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Abstract: This paper deals with the separation of two convolutively mixed signals.
The proposed approach uses a recurrent structure adapted by generic rules involving
arbitrary separating functions. While the basic versions of this approach were defined
and analyzed in our companion paper [3], two extensions are considered here. The first
one is intended for possibly-coloured signals. In addition, the second one may be used
even when the probability density functions of the sources are unknown. We first analyze
the convergence properties of these extended approaches at the separating state, i.e. we
derive their equilibrium and stability conditions and their asymptotic error variance. We
then determine the separating functions which minimize this error variance. We also
report experimental results obtained in various conditions, ranging from synthetic data to
mixtures of speech signals measured in real situations. These results confirm the validity
of the proposed approaches and show that they significantly outperform classical source
separation methods in the considered conditions.

Résumé: Cet article concerne la séparation de deux signaux mélangés de maniere
convolutive. L’approche proposée utilise une structure récurrente adaptée par des regles
génériques mettant en jeu des fonctions séparatrices arbitraires. Les versions de base
de cette approche ayant été définies et analysées dans notre article associé [3], deux
extensions sont considérées ici. La premiere concerne des signaux pouvant étre colorés,
tandis que la seconde peut étre utilisée méme si les densités de probabilité des sources sont
inconnues. Apres avoir introduit les principes de ces approches étendues, nous analysons
leurs propriétés de convergence au point de séparation, en déterminant leurs conditions
d’équilibre et de stabilité ainsi que leur variance d’erreur asymptotique. Nous en déduisons
ensuite les fonctions séparatrices qui minimisent cette variance d’erreur. Des résultats
expérimentaux sont présentés. lls ont été obtenus dans diverses conditions, comprenant
aussi bien des données synthétiques que des mélanges de signaux de parole mesurés dans
des situations réelles. Ces résultats confirment la validité des approches proposées et
montrent qu’elles fournissent des performances nettement meilleures que les méthodes
classiques de séparation de sources dans les conditions considérées.



1 Introduction

Multichannel blind source separation is a relatively new signal processing technique. It is
based on a model inside which statistically independent signals (sources) are linearly mixed
through an unknown invertible medium. Blind source separation then consists in recovering
the sources using only several observations of the mixtures. Many methods for achieving
source separation were proposed in the literature in the instantaneous case, which corres-
ponds to media without memory (see [3] and references therein for more details). On the
contrary, only a few algorithms were introduced in the convolutive domain, corresponding
to media with memory [3]. Moreover, their behaviour was almost not analyzed in the lit-
erature. This topic was addressed in detail for white sources in our companion paper [3]:
we presented a stability analysis and an asymptotic behaviour characterization for a large
class of adaptive algorithms involving non-linear separating functions. We also derived the
optimum choice for the separating functions, i.e the choice that yields the best quadratic
matching of the mixing filters.

In this article, we first briefly redefine the source separation system that we proposed in [3]
and we summarize the results that we derived about its behaviour (see Section 2). We then
present an extension of this system and associated analysis (see Section 3). This extension
concerns the case of possibly-coloured sources, and especially AR processes. An analysis
of the stability of this system and of its asymptotic properties is provided. Its optimum
separating functions are also derived. They are shown to be related to the probability
density functions (p.d.f) of the whitened versions of the sources. As these p.d.f are often
unknown in practice, we then study in Section 4 a sub-optimum approach, that performs a
self-adaptive projection of the optimum separating functions on a predefined set of classical
functions. Section 5 presents experimental results obtained with these approaches. The
conclusions drawn from this investigation are eventually provided in Section 6.

2 Problem statement and available results

In this section, we briefly present some definitions and notations already used in our com-
panion paper [3]. Some important results derived in [3] are also recalled.

2.1 Definitions and notations

Let us consider two unknown zero-mean and mutually independent sequences z;(n) and
z9(n) that are mixed through an unknown bi-dimensional linear system (see Fig. 1).
The corresponding observations are respectively denoted y;(n) and yz(n). The source-
observation relationship of this model can be expressed as follows in the Z-domain:

Yi(2) Xi1(2) 1 Aua(z) Xi1(2)

= A z = 1
( Ya(2) ) ) ( X;(2) An(2) 1 Xa(2) M
where A(z) denotes the mizing matriz.
The aim of the blind source separation technique is to recover the original sources z;(n)
and z3(n). This can be achieved by using the recurrent structure shown in Figure 2, so as
to derive an estimate G/(z) of the inverse of the mixing matrix (see [3] for more details).

