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Abstract

Relatively few results have been reported about the sepigyalb given classes of nonlinear mixtures by means of sta-
tistical criteria such as ICA. We here first prove the ICA gapélity of a wide class of nonlinear global (i.e. mixirg
separating) models involving “reference signals”, i.emixed signals. We also show the second-order separability o
sub-classes of the above class of models. This work therefmrcerns nonlinear extensions of (linear) adaptive noise
cancellation. We illustrate the usefulness of our genesllts by applying them to a quantum information processing
problem, which involves a model of Heisenberg-coupled twarstates (i.e. qubits). This paper opens the way to
practical ICA-based and second-order blind source sdparéBSS) methods for nonlinear mixtures encountered in
various applications. These BSS methods are also outlintds paper.

Keywords: blind source separation, independent component anah@idinear adaptive noise cancellation,
separability, nonlinear mixture, quantum bit (qubit)

1. Introduction

A generic signal processing problem consists in extraatimgor several unknown source signals of interest from
several observations, which are mixtures of these sigrfaisterest and possibly of additional, undesired, source
signals. A first generation of such problems was especidligisd by Widrow et al. and e.g. reported in 1975 in
[8]. It is known as adaptive noise cancellation (ANC). Ititygdly corresponds to configurations where almost all
observations are “reference signals”, i.e. unmixed sgn#n extended version of this problem, known as blind
source separation (BSS), has then been widely studied 8iecE980’s [1], [6]. It mainly concerns cases whadh
observations are mixtures of all source signals.

The “mixing model” involved in these problems is most oftée functional form which defines the expression
of the vector of observed signals with respect to the vedtsoarce signals and to the parameters of that functional
form. The values of these parameters are unknown inbthel version of the source separation problem. The
development of a complete BSS method for a given mixing mogstally consists of the following steps. Step 1:
analyze the invertibility of this mixing model if possibland define a separating model, which essentially aims at
implementing the inverse of the considered mixing modekpSt: select a separation criterion for estimating the
values of the parameters of the separating model. Step Se(gltinked to Step 2): determine if this criterion ensures
the separability of the considered models (at least for solamses of source signals). This consists in determining
if this criterion is met only when the outputs of the sepamgtsystem are equal to the sources up to “acceptable”
indeterminacies. Step 4: develop practical estimationrélyns associated with the considered criterion.

The above procedure has been widely applied to simple mixiadels, i.e. linear (and especially instantaneous)
ones. It has been much less explored and is much tougher fdinear models [1]. Its Step 1, i.e. the definition of
separatingstructures has e.g. been addressed for a wide class of nonlinear miod@ls A natural way to tackle
its Step 2 consists in considering Independent Componealyais (ICA) methods, which have been widely used for
linear mixtures [1], [6]. The relevance of these methodwusththen be proved for the considered nonlinear models,
by investigatingseparability which corresponds to Step 3 of the above procedure. Althsoge general ICA (non-
)separability properties have been reported, very fewltesue available for the specific models which have been
considered in the literature.
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The above separability issue is the main topic that we addrethis paper: in Sections 2 and 3, we respectively
analyze the separability of all considered general noalineodels by means of ICA-based and second-order criteria.
Then, in Section 4, we outline the practical BSS methods ticectly result from the above separability properties.
The details of these BSS methods are beyond the scope ofahés,pvhich is focused on separability. In Section 5,
we then illustrate our general separability results by gipglthem to a specific model encountered in an application
dealing with quantum signals. In Section 6, we eventualgndconclusions from our overall investigation, which
yields a nonlinear extension of linear ANC.

2. Analysis of | CA-based separ ability

2.1. ICA-based separability of single-additive-targetssce (SATS) global model

2.1.1. Considered global model
In all this paper, we only consider memoryless mixing andsajing models, i.e. models whose outputs at a given

timet only depend on their inputs at the same time. Moreover, wead@aguire the signals to have any temporal
structure (nor do we use it if it exists). Therefore, we orhé argument ‘)" in signal notations hereafter, and we in
fact consider the associated random variables at tinddl configurations studied below involvd source signals
which form a vectors = [s;, ..., sv]", where! stands for transpose. These signals are transferred thi@ugxing
operatorM, which belongs to a given class and depends on a set of panemétich form a vecto#, whose value is
unknown in the framework of BSS. This yieltisobserved signals; which form a vectox = [xy, ..., xn]", defined
as

x=M(s; 6). 1)

These signals are then processed by a separating or unnsixgtgm, which corresponds to an operator This
operator belongs to a fixed class and depends on a set of garamaich form a vectog. TheN output signalsy,
of the unmixing system form a vectgr= [yi,...,yn]", defined as

y=U(x4). )

The class of operatdd is “matched” to the class of operatbt in the sense that there exists at least one valse
of ¢ which depends on the considered value& @ind which is such that, whef = ¢opt, the output signalg; of the
unmixing system are equal to the source sigrsglsip to a set of acceptable transformations, called indeéterties
(such as permutation, scaling, additive constants).

