilities with respect to the polar representation of the qubit parametersαi andβi , which reads

αi = r ie
iθi , βi = qie

iφi ∀i ∈ {1, 2} (60)
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with 0 ≤ r i ≤ 1 andqi =

√

1− r2
i , due to (59). The above probabilities may then be expressed as follows (with

different numbering as compared to [3]):

p1 = r2
1r2

2 (61)

p2 = r2
1(1− r2

2)(1− v2) + (1− r2
1)r2

2v2

−2r1r2

√

1− r2
1

√

1− r2
2

√
1− v2vsin∆I (62)

p4 = (1− r2
1)(1− r2

2) (63)

where
∆I = (φ2 − φ1) − (θ2 − θ1) (64)

andv is a parameter, defined in [3], which is such that 0≤ v2 ≤ 1, and whose value is unknown in most configurations.
Note that probabilityp3 is not considered in this investigation, since it is redundant with the above three ones: we
always have

p1 + p2 + p3 + p4 = 1. (65)

Eq. (61)-(63) form the nonlinear “mixing model” (in BSS terms) of this investigation. The observations involved
in this model are the probabilitiesp1, p2 andp4 measured (in fact, estimated, using repeated qubit initializations) for
each value of the couple of qubits. Using standard BSS notations, the observation vector is thereforex = [x1, x2, x3]T

with x1 = p1, x2 = p2 andx3 = p4. The source vector to be retrieved from these observations is s= [s1, s2, s3]T with

s1 = r1, s2 = r2 ands3 = ∆I . The parametersqi are then obtained asqi =

√

1− r2
i . The four phase parameters in (60)

cannot be individually extracted from their combination∆I . Moreover, as explained in [3],∆I in fact only depends on
one of the angular parametersθ1, θ2, φ1, φ2, which is used to store information, since all other three angular parameters
are fixed. We anticipate that this data stream∆I and the other two, i.e.s1 = r1 ands2 = r2, will be handled separately
when applying our approach to store information in qubit parameters of future quantum computers. These three data
streams, i.e. the source signals of our BSS problem, may therefore be quite reasonably assumed to be (or created so
as to be) statistically independent in the considered application. In blind configurations, retrieving the sources first
requires one to estimate the only unknown mixing parameter of this model, i.e.v.

5.2. Separating system

In [3], we showed that the above mixing model is invertible (with respect to the considered domain of source
values), for any fixedv such that 0< v2 < 1, provided the source values meet the following conditions:

0 < r1 <
1
2 < r2 < 1 (66)

− π2 ≤ ∆I ≤ π
2 . (67)

The separating structure that we proposed for retrieving the sources then yields an output vectory = [y1, y2, y3]T which
reads

y1 =

√

1
2

[

(1+ p1 − p4) −
√

(1+ p1 − p4)2 − 4p1

]

(68)

y2 =

√

1
2

[

(1+ p1 − p4) +
√

(1+ p1 − p4)2 − 4p1

]

(69)

y3 = arcsin

























y2
1(1− y2

2)(1− v̂2) + (1− y2
1)y2

2v̂
2 − p2

2y1y2

√

1− y2
1

√

1− y2
2

√
1− v̂2v̂

























(70)

wherev̂ is the estimate ofv used in the separating system. The outputsy1, y2 andy3 respectively restore the sources
s1 = r1, s2 = r2 ands3 = ∆I .
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5.3. Original global model

Starting from the above results obtained in [3], we here aim at analyzing the ICA-based and second-order sepa-
rability of the resulting global model, which was not addressed in [2], [3], since other types of BQSS methods were
considered in these papers. We first derive this global model, by combining the mixing model (61)-(63) and the
separating model (68)-(70).