G(z) is called the separating matriz. The associated relationship between the observations
and the outputs of the separating system reads as follows in the Z-domain:
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Assuming that both the mixing and the separating filters, A;;(z) and C;;(2), are causal
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and have a finite memory, only the solution

Cij(2) = Aij(2)  ViFje{l,2} (3)
ensures source separation [3]. (3) is also equivalent to

si(n) = z;(n)  Vie {1,2}. (4)

Source separation then becomes equivalent to the identification of the mixing filters.
Unfortunately, A;;(z) are unknown so that (3) cannot be used as a practical method for
recovering the sources. Therefore, criteria for assigning C;(z) are needed. A solution
consists in adapting their coefficients, i.e. (¢;;(k))r>0, so that the outputs of the source
separation structure become statistically independenE. In practice, only partial statistical
independence tests are tractable. Several such tests were proposed in the literature. An
attractive solution, presented by H.L. Nguyen Thi and C. Jutten® [8], is the stochastic
algorithm that reads:

cij(n+1,k) = cij(n, k) + pn f(si(n))g(sj(n — k) i 7 je{l,2},ke[0,M]  (5)
where
e c;j(n, k) is the k' coefficient of C;;(2) at the n'" iteration,
® /i, is a "small” positive adaptation gain,

e f() and g() are odd nonlinear functions.

2.2 Summary of fundamental results

In our companion paper [3], we studied a generalization of (5), still applied to the recurrent
structure of Figure 2. This extended algorithm is denoted (N0) and reads:

cij(n+1,k) = c;j(n, k) + pnfi(si(n))gi(sj(n — k)) i #j€{1,2},ke[0,M] (6)

where f;() and g;() are arbitrary functions that are not necessarily odd and that are called
the ”"separating functions”. Furthermore, we investigated normalized versions of (NO):

e normalization scheme (N1):
fi(si(n)) gi(sj(n — k)

\/E (si)] \/E (s5)]

'"The Nguyen-Jutten algorithm is an extension of the Hérault-Tutten rule [6].

cij(n+1,k) = cij(n, k) + pin

P45 €{1,2),kelo, M),

(7)




e normalization scheme (N2):

5 (n1, k) = gy (m k) g — 2D g8 ZR) e oy ke o, a).

BIF (5] B2 \/ETo2(s)]
(8)

The algorithms (NO), (N1) and (N2) were investigated in detail in [3] under the asssump-
tion that both sources are independent identically distributed (i.i.d) sequences. More pre-
cisely, we studied:

e The equilibrium conditions. They consist of the conditions on the source statistics
and on the separating functions for the separating solution (3) to be an equilibrium
state of the algorithm. For all the algorithms (NO), (N1) and (N2), the equilibrium
conditions are?:

Elfi(=:)]Elgi(z)] =0, i #j€{1,2}. (9)

e The stability conditions. Using the so-called Ordinary Differential Equation tech-
nique (ODE), we derived the conditions under which the algorithms (N0), (N1) and
(N2) are asymptotically stable in the vicinity of the separating solution. The stability
conditions are shown to be related to the sources statistics, the separating functions
and the mixing filters (see details in [3]).

e The steady state (or asymptotic) behaviour. This refers to the algorithm prop-
erties once convergence is achieved. This investigation was carried out for strictly
causal mixing and separating filters. The convergence accuracy was measured by the
variance 0., of the asymptotic estimation error defined as:

M
oo = lim D (cr2(n, k) — ar2(k))* + (e (n, k) = az (k))?| . (10)
k=1

We investigated the minimization of o, with respect to the separating functions. We
thus first showed that (NO) suffers from an ambiguity due to the lack of normalization.
We then proved that (N1) and (N2) overcome this problem. The corresponding op-
timum separating functions (i.e. the functions which minimize o.,) were then shown
to be for both algorithms:

Py, (7)
PE ()
Giopt(2) = vig x, (12)

fiopt(m) = — i

where p,, is the p.d.f of the source z; and (v;1,vi2) is a couple of arbitrary real
constants suitably chosen to ensure the algorithm stability.

2 .
(9) assumes that the sources are stationary.



3 Extension to coloured signals

In the companion paper [3], all the theoretical results were derived using the whiteness of
the sources as a key assumption. Most often, this hypothesis is used to ease mathematical
calculus more than to take into account physical models, as most of the signals used in real
applications are not white. Our goal hereafter is therefore to define a modified version of our
approach, which applies to possibly-coloured source signals and which takes advantage of
the results already derived in [3]. To this end, we propose a new separating structure based
on whitened versions of the separating module outputs. We also present the associated
adaptation rules. A detailed analysis of these algorithms (equilibrium states, stability and
asymptotic properties) is then provided.