Combining (1) and (2), the global model from the source dgjgato the unmixing system outpuysreads

y=G(s;6.¢) (3)
where the global operat@ = U o M is explicitly defined by
G(s; 0, ¢) = U(M(s; 0); ¢). (4)

In the separability analyses presented hereafter, we @avg to consider the global mode| i.e. we need not define
the mixing and unmixing modeld andU from which it is derived. We set the following conditions Gn Whatever

0 andg, only one of the output signals of the global model (and urnmgisystem) may be a mixture of source signals,
whereas each of all other output signals only depends onglessiource. The possibly mixed output is always the
same, and we assign it index no. 1, i.e. the correspondimgkigy;. Moreover, we request that the components of
the global model may first be expressed as follows, with adtgardering of the other outputs with respect to the
sources:

Y1 T(s1;6,9) + 1(S2, ..., N: 6, 9) (5)
yi = Hi(s;6,9) Yi=2,...,N (6)

The output of interesly;, is thus the sum of: (i) a term(s; 6, #), which only depends on thlargetsource, i.e. on
the sources; that we aim at extracting fromy, (i) an interferenceerml(s,,..., sn; 6, ¢), which may depend on all
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sources except the target source, and that we aim at “cargelby properly adjustings. Each signaH;(s; 6, ¢) in
(6) is a transformed version of source siggalWe denote it as], fori = 2,...,N. Fori = 1, we define

Moreover, we consider the case when the mdaled such that the terr(s,, .. ., Sy; 8, ¢) may also be expressed with
respect to the transformed sour&gdo s, instead of the original source signajsto sy (this is especially true when
all operatordH; are invertible). The global model (5)-(6) may then be refolated as

Y1 T(s1;6,8) +1'(S5, ..., S\ 60, 8) (8)
Yo = § Vi=2,...,N 9)

Considering this data model, BSS aims at adjustirep as to extract the additive terfi(ss; 6, ¢) associated with
the target source, from the output signay; defined in (8). The global model (8)-(9) is therefore referred to as the
Single-Additive-Target-Source (or SATS) global modeldwdter.

2.1.2. Source properties and goal of investigation

We here aim at determining if the above SATS global model gmeable in the sense of ICA, for given source
statistics and operatofisandl’. Using the standard ICA formulation for at-input to N-output global model, this
ICA-separability problem may be defined as follows. We cdesthe situation when the random variables defined
at timet by all original source signals;(t) to sy(t) have given marginal statistics and are mutually statfic
independent. The random variables defined at tirbg all transformed source signad$(t) to s (t) are then also
mutually statistically independent. We consider the rand@riables defined at timeby the separating system
outputsy; (t) to yn(t). We denote these random variablesraso Yy, and we aim at determining all cases when they
are mutually statistically independent. If this only indés cases when the output signals are equal to the source
signals up to acceptable indeterminacies, then the caesidgobal model is said to be ICA-separable (up to these
indeterminacies), for the considered type of sources.

Note that we thus consider ICA from a BSS perspective, i.eonesof the possible tools for performing source
extraction in a situation when is it known that the availatitservations result from a given number of source signals
through a mixing model which belongs to a known class (and witknown parameter values). This should be dis-
tinguished from the case when one applies ICA to obsensitidthout any knowledge about whetfteow they may
relate to source signals, and one aims at transforming ihleservations into independent output signals, especially
in order to derive a more suitable representation of thesemations.

In all this investigation, the source and output randomalsés are assumed to bentinuous Their statistics
may therefore be defined by their probability densitgctions(pdf), i.e. without having to resort to representations
based on distributions. Each of these pdf is non-zero onaat lene interval. For such random variables, statistical
independence and the associated ICA-separability @itariay be analyzed by considering the joint and marginal
pdf of Y1 to Yy. Therefore, we first derive the expressions of these pdfdite Moreover, we especially consider
the case when the joint pdf 0f to Yy is continuous at some points of our analysis.

2.1.3. Joint pdf of output random variables
When expressing the outputswith respect to theransformedsources’j, the global model (3) may be reformu-
lated as
y=G'(s;0,9) (10)

and is explicitly defined by (8)-(9). We consider the casemithe operato&’, defined frons’ toy (in their considered
domains) and for fixed and¢, is invertible. The pdf of the random vect¥rcomposed of the random variablgs
may then be expressed with respect to the pdf of the randotan&ccomposed of the random variabBsassociated
with the transformed sources, as

fs(s)

e ()

fv(y) = (1)

1The source signad; may then be derived fromi(sy; 6, ¢) if operatorT is invertible (in the considered domain).
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wherey ands’ are linked by (10) andg (S') is the Jacobian o/, i.e. the determinant of the matrix composed of the
partial derivatives of all components Gf with respect to all its argumengs (see e.g. [6] for details). The expression
of Jo(9) is derived from the explicit form (8)-(9) of the consideragerato!G’. It may be shown that this yields

kﬂﬁ=§%@m¢) (12)

Moreover, since all transformed sourc&sare independent, we have

N
fo(8) = | | fsi(s)- (13)
i=1
Taking into account (7), (12), (13) and denoting
fs; (s1)
O1(st1;6,¢) = ———, 14
1(S1; 6, ¢) T (50, 0.9) (14)
Eg. (11) becomes
N
fr(y) = Ox(s1:6.9) | [ fs:(S)- (15)
i=2

The right-hand term of (15) should be expressed with resjpettte output signalg;. To this end, we first use (9),
which yields
fs:(§) = fs: (i) = fv, (i) Vi=2,...,N (16)

Moreover, we consider the case when operdtowhich is a function ofs; with parameterg andg, is invertible (in
the considered domain). Denotifig* the inverse of this operator, (8) and (9) then yield

s1=T =V (Y2 ... YN; 6.9); 6, ). (17)
Eqg. (15) thus becomes
N
fy) = Oxyi—1"(a....yn:0.0):6.0) [ | fs; () (18)
i=2
N
= Oaly1 = '(Var - YNi 0:0):6,0) | | Fu(y) (19)
i=2
where we define operat@; by
O2(V; 6, ¢) = O1(TH(v; 6, 9); 6, ¢). (20)

2.1.4. Interpretation of operator 9

Before proceeding to the next natural step of our ICA-sdpilitginvestigation, we here analyze the nature of
operatorO, in more detail. This shows a feature of this operator that \iletlhien require to derive separability
properties. The target term that we aim at extracting fronpousignaly; is equal toT (s; 6, ¢). Let us denote this
component in short ag and the associated random variableCasThis random variabl€ is then a function of the
random variabl&s; = S}, defined as

