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Abstract:

This paper concerns the underdetermined or noisy case of the blind source separation
(BSS) problem, i.e. the situation when the number of observed mixed signals is lower
than the number of sources, which is of high practical interest. We first propose a general
differential BSS concept to handle this case. This approach applies to linear instantaneous
and convolutive mixtures. It uses optimization criteria based on differential parameters
so as to achieve "partial BSS”, i.e. so as to make some sources invisible in these criteria
and to perform the exact separation of the other sources only. In other words, each
output signal is thus reduced to a mixture of: i) only one visible source and ii) all invisible
sources. Various BSS methods may be derived from this concept. We illustrate it by
applying this concept to a specific criterion and associated algorithms, which exploit the
assumed non-stationarity of some sources. The resulting approach applies to convolutive
mixtures and uses the second-order statistics of the signals. It adapts the filters of a
direct BSS system so as to cancel the ”differential cross-correlation function” (introduced
in this paper) of signals derived by this system. We analyze the stability of this approach,
by using the Ordinary Differential Equation method, and we show its performance by
means of numerical tests.

Résumé:

Cet article concerne le cas sous-déterminé ou bruité du probleme de séparation aveugle
de sources (SAS), c-a-d la situation ou le nombre de signaux mélangés observés est
inférieur au nombre de sources, qui est d’'un grand intérét pratique. Nous proposons
d’abord un concept général de SAS différentielle pour traiter ce cas. Cette approche
s’applique aux mélanges linéaires instantanés et convolutifs. Elle utilise des critéres
d’optimisation fondés sur des parameétres différentiels afin de réaliser une ”SAS partielle”,
c-3-d afin de rendre certaines sources invisibles dans ces critéres et d’obtenir seulement la
séparation exacte des autres sources. En d’autres termes, chaque signal de sortie est ainsi
réduit & un mélange de : i) une seule source visible et ii) toutes les sources invisibles.
Diverses méthodes de SAS peuvent étre déduites de ce concept. Nous I'illustrons en
appliquant ce concept & un critére spécifique et & des algorithmes associés, qui exploitent
la non-stationnarité supposée de certaines sources. L’approche résultante s’applique aux
mélanges convolutifs et utilise les statistiques d’ordre 2 des signaux. Elle adapte les
filtres d’un systéme direct de SAS de maniére & annuler la ”fonction d’inter-corrélation

!Corresponding author.



différentielle” (introduite dans cet article) de signaux déterminés par ce systéme.
Nous analysons la stabilité de cette approche, en utilisant la méthode des Equations
Différentielles Ordinaires, et nous illustrons ses performances & I’aide de tests numériques.
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1 Problem Statement

Blind source separation (BSS) methods aim at restoring a set of N source signals z;(n)
from a set of P observed signals y;(n), which are mixtures of these source signals
[5],[7],[12],[17]. The mixed signals y;(n) are often provided by a set of sensors, and the mix-
ing phenomenon then results from the simultaneous propagation of all signals from their
emission locations to all sensors. This gives rise to two major classes of BSS problems,
depending on the features of the considered propagation. In the so-called linear instanta-
neous mixture model, each propagation channel from source j to sensor ¢ is represented
by a scalar coefficient a;;, which typically reflects attenuation during propagation. The
overall relationship between the column vectors z(n) and y(n) of sources and observations
is then expressed in the discrete time domain as:

y(n) = Az(n), (1)

where the scalar mixing matrix A consists of the coefficients a;;. In the more general
convolutive mixture model, each source-to-sensor channel is represented by a transfer
function A;;(2), which may also account for propagation delays and multipath propagation.
The overall source-to-observation relationship then reads in the Z domain:

Y(z) = A(2) X (2), (2)

where the elements of the mixing matrix A(z) are the transfer functions A;;(z).

Most BSS investigations have been performed in the case when: i) the number P of
observed signals is equal to the number N of source signals, so that the considered mixing
matrix A or A(z) is square, and ii) this matrix is invertible. The BSS problem then consists
in estimating the inverse of this mixing matrix (up to some indeterminacies [5],[7],[12]).
This may first be shown for linear instantaneous mixtures by considering a vector s(n) of
output signals of a BSS system, obtained by multiplying the available mixed signal vector
by a scalar separating matrix C, i.e:

s(n) = Cy(n). (3)

Combining (1) and (3) yields
s(n) = CAz(n), (4)

which shows that when C' is made equal to A™!, all the output signals s;(n) resp. become
exactly equal to all the source signals z;(n) to be restored. The same analysis may also
be performed in the Z domain for convolutive mixing and separating matrices.

Various methods have been proposed for estimating the inverse of the mixing matrix.
They are esp. based on the assumed statistical independence or uncorrelation of the
source signals [5],[7],[12],[17]. Many of these methods consist in maximizing, minimizing
or cancelling statistical parameters of the output signals of a BSS system, such as their
second-order or higher-order moments or cumulants, which are classical parameters in the
higher-order statistics field [15],[16].

Most of these investigations were performed under the assumption P = N, as stated
above. In many practical situations however, only a limited number of sensors is ac-
ceptable, due e.g. to cost constraints or physical configuration, whereas these sensors
receive a larger number of sources (possibly including ”noise sources”). In this paper, we
consider this underdetermined situation corresponding to P < N, and we require that



P > 2. A few analyses and BSS methods have been reported for this case (see e.g.
[1],4],19],[11],[13],[18]), mainly for linear instantaneous mixtures. However, they set major
restrictions on the source properties (discrete sources are especially considered) and/or
on the mixing conditions. We here introduce a general concept and resulting practical
algorithms, which only set some (non-)stationary constraints on the sources, and which
combine the following features:

e They apply to continuous sources with unknown distributions.
e They may be used for linear instantaneous and convolutive mixtures.

e They are not restricted to specific mixing conditions resulting in particular values
in the mixing matrix.

e They only perform linear (instantaneous or convolutive) combinations of the avail-
able mixed signals, thus providing linear combinations of the sources. We set this
condition because in various applications, such as speech enhancement, it has been
observed that the artefacts created by non-linear processing are even more disturb-
ing than the "noise” present in the initial mixed signals, so that linear processing
should be preferred. The price to pay for this linear operation is that the outputs
of the BSS system introduced hereafter still contain some "noise”. More precisely,
among the N mixed sources, only P of these sources are considered as the sources of
interest, whereas the other N — P sources are seen as "noise” sources. The proposed
approach then separates each of the P sources of interest from the other P — 1 such
sources, i.e. it reduces each output signal to a mixture of: i) only one of the P
sources of interest and ii) the N — P ”noise” sources.