More precisely, one should preferably first consider the sub-model obtained by only combining (61) and (63) with
(68)-(69). Under condition (66), the resulting global sub-model reads

y1 = s1 (71)

y2 = s2 (72)

where this model may either be obtained by direct calculation, or justified as follows. The first stage of this global sub-
model, i.e. (61) and (63), transforms the sourcess1 = r1, s2 = r2 into the observationsx1 = p1, x3 = p4, without any
dependence on the mixing parameterv. It is known from [3] that, under condition (66), this sub-model is invertible.
The second stage of the considered global sub-model, i.e. (68)-(69), implements the exact inverse of the mixing sub-
model composed of (61) and (63), without any dependence on the estimate ˆv of v. The outputsy1 andy2 are therefore
exactly equal to the original sourcess1 ands2 (again ignoring the deviations which are due to the fact thatp1 andp4

are estimated in practice).
The expression of the last output of the global system, i.e.y3, may eventually be obtained by inserting (71), (72)

and (62) into (70). This yields

y3 = arcsin

























(v̂2 − v2)(s2
2 − s2

1)

2s1s2

√

1− s2
1

√

1− s2
2

√
1− v̂2v̂

+

√
1− v2v
√

1− v̂2v̂
sins3

























. (73)

Let us note that if ˆv = v, Eq. (73) reduces to
y3 = arcsin [sins3] (74)

and therefore, using condition (67)
y3 = s3, (75)

without any ambiguity, which again shows the invertibilityof the mixing model (61)-(63) in the considered conditions.
Now, for any values of the mixing and separating parametersv andv̂, the considered global model consists of (71),
(72) and (73). Note that the property which consists for all signals except one in always being unmixed here applies
to the outputs of the global model, but not to those of the mixing model (61)-(63) involved in it.

5.4. ICA-based separability

We now aim at investigating whether the results that we obtained in Section 2 may be applied to the quantum
problem that we are considering in this section. Comparing the SATS class of global models defined by (8)-(9) to
the specific quantum model defined by (71), (72) and (73) showsthat the SATS class does not include this quantum
model in its original form, but contains a slightly reformulated version of it, which is obtained as follows.

We first split the separating system defined in Section 5.2 as the cascade of two sub-systems. The first, and main,
sub-system derives (i) the signalsy1 andy2 respectively defined in (68) and (69), and (ii) the argument of the arcsin()
function in the right-hand term of (70). The second sub-system is a fixed “post-distortion” stage which only consists in
derivingy3 by computing the arcsin() of the third output of the first sub-system, while leaving its first two outputs, i.e.
y1 andy2, unchanged. The mutual independence of the outputs of the overall separating system is equivalent to that
of the outputs of its first stage, and the same equivalence therefore holds for the ICA separability of the global models
involving these two (i.e. partial or complete) separating systems. Hence, we only investigate the ICA separability
of the global model involving the first stage of the separating system hereafter. Moreover, to map its notations with
those of Section 2, we hereafter modify the meaning of notationy3: we denote asy3 the third output of this first stage,
i.e. beforeapplying the arcsin() post-distortion which yields the eventual expression in the right-hand side of (70).
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Besides, we change the indices of the signals involved in this application, again to map its notations with those of
Section 2. We thus reorder the source and output signals as follows:

notations in (71), (72), (73) → new notations

s1 → s2

s2 → s3

s3 → s1

y1 → y2

y2 → y3

y3 → y1.

The considered global model (without post-distortion) thus becomes

y1 =

√
1− v2v
√

1− v̂2v̂
sins1 +

(v̂2 − v2)(s2
3 − s2

2)

2s2s3

√

1− s2
2

√

1− s2
3

√
1− v̂2v̂

(76)

y2 = s2 (77)

y3 = s3. (78)

This reformulated model belongs to the SATS class defined by (8)-(9), with

N = 3 (79)

s′i = si ∀ i = 1, . . . ,N (80)

θ = v (81)

φ = v̂ (82)

T(s1; θ, φ) =

√
1− v2v
√

1− v̂2v̂
sins1 (83)

I ′(s′2, . . . , s
′
N; θ, φ) =

(v̂2 − v2)(s2
3 − s2

2)

2s2s3

√

1− s2
2

√

1− s2
3

√
1− v̂2v̂

. (84)

Moreover, the properties requested in Section 2.1 are met here. Therefore, the general results that we derived in
Section 2 directly show that this global model is ICA-separable (in the conditions defined in Section 2).

5.5. Covariance-based separability of post-processed model
The considered quantum global model (again without post-distortion) also belongs to the SATS-SI sub-class, since

its termI ′(s′2, . . . , s
′
N; θ, φ) defined in (84) meets (38), with

I ′p(θ, φ) =
v̂2 − v2

√
1− v̂2v̂

(85)

I ′s(s
′
2, . . . , s

′
N) =

s2
3 − s2

2

2s2s3

√

1− s2
2

√

1− s2
3

. (86)

Therefore, the general results that we derived in Section 3.3 guarantee that this quantum model is separable by means
of the covariance-based method that we proposed in Section 3.3.