C=T(S,:6,9¢) (21)
whereT is an invertible transform. The pdf of these random variglales therefore linked by
fs;(s1)
fe(€) = (22)
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where we have
$1=TYc:6,¢). (23)
Eqg. (22) may therefore be rewritten as

fs; (T7X(c; 6, 9))
125 (T-1(c; 6, 4); 6, 6)|

Comparing this expression to (14) and (20) shows that theatq@eO, that we were led to introduce in our above
standard ICA analysis is nothing but the p@f. It is by the way not surprising that this pd§ is eventually a
parameter of importance in our investigation, as opposeledf ofS;: as shown by (8), the component of output
signaly; which depends os; is not equal tcs; itself, but toc = T(s1; 6, ¢).

fc(c) =

(24)

2.1.5. Marginal pdf of output random variables

Due to (9), the pdf off, to Yy are equal to those of the corresponding transformed souf¢espdf ofY; is then
obtained by integrating the joint pdf of all output randomighles, i.e.

N
fv,(y1) =f fY([Yl,Vz,---,VN]T)l_[qu- (25)
R i=2
Inserting (18) in (25), we obtain
N N
M = [ 0 wi6.0560.0) [ [ fs [ [ v (26)
- i=2 i=2

2.1.6. Condition for independent outputs: general projesrt
The random variabley; are statistically independent if and only if

N
) =] | fe)- (27)
i=1

This condition is initially requested to be met for apyn RN. However, it may be studied only for a subsetRSY,
as will now be explained. The marginal pfif(y;) of any output random variabl may be expressed with respect to
the joint pdffy(y) of all output random variables as

o= [t ] v (29)

=10LN,

with
V=[Vi,. ., Vict, Yis Vigt, -« VN] T (29)

Let us assume that, for a given valuewpfve havefy(v) # 0, and therefordy(v) > 0. Then, iffy(.) is assumed to be
continuous, we also havig(y) > 0 for anyy in a neighbourhood of. Moreover, for anyy in RN, we havefy(y) > 0.
The right-hand term of (28) is then strictly positive, andisdhus its left-hand term, i.efy, (y;) > 0. This proves,
conversely, that if a marginal density is such tifiaty;) = O for a giveny;, then we have

fy(V) =0 V[V]_, ooy Viet, Vit - - ,VN]T (S RN_l, (30)

with v still defined by (29). So, let us denote®s the subset oRN composed of all vectorg= [yi, ..., yn]" which
are such that

fv(yi) #0 Vi=1,...,N. (31)



For anyy which doesot belong toD; N, we have the following properties. On the one hand, (31) tamet, which
implies

N
[Tt =o. (32)
i=1
On the other hand, (30) yields
fv(y) = 0. (33)

Therefore, ify does not belong t®; n, Condition (27) holds for that vectgt and this is true whatever the random

variablesY; (with a continuous joint pdf), i.e. not depending whethemtlare independent or not. Therefore, when
using Condition (27) to determine in which cases the randariablesy; are independent, one only has to consider it
for ye Z)l,N-

2.1.7. Condition for independent outputs: specific propsrt

The considerations about independence that we presergd apply to any random variables. We now proceed
to more specific properties, i.e. properties which only gpplthe outputs of the SATS global model that we consider
in this paper. Taking into account (19), Eq. (27) becomes

N N
Oayr = 1'(yar - yn; 00 0, 0) [ [ ) = [ | - (34)
i=2 i=1

Condition (34) is initially considered for anyin RN and may then be simplified as follows. Let us denotéag
the subset odRN-! composed of all vectorsy, . .., yn]" which are such that

fv(yi) #0 Vi=2,...,N. (35)

Whatever the random variabl¥s Eq. (34) is met for any; and any vectonp, ..., yn]" which does not belong to
D, N, because its left-hand and right-hand terms are then baithl égzero. The independence constraint actually set
by (34) therefore reduces to

Oa(y1—1'(Yo, ....YN; 60, 9);6,0) = Ty, (y2)
VyieR,V[ya...,y]" € Don (36)

wherefy, (y1) is defined by (26).

2.1.8. Consequences for ICA-based separability

Let us consider the case when the output random variahlase independent. We aim at determining how these
random variables are linked to the transformed source nandwiablesS; when this independence condition is met.
We showed above that we only have to consider this conditiothie values ofyp, ..., yn]T which belong taD, ,
i.e. which are such that all corresponding gd{y;), withi = 2,..., N, are non-zero. We mentioned in Section 2.1.2
that this constrainfy,(y;) # O is met at least over one interval of valugsseparately for each random variabre
So, let us consider the situation whgnto yy arevariedwithin such intervals wheréy, (i) # 0, whereay; takes an
arbitrary fixed value. In that situation, the output indegbemce condition may be expressed as in (36) for these output
valuesy,, i.e.