The remainder of this paper is organized as follows. In Section 2, we introduce the
proposed general concept, which makes it possible to derive various BSS methods intended
for underdetermined or "noisy” mixtures. As an application of this concept, Section 3 and
Appendix A describe a resulting criterion and associated algorithms for basic convolutive
mixtures. The experimental performance of these algorithms is reported in Section 4 and
conclusions are drawn from this investigation in Section 5.

2 BSS limitation and proposed concept

For the sake of simplicity, we present the proposed concept in the linear instantaneous
case in this section. This approach may be adapted to the convolutive case by transposing
the following discussion from the time domain to the Z domain. The application of our
general concept to a specific BSS method will be detailed in Section 3 for convolutive
mixtures.

We showed above that if P = N an exact separation of all sources is theoretically
possible (and is achieved when C is made exactly equal to A~!). Tt is clearly also possible
when P > N, but not when P < N as will now be shown. In the latter case, A is not
square. Each output signal s;(n) defined by (3) is a linear instantaneous combination of the
P mixed signals. For an arbitrary matrix A, the highest number of source contributions
that may be cancelled in such a (non-zero) combination is P—1. This optimum case, where
each output is still a mixture of the remaining (N — P+ 1) sources, is called ”partial BSS”
hereafter.



This only shows that partial BSS is theoretically possible, in the sense that it is achieved
for adequate combination coefficients c;; in the matrix C. To actually achieve it in practice,
we then need algorithms which are able to estimate these adequate values of the coefficients
¢;j- It may be shown that the classical methods, that have been developed for the case
when P = N, do not meet this requirement: whereas their principles (such as the above-
mentioned cumulant optimization) coincide with the separation of the source signals when
P = N, these BSS methods yield outputs signals which are still mixtures of all sources
when applied to arbitrary observed signals such that P < N.

This paper therefore aims at introducing a concept for achieving the above-defined
partial BSS when P < N. By ”concept”’, we mean that we do not propose a single
criterion (and/or algorithm) but a general way to derive new partial BSS methods from
various existing approaches developed for the case when P = N. We therefore start from
one of the latter methods, based on a given signal parameter, such as those defined in
Section 1: for example, we may start from a method based on the optimization of a given
set of cumulants of output signals. We then set the following additional constraints: i) two
occurences of the considered signal parameter should be available and ii) the considered
sources should consist of two types with respect to corresponding source parameters, i.e:

1. first-type sources: for (at most) P sources, the source parameter should take different
values in the two occurences,

2. second-type sources: for the other N — P sources (at least), this parameter should
take the same value in the two occurences.

The above-mentioned two ”occurences” may be obtained in various ways, which allows one
to derive various methods from the proposed concept. They may e.g. consist of the two
values of a parameter, such as a (zero-lag) cumulant, resp. obtained for two time domains
D1 and D;y. These domains are then defined as follows. When considering these theoretical
cumulant values themselves, which are combinations of signal expectations [15],[16], each of
these time domains D; is restricted to the time n; when these expectations are considered.
On the contrary, the corresponding cumulant estimates used in practice are resp. obtained
by time averaging over two domains D; and Dy which consist of non-overlapping bounded
time intervals, assuming that each source is stationary over each such domain (this is
referred to as ”short-term stationarity” below). The second type of sources then consists
of source signals whose cumulant values do not vary from one of the considered time
domains to the other one, i.e. sources which are in addition ”long-term stationary”. On
the contrary, first-type sources then consist of long-term non-stationary source signals.
The proposed concept then consists in deriving new signal parameters from the initial
ones in such a way that the effect of the second-type sources disappears in these new
parameters. This is achieved as follows. For the sake of simplicity, we consider an initial
parameter which is a linear function of corresponding source parameters (for example,
an output cumulant is indeed a linear function of cumulants of the independent sources,
as illustrated hereafter). The new parameter that we then define exploits the difference
of behavior between the two types of sources concerning the variations of their initial
parameter from one occurence to the other one. More precisely, we here focus on the case
when the new parameter that we define is the difference between the two values of the
initial parameter resp. associated with the two available occurences (e.g. the difference
between the two output cumulants corresponding to the two time domains). As each
second-type source yields the same contribution in the two initial parameter values, its



effect is cancelled in the corresponding parameter difference, i.e. the second-type sources
are thus indeed made invisible in this differential parameter.

For the sake of clarity, let us describe in some more detail the application of this general
principle to a specific linear instantaneous BSS method. Consider observed signals defined
by (1) and processed by a BSS system which yields the output signals defined by (3). We
select as the initial BSS method one of the classical approaches based on the optimization
of specific output signal cumulants, say for example their (3,1) zero-lag cross-cumulants,
ie:

CUME;) (n) = CUM (si(n), si(n), si(n), s(n)). (5)

Starting from this approach, which does not apply to underdetermined mixtures, the gen-

eral principle that we introduced above for underdetermined mixtures consists in deriving

a differential BSS method based on the differential cumulants that we associate to (5),
that we define as:

DCUMED (ny,n9) = CUME;D (ng) — CUMSY (ny). (6)

8555

Let us show that, whereas the initial parameter C’UMS;}) (n) depends on all sources, its

differential version DCUMS(?S’}) (n1,n2) only depends on the first-type sources. Eq. (4)
may be expressed as:
s(n) = Bx(n), (7)

where the matrix B = CA includes the effects of the mixing and separating stages. De-
noting by, the elements of B, (7) implies that two arbitrary output signals s;(n) and s;(n)
may be expressed with respect to all sources as:

si(n) = Y bipzk(n) (8)
k=1

N
si(n) = Y bumi(n). (9)
=1

Using cumulant properties and the assumed independence of all sources, the (3,1) cross-
cumulant of the above output signals may be shown easily to be equal to:

N
CUME) (n) = 3 bibirCUME) (n), (10)
k=1
where the 4"*-order (zero-lag) auto-cumulant of source zy, is defined as:
CUM{ (n) = CUM (zx(n), z4(n), zx(n), 7 (nm)). (11)

The standard output cumulant expressed in (10) therefore actually depends on the 4%-
order cumulants of all sources. The differential output cumulant associated to (10), as
defined in (6), may then be expressed as:

N
DCUMS(?S’JI-)(M,M) = b?kbjkDCUMa(ci) (n1,n2), (12)
k=1

4th

where we define the 4"*-order (zero-lag) differential auto-cumulant of source zy, as:

DCUMY (n1,n2) = CUMLY (n) — CUMY (ny). (13)