3.1 Models and proposed structure

In this section, we still consider the two-dimensional mixing system of Figure 1. All the
previous assumptions on the mixing filters and on the sources are still made except that
the sources #1(n) and z2(n) are no more required to be i.i.d sequences but only possibly-
coloured versions of i.i.d sequences (denoted respectively ;(n) and Z2(n)). Furthermore,
we assume that the relationship between z;(n) and #;(n) fori € {1, 2} reads in the Z-domain:

Xi(z) = = i€{1,2}, (13)

where B;(z) for i € {1,2} represents the Z-transform of a causal and minimum-phased
g

gith-order filter, i.e. Bi(z) =) bi(k)z~*. We also assume that each source z; has a non-
k=0

singular correlation matrix R,,. The sources z;(n) for i € {1,2} are then AR processes.
This assumption does not allow to recover all coloured signals but it makes it possible
to handle a large class of processes (especially speech signals, as shown in Section 5). It
can also be seen as a good approximation of the larger class of ARMA processes. In the
following, we assume that (N)Z(O) = 1. This assumption, which is not restrictive, enables to
define Z; as the normalized innovation process of z; [9].

In the context of such coloured sources, one could think of still using the recurrent structure
of Fig. 2 and the adaptive rule (6) that we proposed for white sources. However, since
sources are no more white sequences, the results presented in Subsection 2.2 do not hold
anymore here and the analysis of the properties of the rule (6) becomes tedious.

In order to overcome this problem and to take advantage of the previous results, we propose
to use a new separating structure (Fig. 3) which consists of two stages:

o A separating module that implements an inverse matrix, and that derives the outputs
s;(n) from the observations y;(n) and separating filters C;;(z). This stage is the same
as the one previously used for white signals.

o A whitening module that drives the separating filter adaptation, according to a rule
detailed in the next subsection. Filters are thus adaptively estimated using whitened
versions of the separating module outputs.



3.2 Formulation of the separation algorithm

Three adaptation rules for the above structure are presented hereafter. They are denoted
(NWO0), (NW1) and (NW2) as respective extensions of (N0O), (N1) and (N2) defined in [3]

in the case of i.i.d sources:
e normalization scheme (NWO0):

cij(n+1,k) = cij(n, k) + pn fi(vi(n))gi(vj(n — k) 14 je€{1,2},ke[0,M], (14)

e normalization scheme (NW1):

filvi(n)) gi(v;(n — k)

VEUZ©)] \/Elg(v))]

Czy(n+1 k)—c”nk + fin i#jE{l,Q},kE[O,M],
(15)

e normalization scheme (NW2):

fi(vz‘( ) (n — k)

()] \/E \/E (v;)]

cij(n+1,k) = Cij(n,k)+un i#3j€{l,2},kel0,M],

(16)

where vy(n) and vy(n) are adaptively whitened versions of the outputs s;(n) and sg(n) of
the separating module (i.e. v;(n) is the estimated innovation process of s;(n)). The order
of each whitening filter B;(z) is assumed to be equal to the order of the corresponding
colouring filter B;(2), which is not a restrictive assumption!. Furthermore, we assume
that the zero-lag coefficient of each filter B;(z) (i.e. ;(0)) is equal to® 1. The whitening

algorithm then becomes:

bi(n+1,k) = bj(n, k) — vavi(n)s;(n — k) 1€ {1,2}, k €[1,q] (17)

where s; and v; are given by:

si(n) = 1 ZCW n,k)s;(n—k)) i€{1,2}

1 - 612(71 0)621(71 0

Z bi(n,k)s;(n —k) 1€{1,2}
k=0

(18)

and 7, is a ”small” positive adaptation step. For clarity, we assume in the next sections
that v, = p, ¥n.

"More generally speaking, it is only required that Order(B;) > Order(éi) for 1 € {1,2}. Equality is
assumed here only to ease the presentation of the results.

b;(0) can be fixed to any non null value. The value of b;(0) does not influence the quality of the
whitening algorithm since it is only related to signal amplitude.