Oa(yr = 'Yz, ....YN: 0.9):0.0) = Ty, (y1). (37)

The major phenomenon in Eq. (37) is then that (i) the argusenb yy of 1’(Y2, ..., Yn; 6, ¢) in the left-hand term
of (37) vary, (i) meanwhile, the complete right-hand terfr(37) remains constant: that term does not depeng,on
to yn, as shown not only by the notatidi, (y1) used for that term, but also by its explicit expression (28 can
then derive consequences of this phenomenon by also takimgccount the following property of operatos. We
showed above that operat0s is equal tofc, i.e. itis a pdf. We here consider the case when thisfgd$ continuous,
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as explained in Appendix A. Therefore, there exists at leastinterval of values of whereO,(Vv; 6, ¢) is non-zero
and varies with respect ta We then consider values gf to yy such that, whely, to yy are varied (in intervals
such thatfy (yi) # 0), the resulting valug = y1 — I’(y2, ..., Yn; 6, ¢) is situated inside an interval whe@(v; 6, ¢)

is non-zero and varies with respectwoAs explained above, the right-hand term of (37) thus resaonstant, and
therefore its left-hand term@,(v; 6, ¢) also remains constant. This implies that, althougto yy are variedy remains
constant, and therefot&(y,, ..., yn; 8, ¢) also remains constant. Eq. (8) then shows that the outguiaki; is equal

to the target ternT (s;; 0, ¢) that we aim at extracting, up to a constant term (see consrnieippendix B), which

is equal tol’(s,, ..., ;6. ¢). This proves that, under the above-defined mild conditidme global model analyzed

in this section is ICA-separable, i.e. output independémqdies that the output signals are equal to the transformed
source signals], up to an additive constant and an invertible function ferfirst output.

2.2. ICA-based separability of SATS global model with spi@rference term (SATS-SI)

We now consider a type of global models which is a sub-clagss8ATS global model, that we defined by (8)-(9)
and that we studied above. This sub-class corresponds ®ittiagion when the interference teii{s,, . . ., s; 6, ¢)
in (8) is split as the product of two factors, where the firsitée only depend on the vectofsand¢ of mixing and
separatingparameterswhereas the second factor only depends orsthecesignals, i.e.

(S i16.0) = (0.0 U Sh). (38)

This sub-class of the SATS global model, with a Split Inteefece (SI) term, is therefore denoted as the SATS-SI
global model hereatfter.

Since we proved above the ICA separability of the overall SATass, this obviously allows us to directly con-
clude that its SATS-SI sub-class is also ICA-separable. réhson why we introduce this sub-class however is that,
when investigating theecond-orderseparability of several classes of models further in thisgoawe will show
that focusing on the SATS-SI class yields additional ativagroperties. For the same reason, we introduce a last
sub-class of models hereafter, and we comment on its ICArabgity properties.

2.3. ICA-based separability of SATS-SI global model wittdftarget source term (FSATS-SI)

We eventually consider a type of global models which is adabs of the SATS-SI global model, that we defined
above by (8), (9) and (38). This sub-class corresponds tsithation when, in addition to the above properties, the
termT(sy; 6, ¢) of y1, which appears is (8) and which corresponds to the targetesasy is a “fixed” function of that
source, i.e. it depends on the (unknown but) fixed vegtof mixing parameters, but not on the tunable vectaf
separating parameters. This tefr(s;; 0, ¢) then reduces to

T(s1;60.¢) = T(s1;0). (39)

This sub-class of the SATS-SI global model, witkized single-additive-target-source term, is therefore dethaie
the FSATS-SI global model hereafter. This FSATS-SI sulssla also ICA-separable, for the same reason as in the
case of the SATS-SI model considered above.

3. Analysis of second-order separ ability

3.1. Motivation

The main historical approach for solving BSS problems is |GAthe previous section, we derived new results
concerning ICA-based separability, by considering a paldir class of models, i.e. SATS global models, and by
showing that they are ICA-separable. This completed ouarsdgility analysis from the ICA point of view. However,
BSS may be achieved by other criteria than ICA in some cordigums. In particular, ANC may be considered as a
special type of linear BSS problem, and it is well-known titég specific problem may be solved by only resorting to
second-order statistics, instead of the more general I@&rn and its approximations, which involve higher-arde
statistics in various ways. One may therefore wonder whidtleeSATS global model, or its sub-classes, that we are
considering in this paper are also separable by only usiogrgkorder statistics, or whether the ICA-based approach
that we derived above is the only solution for these moddiemthe source signals are only assumed to be stochastic
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and statistically independentThis question is especially relevant for our SATS globabelgsince it is essentially a
nonlinear extension of ANC, as stated above in Section 1largfrated below in Section 5 by means of an example.
So, the question is: does the NANC problem introduced inglaiser result in second-order separability, in addition
to its ICA-based separability that we showed above ? The antoathis question is not only of theoretical interest:
showing the second-order separability of the consideredahmeans that one can then develop associated second-
order BSS algorithms, which are simpler than ICA methods flagsibly less accurate or robust, especially for highly
nonlinear models).

The analysis of second-order separability that we presglot\bconsists of two main steps. We first describe the
most natural approach to this problem, i.e. we considethé)general SATS global model, as defined above, and (ii)
the second-order cross-statistics of its outputs. We shomdans of an example that this basic approach does not
always guarantee separability. We then proceed furtheobgidering sub-classes of the above model and, possibly,
statistics associated with reformulated versions of tmesdels. We thus show that separability is achieved by only
resorting to second-order statistics for several subscaket us insist again that, in all this investigation, weyonl
consider the signals at a single time and we set no restmgtim their temporal structure (as in Section 2). This
should be constrasted with second-order BSS methods fergdimear instantaneous mixtures, such as SOBI, which
set constraints on source temporal structure.