7



Let us now take into account the fact that we are considering the underdetermined situa-
tion, when P observed mixtures of N > P source signals are available and when P sources,
say z1 to zp, are of the firt stype (i.e. long-term non-stationary), while the other sources,
i.e. Tpy1 to zy, are of the second type (i.e. long-term stationary). The standard 4t*-order

auto-cumulant CUM%) (n) of each of the sources xp;1 to zy then takes the same values

for n = m1 and n = ng, so that DCUMJE? (n1,m2) = 0. The expression (12) then reduces
to:

P
DCUME;D (n1,m9) = Y bbjk DCUMLY (n1,ms). (14)
k=1

This shows explicitly that this differential parameter only depends on the first-type sources.
Let us stress again that the description that we just provided should only be regarded
as an example of the proposed general principle. Another example will be analyzed in
more detail in the next section. Beyond these examples, the main result obtained at
this stage is the above-defined general principle itself, which makes it possible to create
new parameters which do not depend on the corresponding parameters of the second-type
sources. This is of major interest because the initial BSS configuration is thus transformed
in a configuration where (at most) P sources are visible (i.e. the first-type sources) from
the point of view of the considered new parameter, and P mixtures of these sources are
available. In other words, thanks to this approach we get back in the classical situation
involving as many observed signals as source signals (concerning this new parameter).
This suggests to propose, as the differential BSS method to be considered, a method whose
definition is derived from that of the selected initial method by only replacing the initial
parameter by its differential version in the optimization criterion of the initial method.
Based on the above description, the resulting differential BSS method may be hoped to
yield separating coefficients ¢;; such that each output signal s;(n) contains a contribution
from only one of the sources seen by this method (i.e. of the first-type sources), but
we insist that this should then be checked: we thus defined a procedure for proposing
potential differential BSS methods, but the actual behavior of any such method should
then be analyzed, because the properties of the differential parameter on which it is based
may be slightly different from those of the initial non-differential parameter. For example,
a second-order zero-lag auto-cumulant, i.e. a signal variance, is always positive whereas its
differential version may be negative. We will analyze the consequence of this modification
on a specific method in Section 3. More precisely, in that section we will present in detail
the application to a specific BSS method of the overall approach that we have just defined,
including both the detailed derivation of the considered differential BSS method and the
subsequent analysis of its properties. Before proceeding to this specific case, the following

comments should be made about our general approach:

e As explained above, the differential methods succesfully derived from our approach
yield output signals s;(n) which each contain a contribution from only one of the first-
type sources. It should be clear that each such signal s;(n) also contains contributions
from all second-type sources, corresponding to the combination of the mixed signals
yi(n) by means of the obtained coefficients c¢;;, as shown in (3). The proposed
methods therefore achieve the above-defined partial BSS, and more specifically the
sources that are thus completely separated are the first-type ones. These sources are
the signals of interest in this partial BSS problem, as opposed to the ”noise signals”,
i.e. the second-type sources, which still appear in all outputs.



e To summarize, the proposed concept consists of a differential BSS approach, which
uses optimization criteria based on differential parameters, so as to make some
sources invisible in these criteria and to perform the exact separation of the other
sources only. This approach may therefore also be considered as follows. Various
classical BSS methods identify the mixing matrix or its inverse by optimizing higher-
order signal cumulants. They are insensitive to the presence of additional Gaussian
noise in the observed signals, because such noise has null higher-order cumulants
and is therefore inherently hidden in the considered optimization parameter. The
approach proposed in this paper may be seen as a means to extend this behavior to
any non-Gaussian stationary noise, since we modify optimization parameters so as
to hide this initially visible type of noise.

3 Application to a second-order convolutive method

3.1 Redefining the classical approach

This section shows explicitly how the above general concept may be applied to an ex-
isting BSS method in order to derive its differential version. For the sake of simplicity,
we consider a second-order approach, i.e. the classical decorrelation method that has
been used by various authors in the basic configuration of the convolutive BSS problem
[2],]6],[19],[20]. We therefore first redefine this classical method in a way which is suited
to the approach that we will then use to extend it. The considered configuration involves
two convolutive mixtures of two uncorrelated sources, defined in the Z domain as:

Yi(z) = Xi(z) + A12(2) X2(2) (15)
YQ(Z) = Agl(z)Xl(z)—f—Xg(z), (16)

where Aj9(z) and Ay (z) are strictly causal MA filters and their orders are (at most)
equal to M. These mixed signals are provided to a BSS system, which aims at restoring
the source signals from them. The version of this system considered here is the direct
structure shown in Fig. 1, where Ci2(z) and Ca1(2) are the transfer functions of strictly
causal M*-order MA filters. The coefficients of each of these filters evolve vs. time and
the value of the k™ coefficient, with k € [1, M], at time n is denoted c;j(n,k). These
coefficients are adapted so as to decorrelate the time-shifted intermediate signals u;(n)
and ug(n) of the BSS system, i.e. so as to fulfill the following criterion:

Ryu;(n,m —k) =0, i#je€{l,2},ke[l,M], (17)
where
Ryy(mi,mg) = E{v(m1)w(ma)} (18)

denotes the cross-correlation (i.e. the second-order cross-cumulant) of any couple of sig-
nals and where all the signals considered in this paper are assumed to be zero-mean for
simplicity. The classical stochastic algorithm used in practice to fulfill the above criterion
consists in adapting each filter coefficient at each time n according to the rule:

cij(n+1,k) = cij(n, k) + pui(n)u;(n — k) i#je{l,2}ke[l,M], (19)

where p is a positive adaptation gain. This algorithm indeed implements the above crite-
rion, as its equilibrium points correspond to:

E{cij(n+1,k) —cij(n,k)} = 0 i#7€{l,2},k €1, M], (20)



which is clearly equivalent to (17).

The motivation for selecting this criterion (and associated algorithm) may be explained
as follows. The internal state of the BSS system of Fig. 1 is defined by the values of the
transfer functions Ci2(z) and Ca1(2). The state of interest in the BSS problem is the
so-called ”"separating state”, which yields non-permuted separated source signals on the
system outputs, i.e:

Si(2) = Xi(2), i€{1,2} (21)

and which is defined by [6]:
Cij(z) = Aij(z), 1#j€{1,2}. (22)

The criterion to be used for adapting the filters C12(z) and Cs1(z) of the separating system
must be selected so that it is fulfilled at the separating state, otherwise the separating
filters cannot converge to this state of interest. The criterion defined by (17) indeed meets
this requirement: at the separating state, the intermediate signals u1(n) and ug(n) resp.
depend only on the source signals z1(n) and z2(n), so that their cross-correlation function
involved in (17) is equal to zero.