10



3.3 Analysis of the separation algorithm
3.3.1 Principles

The normalization schemes (NWO0), (NW1) and (NW2) have to be analyzed in association
with the whitening rule (17), as the coeflicients b;(n, k) of the latter rule are also part of
the overall set of adaptive parameters of the considered system Furthermore, (NW1) and

(NW2) use normalizing terms, i.e. E[f:(v;)] \/E \/E ] and 4/ E[g?(v;)], that are

not available in practice. These terms have then to be adaptlvely estlmated and therefore the

adaptive parameters of their estimation rules also have to be incorporated in the algorithm
analysis. The analysis of the resulting overall algorithms is then based on an approach
similar to the one already used in [3] to analyze the algorithms (NO), (N1) and (N2). The
details of this analysis are therefore skipped in the current paper, and only its major steps
are presented (a detailed presentation may be found in [2] however). Some of these steps
are only provided for (NWO0). The corresponding results for (NW1) and (NW2) may be

derived from those related to (NWO0), using respectively the following transforms*:

e for (NWI)
file) — Fi(a) = L,
. Y am) (19)
9:(2) = Gile) = ey
o for (NW2)

l(
fi(2) = @) = g f]\/F[T (20)
gi(z) — Gi(z) = T()]

3.3.2 Equilibrium states
To analyze (NW0), we consider hereafter a global reformulation of (14) and (17) as

@n+1 = ®n + ,unH(Gnv €n+1)7 (21)

where ©,,, £,41 and H(0O,,£,41) are the following column vectors:

@n = [01717 92n]T7 (22)
H(®n7£n+1) = [H17H2:|T7 (23)
Cnrt = (G, Eomp]T, (24)

where
b1, = [c12(n,0),...,c12(n, M), c21(n,0),...,¢c01(n, M)], (25)
0271 = [bl (na 1)? ey bl(na QI)a bZ(n’ 1)? cry bZ(na QZ)]v (26)

Hy = [fi(vi(n))g1(v2(n)), ..., fi(vi(n))g1(v2(n — M)),
fa(v2(n))g2(v1(n)), . .., fa(v2(n))ga(vi(n — M))], (27)
Hy = —[ni(n)si(n—1),...,v1(n)s1(n— ¢1),v2(n)sz2(n —1),...,v2(n)s2(n — q2)],(28)

*The validity of these transforms is proved in [2].
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Sinp1 = [i(n),y2(n),s1(n—1),...,51(n — maz(M,q)),
SQ(n_1)a---a32(n_mam(M7q2))]a (29)
Snp1 = [i(n=1),...,01(n—M),va(n—1),...,03(n— M)]. (30)

The equilibrium states of (21) are then the states ©* that meet:

E@)*[H(@*, £n+1):| = 0, (31)

where Eg«[] denotes the mathematical expectation associated to the asymptotic probability
law of the vector &,41 for a given vector ©*. In the next sections, we are interested in the
properties of the separating state, i.e. the vector ©° that corresponds to the identification of
the mixing matrix filters and of the colouring filters (see motivations in [3]). ©° is defined

by:

o =101, 63", (32)

with:
Gf = [?12(0),...lalg(]\{),agl(()),.N..,agl(M)], (33)
05 = [b1(1),...,b1(q1),b2(1), ..., ba(q2)]. (34)

The condition for the separating state ©° to be an equilibrium state of the algorithm
(21) is then:

E[fﬁ(il(n))gl(jj(n_k))]:0 ke [OvM]v Z#] € {172}7 (35)

or equivalently,

Elfi@)Elg(F)] =0 i#je{1,2} (36)

since the sources are assumed to be independent and stationary. (36) sets restrictions on the
separating functions f; and g;. Many choices can then be made depending on the available
information on the statistical properties of the sources. In order not to constrain both f;
and g;, we assume that:

Elgi(#;)] = 0. (37)

3.3.3 Stability conditions

The Jacobian matrix J(©) of (NW0) at the state © is composed of the elements:

d(Eo[H (©,&1)]")

00) k
where Eo[H (0,&,41)]® is the i** component of Eg[H (©,&,41)] and ©U) is the % com-
ponent of vector @. The condition for a given equilibrium state ©* to be locally stable is

then: all the eigenvalues of J(©*) have negative real parts [3]. Using (22) and (23), this
Jacobian matrix can be written as a 2x2 block matrix that reads:

Ji;(©) =

(38)

S(Ea(aHl)) B(EB%Hl))
J(©) = ( a(E(H,))  o(F(FL)) ) (39)
90, 90,

12



O(E(H;))
00;

on the properties of .J at the separating state ©° considered as an equilibrium state. It can

then be shown that:

where for i, € {1,2} are partial derivative matrices. In the following, we focus

O(E(H))