3.2. Covariance-based non-separability of original glbtrendels: an example

For the sake of clarity, let us consider a specific mixing aghsating configuration which yields a global model
belonging to the SATS class, and also to its SATS-SI and FS3lT&ub-classes. This configuration involves two
observations defined as follows, again at a given time

X1 s +a(s) (40)
X2 = (41)

wheres; ands; are the source values at the considered tarie an unknown real-valued constant mixing fiazent,
and the exponeitis a known non-zero real-valued constant. Therefore, tiséové of unknown mixing parameters
is here restricted to the scalar parameter

The most natural separating system for restospgnds, (s, is already available here) from the above observa-
tions has two outputs defined as

Y1 X1 = b(Xz)ﬁ (42)
Yo = X (43)

whereb is the only real-valued tunable dfieient of the separating system, which correspondsdefined in Section
2.
Combining the above mixing and separating equations, thdtieg global model reads

yi = si+(@-bg (44)
Y2 = % (45)

This model therefore indeed belongs to the SATS class defimé)-(9). It also belongs to its SATS-SI sub-class,
since it meets condition (38). Besides, it belongs to its F$&| sub-class, because it also meets condition (39),
moreover with no actual dependencylqs; ; 6) with respect t@ here. Note that this model is also a simple nonlinear
extension of the basic version of the ANC model: foe 1, the configuration considered here reduces to (linear)
instantaneous ANC with two sources.

For the considered global model, BSS is achieved when

b=a (46)

2We do not consider the other main classes of BSS methods srptiper, especially sparse component analysis and notiveegaatrix
factorization, which require other source properties.



We here aim at determining if forcing the separating systemputsy; andy, to have zero covariance guarantees
thatb becomes equal to the value defined by (46), when the souncalsig ands, are assumed to be statistically
independent. As an example, let us consider the case ghism zero-mean signal. The covariance of the separating
system outputs is then easily shown to be

Cyy, = (a— b)E{$™) (47)

where we use the standard definition of the covariance of andom variableX andy, i.e.
Cxy = E{(X = E{X})(Y — E{Y})} = E{XY} - E{X}E{Y}. (48)

This yields two possible cases:

1. thefirst case is when the source sigpds such thaE{§+1} # 0. Then, the covariance of the separating system
outputs is equal to zero onlylif= a. Therefore, in this case, the considered global model iarsdye by means
of separating system output decorrelation.

2. The second case is when the source signi such that

E{g™) =0. (49)

Then, the covariance of the separating system outputs nsregual to zero whatever the valuexofTherefore,
the sources cannot be separated by using this covarianamptar in that case. Note that condition (49) may
actually be met in practice: this e.g. occurs wigéa an even integer ang has an even pdf.

The above example shows that directly using the covariahtteecoutputs of the original global model does not
always guarantee separability, even for the most specifieckass of global models that we considered above, i.e.
the FSATS-SI model. A first solution to this problem may hoerle developed by modifying the way we handle
the initial global model, i.e. by post-processing it (in gtiee, this means that this post-processing is applieddo th
outputs of the separating system involved in the originabgl model). This solution may appear in a rather natural
way in the above simple example, but is much more generaljlisow be shown.

3.3. Covariance-based separability of post-processedsSallglobal model

We here investigate the situation when a global model has degved from the considered mixing model and
from the separating system which was originally designeditfo We consider the case when this global model
belongs to the SATS-SI class, i.e. when it may be expressaut@diog to (8)-(9) and it meets condition (38). We
showed above that cancelling the covariance of the outgutssomodel does not always guarantee separability, but
we now claim that this separability is guaranteed when omeeala the covariance of an adequptest-processed
versionof the outputs of the above model. More precisely, we starnfthe original outputs (9), equal ), ..., s,
and we combine them according to tkrrownoperator involved in (38). Note that this procedure can be applied
to the SATS-SI model because the interference té(s), . . ., s|;; 6, ) meets (38), so that its factof(s,, . .., s ) can
be computed without knowing the value of the vedaf mixing parameters. On the contrary, for a global model
which only belongs to the overall SATS class, the valu¢'(,, . . ., s|; 6, ¢) cannot be computed before estimating
6, so that the approach described in this section cannot Heedpf his approach is therefore only proposed for the
SATS-SI sub-class.

The above combination of the signals. .., s yields one outputl(s,,..., ), of our modified separating and
associated global models which include post-processihg.dfher output of these models is equaytpdefined by
(8), to which we apply no post-processing. We denote,andz the two outputs of our modified global model,
which is obtained by combining (8)-(9) and (38) with the abalefined post-processing stage. This modified global
model reads as follows (again at a given titjie

T(s1;6,0) + 15(0, A)I(S), - - -, S\) (50)
145, .5 Sy)- (51)
Using the modified model (50)-(51) that we derived aboveaihygroach that we propose then uses the covariance

of the outputs signalg andz as the separation criterion. When considering indeperstartce signals, it is easily
shown that this covariance reduces to

Z

Y4)

Caz = 1p(6, ¢)o |2;(s'2 ,,,,, <) (52)
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wherec? = Cxx denotes the variance of a random variale

Let us first make it clear that the specific case when the vegiafil(s,,..., s|) is zero is not of interest, but
yields no problem: in that cask((s,, ..., s) is essentially a constant, therefore (38) shows i}, . .., s; 6, ¢) is
a constant, and (8) proves thatalways (i.e. whatever the value of the vecgoof separating parameters) provides
the target ternT (sy; 6, ¢), up to an additive constant.

Now consider the case of interest, i.e. th@s,z wwwww s 7 0. Eq. (52) then shows that adapting the vegtaf
separating parameters so as to ca@gl forcesl (6, ¢) to become equal to zero. Eq. (38) and (8) then proveyhat
becomes equal to the target tefirts; ; 6, ¢). This means that thpost-processe@ATS-SI global model is separable
by means of output decorrelation (whatever the marginalcsostatistics).

As a consequence, the above result especially applies vamsidering the FSATS-SI global model and using the
above post-processing. In addition, an alternative secwddr approach may also be developed specifically for that
FSATS-SI global model, as will now be shown.