3.2 Limitations of the classical approach

Now consider the situation when the available two mixed signals Y7 (z) and Y5(z) contain
not only the above contributions from sources Xi(z) and X5(z), but also contributions
from an arbitrary number of additional uncorrelated zero-mean sources X3(z) to Xn(z),
le:

N

Yi(z) = Xi(z)+ A12(2)X2(2) + Z A1(2)X;(2) (23)
j=3
N

Ya(z) = An(2)X1(2) + Xa(2) + > Arj(2) X;(2), (24)
j=3

where N is the overall number of sources and where the additional transfer functions A;;(z)
introduced here are also strictly causal M**-order (or less) MA filters. Before focusing on
the structure of Fig. 1, we consider the complete class of BSS systems which process these
mixed signals in a linear convolutive way, based on the motivations presented in Section
1. The desired ”optimum operation” of these systems for the considered mixed signals
may be defined as follows. By linearly combining the mixed signals, only a single source
contribution may be cancelled in any (non-zero) output of such systems for arbitrary
mixtures. If X;(z) and X5(z) are considered as the main signals of interest, i.e. the
useful signals to be separated, one would like these signals to appear resp. only in the
outputs S;(z) and Sa(z) of the BSS system. In other words, X;(z) and X2(z) are then the
signals that should be cancelled in system outputs. These outputs would then also contain
contributions from sources X3(z) to Xy (z), which would then be considered as additional
undesirable sources, i.e. "noise”. The considered BSS system would thus perform the
partial BSS of X (z) and Xa(2).

The structure of the BSS system shown in Fig. 1 is potentially suited to this optimum
operation, in the sense that it is able to achieve the partial BSS of X (z) and X2(z) as will
now be shown. By combining the mixing equations (23)-(24) and the internal equations
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of the BSS system of Fig. 1, the intermediate signals u;(n) of the latter system may be
expressed in the Z domain as:

N
Ui(z) =Y Hip(2)Xp(2) i€{1,2}, (25)
p=1
with:
Hip(z) = Aip(2) — Cij(2)Ajp(z) i #j€{1,2}, (26)
where
An(z) =1 and AQQ(Z) =1. (27)

When the separating filters take the values defined by (22), (26)-(27) yield:
H12(Z) =0 and Hgl(z) = 0. (28)

Eq. (25) then shows that, for these separating filter values, the intermediate signals U (z)
and Us(z), and therefore the resulting output signals, resp. do not depend on X3(z) and
X1(2z). The partial BSS of X;(z) and X5(z) is thus achieved and the ”partial separating
state” corresponds to (22). Although this shows the structure of this BSS system to be
adequate, the overall classical approach defined in Subsection 3.1 is not able to achieve
this partial BSS, due the criterion (and associated algorithm) that it uses, as will now be
shown. Eq. (25) reads in the time domain:

N 2M

ui(n) = Z Z hip(n, m)x,(n —m), (29)

p=1m=1

where h;,(n,m) are the time-varying coefficients of the impulse responses of the overall
filters H;p(z) defined in (26). For any state of the BSS system, the cross-correlation of the
signals defined in (29) may then be expressed as:

N 2M 2M
Ryu;(n,m —k) = Z Z Z hip(n,m)hjp(n — k,1)Ry,(n —m,n —k —1)

p=1m=1[=1
i#j€{1,2},ke1,M]. (30)

At the partial separating state, (28) yields:

hiz2(n,m) = 0 V'me[l,2M] (31)
hoi(n,m) = 0 V'm € [1,2M]. (32)

The contributions of X;(z) and X3(z) in (30) then disappear, while the contributions of
the noise sources remain. In other words, in the case of noisy mixed signals, the cross-
correlation values Ry, (n,n—k) are non-zero at the partial separating state. The classical
approach of Subsection 3.1 cannot then converge to this state, as it adapts the separating
filter coefficients so as to reach a state where the cross-correlation values Ry, (n,n — k)
are cancelled. This approach then fails to achieve partial BSS.

11



3.3 Proposed differential approach

We here still consider the noisy mixed signals introduced in Subsection 3.2. Based on the
above results, we again use the structure of Fig. 1, but we here aim at introducing a new
criterion (and associated algorithms) for adapting its filter coefficients. This criterion is
designed so that the resulting method becomes able to achieve the partial BSS of X (z) and
X5(2z). The approach proposed to this end is based on the general differential BSS concept
that we introduced in Section 2. The associated stationarity requirements only concern the
statistical signal parameters used in the considered approach, i.e. second-order statistics.
In other words, the useful sources Xi(z) and X2(z) (resp. the noise sources X3(z) to
Xn(z)) should have different (resp. identical) second-order statistics at times n; and no
when these times are separated by a ”"long” period. This long period is defined by contrast
with each short period associated to a single time n; or ne, over which sample statistics
of the signals are measured in practice. As shown above, the main idea of differential BSS
then consists in considering the difference between the signal statistics resp. associated to
n1 and ny. To apply this general idea to the specific approach introduced in this section,
we first define the ”differential correlation function”, which reads:

DRyy(ni,n2,l1,l2) = Ryw(ne —li,ne —l2) — Ryw(n1 —li,n1 — l2), (33)

where ny and ng are two reference times and [ and [y are two lags. When considering
the difference between the two values, resp. associated to n = n; and n = ng, of the
cross-correlation function involved in the classical criterion (17), we obtain:

Ruin (TLQ,’)’LQ - k) - Ruiuj (nlanl - k) = DRuluJ (nl,TLQ, Oa k)a
i#je{l,2Lke1l,M]. (34)

We then use the same separating filter values for n = n; and n = ng, and the same principle
is also applied to any time-shifted version of this couple of times. The first overall filter
coefficient h;,(n, m) involved in (30) then has the same value for n = n; and n = ny and
this common value is simply denoted h;p(n,m) hereafter. The coefficient h;p(n — k,1) in
(30) leads to the same phenomenon, so that combining (30) with (34) yields:

N 2M 2M
DRy (n1,m2,0,k) = > > hip(n,m)hjp(n — k, 1) DRy, (n1,n2,m, k + 1),
p=1m=1[=1
i#je{l,2},ke[l, M]. (35)

where the differential auto-correlation functions DRy, (.) are also defined according to (33).
Eq. (35) holds for any state and any type of sources. When the noise sources X3(z) to
Xn(z) have the above-mentioned long-term stationarity property, their differential auto-
correlations DR, (.) contained in (35) are equal to zero, so that only the useful sources
X1(z) and X5(z) remain and (35) reduces to:

2 2M 2M

DRy (n1,m2,0,k) = > > hip(n,m)hjp(n — k, 1) DRy, (n1,n2,m, k + 1),
p=1m=1[=1

i#je{l,2},kel, M]. (36)

In other words, from the point of view of the new parameter DRy, (n1,72,0, k) that we
introduced, we actually get back in the classical 2-source to 2-sensor configuration (but this

12



new parameter depends on the differential auto-correlation functions of the sources, instead
of the plain auto-correlations which appear in the classical approach). Combining (36) and
(31)-(32) then shows that DRy, (n1,n2,0,k) = 0 at the partial separating state whereas,
if the sources X1(2) and X3(z) are long-term non-stationary, DRy, (n1,n2,0,k) # 0
for all other states (except for some possible spurious states, which correspond to those
that may exist for the classical approach). The criterion that we eventually propose for
performing the partial BSS of X;(z) and Xs(z) in the case of noisy mixtures therefore

consists in adapting all separating filter coefficients c;;(n, k) so as to achieve:
DRuin(nlanQaO’k) :03 Z#.] € {1’2}’k € [11M] (37)

To summarize, the proposed approach operates as follows. Only the useful sup-
posedly long-term non-stationary sources x1(n) and z2(n) contribute to the parameter
DRy, u, (n1,m2,0,k). In this summary of our method, we therefore only have to consider
the ”visible part” of any signal u;(n) or u;(n), i.e. its overall component associated to the
subset of sources {z1(n), z2(n)}. For arbitrary separating filter values, each of the signals
ui(n) and uj(n) contains contributions from both useful sources. The visible parts of u;(n)
and u;(n) are then correlated and (34) yields DRy,u;(n1,72,0,k) # 0. On the contrary,
the partial separating state as defined in Subsection 3.2 corresponds to separating filter
values such that the visible part of u;(n) is restricted to a contribution from 1 (n), whereas
the visible part of ugz(n) only consists of a contribution from z2(n). The visible parts of
u1(n) and ug(n) are then uncorrelated and (34) yields D Ry,q; (11,12, 0,k) = 0. Therefore,
by forcing the separating filters to evolve so that DRy, (n1,n2,0, k) = 0 as stated in (37),
our approach forces the BSS system to reach the partial separating state. Each interme-
diate signal u;(n), and therefore each associated output signal s;(n), then only contains
a contribution from the single useful source z;(n) (plus of course contributions from the
noise sources).

The practical differential algorithms associated to the partial BSS criterion that we
introduced in (37) are therefore zero-search algorithms, as they adapt the coefficients
cij(n, k) so as to cancel the differential correlation values which appear in (37). A sim-
ple adaptation algorithm for performing this zero search then consists in updating each
coefficient ¢;j(n, k) according to*:

Czj(n+ lak) = Cij(’n’a k) + /I’ZDRulu] (nl,’)’LQ,O, k) [ #] € {1’2}’k € [laM]a (38)

where the adaptation gains u; and po are selected by taking into account stability re-
quirements that are derived in Appendix A. Using (18) and (33), this algorithm reads
explicitly:

cijin +1,k) = cij(n, k) + pilE{ui(n2)uj(na — k)} — E{ui(ni1)uj(ni — k)},
i#je{l,2},ke[l, M]. (39)

The two expectations F{.} in (39) are resp. estimated over two time domains associated
to m1 or mo, where the useful sources must have different statistics, as explained above.

2We here apply the classical method for associating practical global and stochastic zero-search algo-
rithms to given criteria which are based on the cancellation of any output signal statistical parameters.
This classical method was e.g. already used in one of the earliest BSS approaches, i.e. in the Hérault-
Jutten BSS neural network [14], with a reference [8] to the general Robbins-Monro stochastic adaptation
framework.
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One may also use the stochastic version of the above global algorithm (39), which reads:

cij(n + 1, k) = cij(n,k) + ui[ui(ng)uj(nz — k)) — ui(nl)uj(nl — k)],
i#j€{l,2},ke€[l,M] (40)

and deserves the following comments. The classical algorithm (19) performs a sweep over
the data by using an increasing time index n. The algorithm (40) proposed here is also
based on a single sweep, but each step of this sweep involves two points in the data time
series, corresponding to the indices my and mo. The difference between these indices is
typically kept constant (and ”long”, as defined above), so that the sweep is performed in
parallel over two time-shifted versions of the data. The considered couple of times inside
these data is then defined by a single index, denoted n in (40), which is e.g. equal to ny
or n9.

4 Numerical tests

4.1 Basic configuration

We first validated the proposed second-order stochastic and global differential algorithms
by means of tests performed with two artificial convolutive mixtures of three synthetic
random sources. In the first series of tests, the useful sources z1(n) and z2(n) consist of
100000 samples, split in two 50000-sample periods. In each of these periods, these sources
are independent and each of them is stationary, binary-valued and equiprobable. They
are equal to +1 in their first period and +2 in the second one. The noise source z3(n)
is uniformly distributed over the range [—1,41] in both periods. These three sources are
mixed according to (23)-(24), where the mixing filters associated to the useful sources are
set to:

App(z) =~ —0.381z ' +0.136z % +0.081z 3 (41)
Az (2) —0.327271 — 0.184272 + 0.027273, (2)

1R

whereas the mixing filters associated to the noise source are:

2 1
Ai3(z) = z_1+§z_2—|—§z_3 (43)
1 2 1
Ags(z) = 3% 1+§z 2+§z 3, (44)

Fig. 2 represents the evolution of the coefficients ¢;;(n, k) of the separating filters, adapted
by means of the proposed stochastic algorithm (40), when the above-defined parallel sweep
is performed over both 50000-sample periods. These coefficients converge to values which
are close to those of the mixing filters Aj2(z) and Agi(z). This shows the ability of
the proposed approach to achieve the partial BSS of X;(z) and X2(z) defined by (22),
although the contributions from the noise source X3(z) contained in the observed signals
cover significantly larger ranges than those of the useful sources.

The global version (39) of the proposed algorithm also succeeds in achieving partial
BSS in these conditions. Moreover, the filter coefficients then converge in a more accurate
and much smoother way, as shown in Fig. 3. More precisely, the separating filters thus
obtained after convergence are provided in Table 1 (with L = 50000 samples here). The
convergence error E/ may then be defined as the highest absolute difference between these
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experimental filter coefficients and their target values defined in (41)-(42). This error is
here equal to 0.015, which is quite limited.