5.6. Unapplicability of variance-based method
The considered quantum global model does not belong to the FSAT-SI sub-class, because its termT(s1; θ, φ)

defined in (83) indeed depends onφ = v̂. Therefore, the general results derived in Section 3.4 cannot be applied
here to guarantee the separability of our quantum model by means of the variance-based method that we proposed in
Section 3.4. On the contrary, that method is of interest for other applications, not detailed here due to space limitations.
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6. Conclusions

In this paper, we investigated the separability of broad classes of nonlinear global models involving reference
signals. We thus derived general properties concerning ICA-based and second-order (covariance-based or variance-
based) separability. In addition, these investigations allowed us to outline practical BSS methods. These methods
are e.g. applicable to the specific model involved in the quantum application that we presented in Section 5. The
implementation of these BSS methods and the evaluation of their numerical performance is a topic beyond the scope
of this paper, which will be reported in future articles. We will thus further develop the field that may be briefly called
“nonlinear adaptive noise cancellation” (NANC), as a reference to (linear) ANC.

Acknowledgements The author would like to thank Alain Deville for his participation in the development
of the quantum model reused here.

Appendix A. Motivations for considering a continuous pdf

As stated in Section 2.1.8, in this paper we consider the casewhen the pdffC is continuous. We focus on this case
for two reasons. On the one hand, this pdf continuity is not constraining because is it likely to be met in most cases of
interest, due to (24) and to the fact that, in many practical cases, the source random variableS1 has a continuous pdf
and the transformT which yields the random variableC = T(S1; θ, φ) has a continuous derivative. On the other hand,
this pdf continuity condition simplifies our approach, because it is sufficient to guarantee that the following property,
used in Section 2.1.8, is met:O2(v; θ, φ) varies at least over one interval of values ofv for whichO2(v; θ, φ) , 0.

The latter property may however also be obtained by considering broader classes of pdffC, i.e. by just requesting
fC to vary at least over one interval where it is non-zero. This includes many types of discontinuous pdf, and it only
excludes from our subsequent investigation the case of uniform (over one or several intervals) pdf. Uniform pdf might
be further analyzed. However, this can be avoided by considering that a uniform pdf (over a single interval) is the
limit of a continuous pdf with a non-zero almost constant part, and continuous transitions towards zero or almost zero
parts. The latter continuous pdf may e.g. be defined as a combination of sigmoidal functions with tunable smoothness
parameters (see e.g. [5]). One may therefore avoid potential issues due to discontinuities in ideal uniform pdf, by
considering instead their above continuous approximationwith parameters tuned so as to achieve sharp transitions
between zero and non-zero pdf values.

The continuity constraint forfC may also be linked to the other pdf continuity assumptions that we made above.

Appendix B. Comments about constant output term

In Section 2.1.8, we stated that the output signaly1 is equal to the target termT(s1; θ, φ) that we aim at extracting,
up to a constant term, which is equal toI ′(s′2, . . . , s

′
N; θ, φ). More precisely, if any of the random variablesY2 to YN

has a non-zero pdf onseveraldisjoint intervals, the analysis of Section 2.1.8 proves that the termI ′(s′2, . . . , s
′
N; θ, φ)

is constant over each of these intervals, but it does not state whether these constant values may be different one from
the other. However, one should also take into account that this term I ′(s′2, . . . , s

′
N; θ, φ) is obtained by transferring

the source values through mixing and separating models which do not depend on the signal values. The models
encountered in practice are expected to be such thatI ′(s′2, . . . , s

′
N; θ, φ) takes thesameconstant value on all above-

mentioned intervals. One may check that this is the case for the application considered in Section 5, as shown by (84):
for this model, the fact thatI ′(s′2, . . . , s

′
N; θ, φ) is constant, and therefore zero, for some source value intervals implies

thatθ andφ are such thatI ′(s′2, . . . , s
′
N; θ, φ) is zero everywhere. Similarly, by first considering a single value ofy1,

one derives properties ofθ andφ which then imply thatI ′(s′2, . . . , s
′
N; θ, φ) remains constant for any value ofy1.
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