3.4. Variance-based separability of original FSATS-Shbglanodel

For two-source (linear) instantaneous ANC, it is well-kmotliat separation may be achieved by two alternative
second-order approaches:

e the first approach consists in cancelling the covariand®tioutput signals. This approach has a relationship
with linear symmetric ICA, e.g. based on mutual informatmancellation, whose separation criterion also
involvesall outputs.

e The second approach consists in minimizing the variancenefoutput signal, i.e. of the signal which is
unmixed only when the separating parameters are tuned so camtel the interference term in this output.
This approach is more similar to linear deflation-basedsiiedl BSS, e.g. based on the maximization of the
negentropy (or of the absolute value of the normalized lsis)oof asingleoutput.

In Section 3.3, we extended the multi-output, i.e. covar@abased, ANC approach to a class of nonlinear mix-
tures. We will now show that the single-output, i.e. variedb@sed, approach can be extended to the FSATS-SI global
model (without post-processing). To this end, we considerautput signal of interest of this model, defined by (8),
(38) and (39), which yield

Y1 =T(s1;6) + 1560, ), - ... S)- (53)

When considering independent source signals, it is easdws that the variance of this signal reduces to

O'T(sl ot (156, o) 0'| 4(SnSy)" (54)

,,,,,

Therefore, this variance reaches its minimum value whervéotor ¢ of separating parameters is adapted to as to
achieve

15(6.4) = 0. (55)
Eq. (53) then shows that the output sigpabecomes equal to the target tefifs;; ). This means that the FSATS-SI
global model is separable by means of output variance maaitiin (whatever the marginal source statistics).
We thus obtained a variance-based separability critenoy for the simplest of the global models considered in

this paper. Note that the above derivation does not extetldet@ther two classes, as will now be shown. For the
SATS-SI model, (39) does not hold any more and (53) is replage

y1=T(s1;60,9) + 1,00, )1, - ... s\) (56)

which leads to

0'2 O'T(SLM) + [Ip(G »]? cr, (Sns)’ (57)

Now, when adapting, not only1,(6, ¢) is varied, but alsmrT(S 0.4 Therefore, the minimum of-z in general does
not correspond to condition (55) i.e. to the cancellatibthe mterference term. The overall SATS class is analyzed
in the same way, starting from (8) and deriving the assodiateression ob—ﬁl. This shows that this model, too,
cannot be separated by minimizin@.
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4. Resulting separation methods

As stated above, this paper is primarily focused ongdgarabilityof various nonlinear models, not on practical
separation: we mainly aim at unveiling statistical projgarof output signals which ensure separation, not at degail
associated BSS algorithms. However, we here want to makedt that, once these statistical properties have been
derived, straightforward ways to develop corresponding Bi&ethods result from them. These approaches may be
defined as follows, for the two types of separation propgttiat we respectively showed in Sections 2 and 3.

We first proved in Section 2 that adaptingo as to make the outputs of the SATS model independent geasan
that separation is achieved (under mild conditions). Taveea corresponding BSS criterion, we must then define a
parameter which measures the degree of mutual dependetteesefoutput signals. A very natural candidate to this
end is their mutual information, which is zero if the signais independent and positive otherwise. The resulting BSS
method for the SATS model then consists in adap#isg as to minimize the mutual information of the outputs of the
separating system. This shows that moving from the proptived above (i.e. independence of output signals) to a
BSS criterion (minimization of output information) is sghtforward for our ICA-based solution to the problem.

Things are even simpler for the two second-order approatiasve developed in Section 3. We defined the first
proposed solution not only in terms of a statistical propére. uncorrelateness) of the output signals, but alsh wit
respect to a corresponding parameter (i.e. output covelarMoreover, we presented the corresponding practical
second-order criterion that may first be used to achieve BiS8st consists in cancelling the output covariance
parameter. Our other second-order approach is directipel@fin terms of a constraint imposed to a parameter: it
consists in minimizing the variance of the first output.

The next step of the development of such practical BSS mettioeh consists in focusing on specific models
belonging to the considered classes, deriving the correfipg expressions of the output information or (co)var&anc
parameters, and addressing the optimization of these péeasn Depending on the complexity of the expressions
of these parameters, closed-form solutions for their ogtition may be obtained, or numerical algorithms must be
considered. While the description of separat&gorithms(or closed-form solutions) for specific models is beyond
the scope of this paper, it is here worth it consideriqmagicular modehowever, in order to more explicitly illustrate
the above genergkparabilityresults. This will show that there do exist practical apgions where the global model
belongs to several above-defined classes. The separgbdjterties obtained in the previous sections are then &f hig
importance, because they prove the relevance of the agsdgeactical separation methods that we defined in the
current section. We therefore now proceed to the descrnficuch an application.

5. Application to coupled quantum bits

5.1. Mixing model

We now consider an application which concerns Quantum in&dion Processing (QIP) [7]. QIP is an emerging
field, which widely uses quantum bits (qubits) instead o$sieal bits for performing computations [7]. A qubit, with
indexi, has a quantum state expressed as follows (for a pure state):

i >= ail+ > +Bil- > (58)
where|+ > and|- > are basis vectors, whereasandg; are two complex-valued céiécients such that
lil? + 1Bi” = 1. (59)

In [2], [3] we introduced the Blind Quantum Source SeparafiBQSS) field, by considering the situation when
two qubits of a physical system are separately initializétth \wtates defined by (58) and then get “mixed” (in the
BSS sense) due to the undesired couplifigat which exists in the considered system (Heisenberg saupi our
case). We proposed an approach which consists in repeaiéitjizing the two qubits according to (58) and later
measuring spin components associated with the system cmdd these two coupled qubits. We showed that this
yields four possible measured values, with respectivegdvdities p;, p2, ps andps. We derived the expressions of
these probabilities with respect to the polar represemtaif the qubit parameterg andg;, which reads

ai=ré", B =g Vi € {1,2} (60)
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with0 < rj < 1andqg = /1- ri2, due to (59). The above probabilities may then be expressddllaws (with

different numbering as compared to [3]):

p1 = rirs (61)
P2 = ril-r)A-V?)+(@1-rdr3V

=21l /1 =12 {J1-r2V1-\2vsinA, (62)

pa = (1-rHa-r)) (63)

where
Ay = (¢2 — ¢1) — (62— 61) (64)

andv is a parameter, defined in [3], which is such that @ < 1, and whose value is unknown in most configurations.
Note that probabilityps is not considered in this investigation, since it is redurtdaith the above three ones: we
always have