In our second series of tests, we restricted the number of source samples in each of the
two considered periods to a value L lower than above. This aimed at determining the
minimum ”frame length” required for the approach to operate correctly, and therefore the
mimimum duration over which the source signals are requested to be (short-term) station-
ary. Table 1 shows the resulting values of the separating filters after convergence for the
proposed global algorithm. The above-defined convergence error F increases from 0.015
t0 0.036 and eventually 0.128 when L is decreased from 50000 to 5000 and eventually 500
samples. The two stationarity periods should therefore preferably contain a few thousand
samples in order to achieve good convergence accuracy in the considered conditions. The
stochastic version of our algorithm leads to the same conclusion, as it yields almost the
same convergence accuracy as the global version for L < 50000 samples (but still with less
smooth trajectories).

4.2 Extensions

The experimental results reported above correspond to one of the simplest configurations
that may be considered for the proposed approach. However, this method also applies
to more complex situations in terms of the number of sources or of their stationarity
properties, as already stated above. We here ilustrate these two aspects.

Let us first consider again the same configuration as in Subsection 4.1, with two 50000-
sample stationary periods for the two useful sources z1(n) and z2(n). We again mix them
with the above-defined uniform noise source z3(n), using the filters defined in (41)-(44).
However, we here also mix all these signals with an additional "noise” (i.e. long-term
stationary) source, in order to illustrate the applicability of our differential approach to
an arbibrary number of noise sources. The available two mixed signals are then defined
by (23)-(24), where N is here set to 4 and where the additional parameters to be specified
are: 1) the noise source z4(n), which is a realization of a gaussian centered unit-variance
random process, and ii) its associated mixing filters, which are set to:

1 1 1
A14(Z) = 62171 —+ Ez72 + 5273 (45)
1, 1, 1 4

Our method is also suited to this configuration, since: i) the number of long-term non-
stationary (and therefore useful) sources does not exceed the number of observations and
ii) this method sets no restrictions on the number of long-term stationary (i.e. noise)
sources. The proposed algorithms are applied to this situation exactly in the same way as
in Subsection 4.1 and the filters C12(z) and Cy1(2) are again intended to resp. converge
towards A19(z) and Ag;(z) defined in (41)-(42), thus achieving the (partial) separation of
the two useful sources z1(n) and z2(n). Fig. 4 shows the actual evolution of the coefficients
of the filters Ci2(z) and Cs1(z) when using the above-defined global differential algorithm.
This confirms that these coefficients converge towards the correct values, i.e. that the
proposed approach also succeeds in achieving partial separation when two noise sources
are present. Moreover, the addition of the second noise source z4(n) yields almost no
performance degradation:

e Comparing Fig. 3 and 4 shows that the separating coefficients have almost the same
evolutions in the cases considered in Subsection 4.1 and here.
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e A more detailed analysis of these curves proves that the above-defined convergence
error E is here equal to 0.016, which is only slightly higher than the value 0.015
which was obtained in Subsection 4.1 in the same conditions (and esp. for the same
signal realizations) except that z4(n) was not present.

The second aspect of the operation of the proposed method to be considered here con-
cerns the short-term stationary periods of the useful sources. For the sake of clarity, the
configuration that we presented in Subsection 4.1 was based on the simplest situation re-
quired for the proposed approach, where two short-term stationary periods are considered
for each useful source and these periods are the same for both sources. Let us stress that
the proposed approach also applies to much more general situations. Indeed, this approach
is esp. intended for piecewise stationary useful sources. We then set no conditions on the
number of such ”pieces”, i.e. of short-term stationary periods (provided at least two long
enough periods exist for each each source). We also set no restrictions on the positions
in time of these periods, and especially the periods resp. associated to the two useful
sources need not be synchronized: even when the useful sources consist of a series of non-
synchronized stationary periods, the intersections of these periods form domains where
both sources are stationary and where our differential method may therefore be applied
(provided these periods are long enough).

We now illustrate these properties by presenting a test performed in the following
configuration, which may be considered as an extension of the previous ones. Each useful
source is again derived from the 100000-sample realization of a random £1 binary process.
However, this realization is here split into a few periods, (i.e. 5 periods for z1(n) and 9 for
z2(n)) and a specific constant scaling factor is applied to each realization on each period,
thus yielding the eventual sources considered hereafter. The detailed definitions of these
sources are provided in Tables 2 and 3. It should be noted that no stationary period
boundaries are shared by z1(n) and z2(n). These sources are shown in Fig. 5 a) and b).
They are then mixed with the same two noise sources as above, using the same mixing
filters. The resulting mixed signals y;(n) and y2(n) are provided in Fig. 5 ¢) and d).

Allowing the stationary periods of the useful sources to take arbitrary unknown po-
sitions yields a practical issue for the proposed approach, i.e. how to detect the time
domains when both sources are stationary, in order to apply our differential approach to
two of these domains. A simple practical solution to this problem consists in detecting
these domains as the domains where both mixed signals have (almost) constant powers.
For instance, we may operate as follows in order to find two such 5000-sample domains,
where our differential BSS method will be applied. We first compute the mean powers
of both observed signals y1(n) and y2(n) over successive adjacent 1000-sample domains.
The resulting power profiles are shown in Fig. 5 e) and f). It should be noted that they
are coherent with the envelopes of the mixed signals provided in Fig. 5 c¢) and d). These
mean power profiles are also shown in more detail in Fig. 6 a) and 7 a). The latter figures
confirm that these mean powers are ”constant” (up to the statistical fluctuations of the
signals over the considered 1000-sample windows) on the periods where both sources are
stationary. An automated procedure must then be designed for deriving from these mean
power profiles the two 5000-sample time domains where the mixed signals have the most
constant powers. The procedure that we propose to this end operates as follows. For each
mixed signal, we successively consider each time position associated to a 1000-sample win-
dow where one of the above mean power values was computed. For each such position, we
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compute the variance® associated to 5 values of the mean power of the considered mixed

signal, where these 5 values resp. correspond to the considered 1000-sample window, to
the two 1000-sample windows situated on its left and to the two 1000-sample windows
situated on its right. We thus obtain two variance profiles, resp. associated to the two
mixed signals, which are shown in Fig. 6 b) and 7 b). We then select the two 5000-sample
periods which yield the lowest variance values for both mixed signals. For the signals
considered in this test, these periods turned out to resp. correspond to the sample ranges
[5001,10000] and [90000,95000].

When applying our global differential BSS approach to these periods, the convergence
error E for the separating coefficients was 0.0056. This is coherent with the error that
we reported in Subsection 4.1 for 5000-sample periods (i.e. E = 0.036), considering that
we included an additional noise source here and that only a coarse comparison may be
performed between these two tests, as the stationary periods used in these tests do not
correspond to the same signal realizations.

5 Conclusions

Classical BSS methods only apply to the situation when the number of observed signals
is at least equal to the number of sources to be separated. In this paper, we considered
the opposite case, i.e. underdetermined or noisy mixtures. We introduced a general dif-
ferential BSS concept which then performs partial BSS, i.e. which separates a subset of
the considered sources, whereas the other sources are made invisible in BSS optimiza-
tion criteria (so that no restriction is set on the number of such sources). This general
concept may e.g. be used to derive extended versions of various classical BSS methods
for instantaneous or convolutive mixtures. We illustrated this approach esp. by applying
it to a convolutive criterion and associated algorithms based on the global or stochastic
cancellation of the above-defined ”differential cross-correlation function” of intermediate
signals of the BSS system. This particular method, which is the differential version of the
classical decorrelation approach, adapts the filters of a direct BSS system so as to perform
the separation of two non-stationary sources from two convolutive mixtures which also
contain an arbitrary number of stationary noise sources. We analyzed the stability of
the proposed algorithms, which defines the signs of the adaptation gains to be used. We
also demonstrated the effectiveness of these algorithms by means of numerical tests. Our
future investigations will esp. concern the application of the proposed general concept to
i) specific BSS algorithms which are suited to more general mixing conditions and to ii)
differential parameters associated to other source properties than their non-stationarity.
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3A modified version of this approach would consist in normalizing this variance by the squared mean
of the values over which this variance is computed, in order for this criterion not to depend on the average
power of the signals over the considered domain.
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A Stability analysis

We proved in Subsection 3.3 that (37) is met at the partial separating state. This state
is therefore an equilibrium point of the proposed stochastic and global algorithms. This
equilibrium point must be stable in addition. We here investigate in which conditions
this requirement is met. To this end, we use the Ordinary Differential Equation (ODE)
method [3], which makes it possible to analyze the local asymptotic behavior of adaptive
systems whose overall updating algorithm may be expressed in vector form as:

9n+1 = Gn + H(Hn, £n+1)a (47)

where 0,,, H(0,,,&,+1) and &,4+1 are the column vectors resp. composed of:
e the adaptive parameters of the system, which define its state,
e the updating terms for the parameters contained in 6,,,
e the signal values required to define the above updating terms.

The equilibrium points of (47) are all the constant state vectors 6* for which
Tim By [H(8", n1)] = 0, (48)

where Ejy-[.] denotes the mathematical expectation with respect to the probability law of
the vector &,1 for a given vector 6*. Each equilibrium point 6* of (47) may be stable
or not, depending on the properties of the function H and on the statistics of the vec-
tors (£,)n>0. The ODE approach allows one to analyze stability for stationary sources

by approximating the discrete-time recurrence (47), under some conditions* on H, by a
continuous-time differential system that reads:
L= tim_ B[HG, &) (19)
dt n—lglkloo o AU

This differential system is locally stable in the vicinity of an equilibrium point 6* if and
only if (iff) the associated tangent linear system:

do * *
= = J(0)(0-07) (50)

is stable, i.e. iff all the eigenvalues of J(6*) have negative real parts. For any state 8, J(0)
denotes the corresponding Jacobian matrix of the system, i.e. the matrix composed of the
partial derivatives

J5(0) = tim 2EHE: 6 1)]0)

n——+o0o 00() ’ (51)

where Eg[H (8, £n41)] is the it? component of Eg[H (6, &,41)] and 8U) is the 5% component
of 6.

We first have to apply this ODE approach to a slightly extended version of the classical
decorrelation approach (19), where we introduce two independent adaptation gains p1 and

4The adaptation gains should be sufficiently small. The other conditions on H concern its regularity

[3]-
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w2 resp. for adapting the separating filters C12(z) and C1(z). The adaptation rule (19)
then becomes:

cii(n+1,k) = cij(n, k) +piui(n)uj(n —k) i#j5€{1,2},k €1, M]. (52)

This extended rule falls in the class of algorithms defined by (47) and corresponds to:

0, = [cia(n,1),...,c1a(n, M), co1(n,1),...,co(n, M)]T (53)
H(On,ént1) = [prui(n)uz(n —1),..., prui(n)us(n — M),
paug(n)ui (n — 1),..., pgug(n)us (n — M)]" (54)
nv1 = [yi(n),y2(n),ui(n —1),...,ui(n — M),
ug(n —1),...,ug(n — M)]L. (55)

The corresponding Jacobian matrix J(0%) at the separating state 6° for two sources may
then be derived from (53)-(55) by means of (51) (a more detailed description of a relatively
similar analysis may be found in [6]). It has a complex expression, which does not allow
one to easily derive its eigenvalues, as required by the ODE approach. In order to obtain
more meaningful results, we focus on the case when the following two conditions are met:

1. The sources are temporally white (at order 2), i.e:
Ry (m)=0 ifm#0, (56)

where correlation functions Ry, (.) have a single argument in this part of the discus-
sion, as the sources are supposedly stationary. The powers or variances R, (0) of
these centered sources are denoted P, hereafter.

2. The mixture ratio is low, i.e. the coefficients of the mixing filters A12(z) and A (2)
are very small.

The Jacobian matrix J(0°) at the separating state may then be shown to consist of four
simple sub-matrices, i.e:

sy o [ 1Py Im 0
where I/ is the M*"-order identity matrix. These calculations only concern the (extended)
classical algorithm. We presented them however, because they are a required first step of
our analysis, which has not been reported in the literature to our knowledge, and from
which we can then easily derive the results to be established for the differential approach
proposed in this paper. As a by-product of this investigation, the stability condition for the
(extended) classical algorithm may first be derived as follows from the above results. The
matrix J(0°) obtained in (57) is diagonal and its eigenvalues are —pu1 Py, and —poPy,. As
explained above, the separating state is a stable equilibrium point for this BSS algorithm
iff these eigenvalues are negative. As the source signal powers P,, and P,, are always
positive, this stability condition reads:

>0
{Z;>0 (58)