PL+ P2+ pPs+psa=1 (65)

Eqg. (61)-(63) form the nonlinear “mixing model” (in BSS teshrof this investigation. The observations involved
in this model are the probabilitigs, p, andps measured (in fact, estimated, using repeated qubit iizisiabns) for
each value of the couple of qubits. Using standard BSS wuisitthe observation vector is therefore [Xq, X2, Xa] "
with x; = p1, Xo = p2 andxz = ps. The source vector to be retrieved from these observat®sisi[s, S, s3]" with

S1 =1, S = I, andss = A;. The parameterg; are then obtained ap = /1 — ri2. The four phase parameters in (60)
cannot be individually extracted from their combination Moreover, as explained in [3}, in fact only depends on
one of the angular parameteks 62, ¢1, ¢2, which is used to store information, since all other thregLdar parameters

are fixed. We anticipate that this data stresajrand the other two, i.es; = r; ands, = r,, will be handled separately
when applying our approach to store information in qubitpaeters of future quantum computers. These three data
streams, i.e. the source signals of our BSS problem, magfibrerbe quite reasonably assumed to be (or created so
as to be) statistically independent in the considered egitpdin. In blind configurations, retrieving the sourcestfirs
requires one to estimate the only unknown mixing parametri® model, i.ev.

5.2. Separating system

In [3], we showed that the above mixing model is invertibletimrespect to the considered domain of source
values), for any fixed such that 0< v? < 1, provided the source values meet the following conditions

O<rp<i<rp<1 (66)
—%SA|S7—£. (67)

The separating structure that we proposed for retrieviegthurces then yields an output veater [y1, y», y3] T which
reads

1
" \/5 (14 P pa) — (L + pr = paf? - 491] (68)
. 2
Yo = > (1+p1—pa)+ \/(1+ P1 — Pa)? — 4ps (69)
A P) + (- P -
y3 = arcsin

2y1y2 /1= Y3 /1 -y V1020

whereV'is the estimate of used in the separating system. The outputs, andys respectively restore the sources
S1=r1, S =rands; = A.

(70)
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5.3. Original global model

Starting from the above results obtained in [3], we here dimnalyzing the ICA-based and second-order sepa-
rability of the resulting global model, which was not added in [2], [3], since other types of BQSS methods were
considered in these papers. We first derive this global mdetombining the mixing model (61)-(63) and the
separating model (68)-(70).

More precisely, one should preferably first consider thesudalel obtained by only combining (61) and (63) with
(68)-(69). Under condition (66), the resulting global smbdel reads

yi = & (71)
Yo = 9 (72)

where this model may either be obtained by direct calcutatio justified as follows. The first stage of this global sub-
model, i.e. (61) and (63), transforms the sourses ry, S = r, into the observations; = p1, X3 = pa, Without any
dependence on the mixing paramaeteit is known from [3] that, under condition (66), this sub-dabis invertible.
The second stage of the considered global sub-model, Bg(6®), implements the exact inverse of the mixing sub-
model composed of (61) and (63), without any dependencesmestimates 0f v. The outputy; andy, are therefore
exactly equal to the original sourcesands, (again ignoring the deviations which are due to the fact fhand p,
are estimated in practice).

The expression of the last output of the global systemyiemay eventually be obtained by inserting (71), (72)
and (62) into (70). This yields

(7 - Vv?)($ - <0) Vi-v2y

2es LS 1SV VA%

Let us note that if’= v, Eq. (73) reduces to

ys = arcsin

sinss|. (73)

y3 = arcsin [sinsz] (74)

and therefore, using condition (67)
Y3 =S, (75)

without any ambiguity, which again shows the invertibiliithe mixing model (61)-(63) in the considered conditions.
Now, for any values of the mixing and separating paramatensdV, the considered global model consists of (71),
(72) and (73). Note that the property which consists forigihals except one in always being unmixed here applies
to the outputs of the global model, but not to those of the ngxnodel (61)-(63) involved in it.

5.4. ICA-based separability

We now aim at investigating whether the results that we obtdin Section 2 may be applied to the quantum
problem that we are considering in this section. CompattiregSATS class of global models defined by (8)-(9) to
the specific quantum model defined by (71), (72) and (73) stibatsthe SATS class does not include this quantum
model in its original form, but contains a slightly reformatéd version of it, which is obtained as follows.