This is the reason why the classical algorithm (19) uses p1 = puo = p > 0.
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The algorithm (40) proposed in this paper also falls in the class of adaptation rules
defined by (47). Moreover, it is related in a simple linear way to the algorithm (52) that
we just analyzed: the function value H(0,,&,+1) for our algorithm is the difference be-
tween the two values, resp. at times ng and nq, of the function H(0,,&,+1) corresponding
to the algorithm (52). Moreover, the ODE approach itself is also linear with respect to
H(0,,&,+1). Therefore, when applying this ODE approach to the algorithm (40) that we
proposed, the expressions obtained in the successive steps of this analysis are straighfor-
wardly derived from those obtained above for the classical algorithm (52): the expressions
obtained for the latter algorithm are replaced by the difference of their values between
times no and mi. In other words, we here get the differential version of the previous
analysis, which is natural as we consider the differential version of the previous algo-
rithm. Especially, the eigenvalues of the Jacobian matrix here become —p1DP;,(n1,n2)
and —po D P, (n1,n2), where we define the differential power of any signal v(n) for times
ny and ngy as:

DPv(TL1,’I’L2) = Rv(TLQ,’)’LQ) — Rv(nl,nl). (59)

The proposed differential algorithm is then locally stable at the partial separating state
iff:

(60)

/,LlDP$2 (nl,ng) >0
s DPy, (n1,mg) >0

The differential powers cannot be removed from this condition, as they may be positive or
negative, depending on the considered source signals. This should be contrasted with their
classical, i.e. non-differential, counterparts which appeared in the classical approach and
which are always positive. The signs of the adaptation gains 1 and uo should therefore be
selected according to the signs of the differential powers of the source signals (which may
e.g. be estimated in practice by adapting the technique that we developed elsewhere for
estimating the signs of source kurtosis [10]). For the sake of simplicity, both adaptation
gains may have the same absolute value, i.e: |pu1| = |u2| = p > 0.
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Table 1: Separating filters after convergence of proposed global algorithm vs. number L
of source samples in each period.

L C12(Z) and 021 (Z)

500 Cr2(z) ~ —0.5092~" 4+ 0.045272 + 0.120z 3
Co1(2) ~ —0.383271 — 0.087272 + 0.131273

5000 | Ci2(z) ~ —0.3512~1 +0.17222 4 0.0662 >
Co1(z) =~ —0.3402~! — 0.190272 4 0.0482 3

50000 | C12(z) ~ —0.3962~! +0.1422=2 4 0.0862 >
Co1(z) =~ —0.331271 — 0.184272 + 0.0222 3

Table 2: Definition of source z1(n): periods over which it is stationary and scaling factors
applied to the original £1 binary random process to create z1(n).

period scaling factor
[1,20000] 1
[20001,40000] 3
[40001,60000] 0.5
[60001,80000] 2
[80001,100000] | 1.5
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Table 3: Definition of source z2(n): same principle as previous table.

period scaling factor
[1,5000] 2

[5001,15000] 1
[15001,30000] 2.5
[30001,45000] 0.5
[45001,55000] 3.5
[65001,650001 1
[65001,75000] 2
[75001,90000] 3
[90001,100000] | 1.5
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Figure 2: Evolution of the coefficients c;;(n, k) of the strictly causal MA separating filters
adapted with the proposed stochastic algorithm, for one noise source (left column: Cja(z2),
right column: Cy;(2)).

25



—~-0.1 —~-0.1
- '__
c c
02 =02
— (Y]
© 03 © .03
-0.4 0.4
0 10 20 30 40 50 10 20 30 40 50
n n
0.2 0
70.15 a:fo.os
(= c
&/ 0.1 = -0.1
— Y]
©0.05 O _0.15
0 -0.2
0 10 20 30 40 50 10 20 30 40 50
n n
0.1 0.025
ao.os ) 0.02
(= (=
5008 =0.015
— N
© 0.04 O o.01
0.02 0.005
10 20 30 40 50 10 20 30 40 50
n n

Figure 3: Evolution of the coefficients ¢;;(n, k) of the strictly causal MA separating filters
adapted with the proposed global algorithm, for one noise source (left column: Cia(z),
right column: C9;(z)). m is the index of each update performed by taking into account all
the available data.

26



0 0
—~-01 ~-0.1
- A
c [
N_O'Z =02
- o
O 03 ©-03
-0.4 -0.4
10 20 30 40 50 10 20 30 40 50
n n
0.2 0
&?0'15 (’\I—O 05
c [
C\\.I/ 0.1 = -0.1
- / o
©0.05 © _0.15
0 -0.2
0 10 20 30 40 50 10 20 30 40 50
n n
0.1 0.025
80.08 @ 0.02
(= (=
008 =0.015
- N
© 0.04 © o0.01
0.02 0.005
0 10 20 30 40 50 0 10 20 30 40 50
n n

Figure 4: Evolution of the coefficients ¢;;(n, k) of the strictly causal MA separating filters
adapted with the proposed global algorithm, for two noise sources (left column: Cis(z),
right column: Cb(2)).
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Figure 5: Top two plots = a) and b): two useful sources. Middle two plots = ¢) and d):
two mixtures of these useful sources and of two noise sources. Bottom two plots = e) and
f): mean powers of mixed signals on adjacent 1000-sample windows.
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Figure 6: Top plot = a): mean powers of first mixed signal on adjacent 1000-sample

windows. Bottom plot = b): variances of above mean powers on 5000-sample windows,
with a 1000-sample stepsize.
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Figure 7: Same principle as previous figure, for second mixed signal.
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Figure captions:

Fig. 1: Separating system based on a direct structure.

Fig. 2: Evolution of the coefficients c;j(n,k) of the strictly causal MA separating
filters adapted with the proposed stochastic algorithm, for one noise source (left column:
C12(z), right column: Cy(2)).

Fig. 3: Evolution of the coefficients c;;j(n,k) of the strictly causal MA separating
filters adapted with the proposed global algorithm, for one noise source (left column:
C12(z), right column: Cs(z)). n is the index of each update performed by taking into
account all the available data.

Fig. 4: Evolution of the coefficients c;;(n,k) of the strictly causal MA separating
filters adapted with the proposed global algorithm, for two noise sources (left column:
C12(z), right column: Co;(2)).

Fig. 5: Top two plots = a) and b): two useful sources. Middle two plots = c¢)
and d): two mixtures of these useful sources and of two noise sources. Bottom two plots
= e) and f): mean powers of mixed signals on adjacent 1000-sample windows.

Fig. 6: Top plot = a): mean powers of first mixed signal on adjacent 1000-sample
windows. Bottom plot = b): variances of above mean powers on 5000-sample windows,

with a 1000-sample stepsize.

Fig. 7: Same principle as previous figure, for second mixed signal.
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