We first split the separating system defined in Section 5.B@sdscade of two sub-systems. The first, and main,
sub-system derives (i) the signhglsandy, respectively defined in (68) and (69), and (ii) the argumétie arcsin()
functionin the right-hand term of (70). The second sub-aysst a fixed “post-distortion” stage which only consists in
derivingys by computing the arcsin() of the third output of the first syistem, while leaving its first two outputs, i.e.
y1 andy,, unchanged. The mutual independence of the outputs of thialbgeparating system is equivalent to that
of the outputs of its first stage, and the same equivalenceftire holds for the ICA separability of the global models
involving these two (i.e. partial or complete) separatiggtems. Hence, we only investigate the ICA separability
of the global model involving the first stage of the sepamtipstem hereafter. Moreover, to map its notations with
those of Section 2, we hereafter modify the meaning of nmtati: we denote ags the third output of this first stage,
i.e. beforeapplying the arcsin() post-distortion which yields the mwml expression in the right-hand side of (70).
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Besides, we change the indices of the signals involved sapplication, again to map its notations with those of
Section 2. We thus reorder the source and output signaldles/$o

notations in (71)(72),(73) — new notations

SR ]

S - =

8 - S

Yy — Y2

Y2 = VY3

Y3 — Vi

The considered global model (without post-distortionsthecomes

V1 -2 WP —\2 -
Vi = V-V YYsinsl+ ( )(% %) (76)
1-0%0 2583 \J1—- £ J1- VI
Y2 = % (77)
Y3 = S (78)
This reformulated model belongs to the SATS class define@y9), with
N = 3 (79)
S = s Yi=1,...,N (80)
6 = v (81)
¢ = € (82)
_\2
T(s0.9) = ~=—sing; (83)
1-0
, (P - V)($ - )

(..., Syi 6, 0) = S°9 (84)

2553 4/1-2,/1- < 1—\‘/2\‘/'

Moreover, the properties requested in Section 2.1 are nret hEherefore, the general results that we derived in
Section 2 directly show that this global model is ICA-sepédin the conditions defined in Section 2).

5.5. Covariance-based separability of post-processedainod
The considered quantum global model (again without pastbdion) also belongs to the SATS-SI sub-class, since
its terml’(s,, ..., s|; 6, ¢) defined in (84) meets (38), with

@ -\

1-9020

$-9
2555 4J1- 2 \/1- &
Therefore, the general results that we derived in Sectiiy@arantee that this quantum model is separable by means
of the covariance-based method that we proposed in Section 3

1(6.9) (85)

(86)

4S8 =

5.6. Unapplicability of variance-based method

The considered quantum global model does not belong to t#g-B$% sub-class, because its teffifs,; 6, ¢)
defined in (83) indeed depends ¢n= V. Therefore, the general results derived in Section 3.4 aabe applied
here to guarantee the separability of our guantum model tgnshef the variance-based method that we proposed in
Section 3.4. On the contrary, that method is of interestfloepapplications, not detailed here due to space limitatio
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6. Conclusions

In this paper, we investigated the separability of broads#a of nonlinear global models involving reference
signals. We thus derived general properties concerninghb@ged and second-order (covariance-based or variance-
based) separability. In addition, these investigatiofmrad us to outline practical BSS methods. These methods
are e.g. applicable to the specific model involved in the tuarapplication that we presented in Section 5. The
implementation of these BSS methods and the evaluatioreofriimerical performance is a topic beyond the scope
of this paper, which will be reported in future articles. Wel thus further develop the field that may be briefly called
“nonlinear adaptive noise cancellation” (NANC), as a refere to (linear) ANC.
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Appendix A. Motivationsfor considering a continuous pdf

As stated in Section 2.1.8, in this paper we consider thewhsa the pdffc is continuous. We focus on this case
for two reasons. On the one hand, this pdf continuity is nost@ining because is it likely to be met in most cases of
interest, due to (24) and to the fact that, in many practiaaks, the source random variaBlghas a continuous pdf
and the transform which yields the random variabe = T(Sy; 6, ¢) has a continuous derivative. On the other hand,
this pdf continuity condition simplifies our approach, besa it is sificient to guarantee that the following property,
used in Section 2.1.8, is meD,(v; 0, ¢) varies at least over one interval of values/dbr which O,(v; 8, ¢) # 0.

The latter property may however also be obtained by conisigéroader classes of pdg, i.e. by just requesting
fc to vary at least over one interval where it is non-zero. Thidudes many types of discontinuous pdf, and it only
excludes from our subsequent investigation the case obumifover one or several intervals) pdf. Uniform pdf might
be further analyzed. However, this can be avoided by corisgléhat a uniform pdf (over a single interval) is the
limit of a continuous pdf with a non-zero almost constantgand continuous transitions towards zero or almost zero
parts. The latter continuous pdf may e.g. be defined as a catibn of sigmoidal functions with tunable smoothness
parameters (see e.g. [5]). One may therefore avoid potéssiaes due to discontinuities in ideal uniform pdf, by
considering instead their above continuous approximatiith parameters tuned so as to achieve sharp transitions
between zero and non-zero pdf values.

The continuity constraint fofc may also be linked to the other pdf continuity assumptioas We made above.

Appendix B. Commentsabout constant output term

In Section 2.1.8, we stated that the output signas equal to the target ter(ss; 0, ¢) that we aim at extracting,
up to a constant term, which is equalltgs,, .. ., s; 6, ¢). More precisely, if any of the random variablgsto Yy
has a non-zero pdf ogeveraldisjoint intervals, the analysis of Section 2.1.8 proves the terml’(s,, ..., s|; 6, ¢)
is constant over each of these intervals, but it does nat sthether these constant values may gedént one from
the other. However, one should also take into account thattéhm1’(s,, ..., s; 6, ¢) is obtained by transferring
the source values through mixing and separating modelshahicnot depend on the signal values. The models
encountered in practice are expected to be suchltfelt ..., s|; 6, ¢) takes thesameconstant value on all above-
mentioned intervals. One may check that this is the casé&éoapplication considered in Section 5, as shown by (84):
for this model, the fact that(s,, .. ., s; 6, ¢) is constant, and therefore zero, for some source valuevalteimplies
thate and¢ are such thal’(s,,. .., s|; 0, ¢) is zero everywhere. Similarly, by first considering a sengalue ofy;,
one derives properties éfand¢ which then imply that’(s,, ... ., s; 6, ¢) remains constant for any value yf.
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