00, |(‘)=(‘)S = OQ1+q2’ (40)
O(E(H,)) _ Ry, 0
oo = = ), (41)

where 04,44, and Ry, for i € {1,2} denote respectively the (¢1 + ¢2) X (¢1 + ¢2) null matrix

and the correlation matrix of the source z;. .J(©?) then becomes lower block-diagonal and
its eigenvalues are equal to those of w, —R;, and —R,,. Besides, the matrices
(Rmi)ie{l’Q} are assumed to be invertible. Their eigenvalues are then strictly positive! and

so those of (—Ry,)icq1,2) are strictly negative. The above-defined stability condition is
then only related to the eigenvalues of M Using the same type of approach as in
[3] (especially the calculus presented in 1T'% Appendlx A), the stability condition can be
formulated as:

o if A>0
a w(0) >0
5&21])(0) >0
(@ = 30) (62 — 32) > o 42)
(@1 + @2)w(0) > (gol + @2)@(0)
o if A
a1w(0) > 0
aw(0) >0 (43)
(@1 + G2)®(0) > (&1 + P2)W(0)
where
A= (a1 — @1 — g+ @)+ 45, 3, (44)
and
a; = EJ ;(fz‘)]E[@glz'(fj))]
@i = (O)E[fZ(jz)]E['ﬁjgz(jj))]

We consider hereafter two particular cases:

1. Strictly causal filters': the Jacobian matrix % then becomes block-diagonal

with lower triangular diagonal blocks. We also have wi = 0 for i € {1,2}. The
stability condition then reads:

1Rz, is a priori a semi-definite matrix. lts eigenvalues are then positive or null. The invertibility
assumption implies that no eigenvalues are null.
Ya12(0) = a21(0) = ¢12(0) = ¢21(0) = 0.

13



{&1>0 (46)

ag >0
2. Instantaneous mixtures?: the stability condition then reads:

e ifA>0 B
(@1 = @1) (G2 — @2) > P13
{ (a1 + @) w(0) > (¢1 + B2)w(0) (47)

o if A0
(@1 + a2)w(0) > (p1 + ¢2)w(0) (48)
3.3.4 Asymptotic behaviour

The asymptotic behaviour of the algorithms (NWO0), (NW1) and (NW2) is investigated
hereafter. Here again, we assume that:

e T'he mixing and the separating filters are strictly causal.

e The adaptation gain p,, is such as p,, = ¢ > 0, Vn > 0.

Under these assumptions, the stability condition presented in (46) is still valid. The
asymptotic error variances associated to the considered algorithms become [2]:

e for (NWO):
_ - EUR@E) ElRE)]
et zg; E[f; (2:)] E[2;9:(;)] (42 + gin i), (49)
o for (NW1):
2 VELE)] 1\ Blg2(3))] o
et %;1 E[f{(#:)] FlE;9:(%))] (¢i2 + qin i), (50)
o for (NW2):
o, = BRGVEEE] 1
o = H #Z_l 2[f] (@] Elai0:()] Jr[] (g2 + g i), (51)
_ EPfi(0)] L
where a; = m and ¢;; for 7,5 € {1,2} are real values that depend only on the

mixing matrix.

Following the same approach as in [3], the optimality for (NW1) and (NW2) can be
shown to be reached for®:

2(11'](16) =cij(k)=0fori#j€{1,2} and & > 1.

5As for the algorithm (NO) studied in [3], the optimum choice for the separating functions cannot be
defined for (NWO0) because the adaptation gain and the separating functions are coupled terms of the
algorithm.
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7 (%)
7 (2)

giopt(m) = Vi (53)

]
&

fiopt(m) = Vi (52)

=

where pz, is the p.d.f of the innovation process #; of z; and (v;1,v42) is a couple of real
constants that must be chosen in order to meet the stability condition (46). Using (19)-
(20), the optimum normalized separating functions are then:

e for (NW1):
P, (=)
Fiop(s) = ——— (54)
ropt \ v - pi(x) )
VEICED)
x
Giopt(x) = ma (55)
e for (NW2):
Py, (@)
Fiopt(m) = pi (2:;1 - ) (56)
E[(p:(x))l] Flz?]
x
Giopt(x) = m (57)

4 Sub-optimum separating functions

The implementation of the optimum separating functions f;.,, or equivalently Fj,,, re-
quires the p.d.f pz, of the whitened versions of the sources to be known. Unfortunately
those functions are often not available. A natural solution to this problem is the estima-
tion of these p.d.f. However, this approach is computationally expensive, hard to use in
real-time applications and difficult to extend to the case of non-stationary sources. An
alternative solution consists in determining a sub-optimum estimate of these optimum sep-
arating functions (see also [4]). Especially, this can be achieved by deriving the projection
of the optimum functions on a set of classical functions (polynomial functions for example).
Hence, each separating function f; or F; has the form:

L
h(z) = wite(2), (58)
k=1
where:

° (gbk(ac))ke[] 1] is a set of continuously derivable functions that span the projection
space,

® (wk)gep,r is a set of scalar coefficients associated to (Vk(%))rep 1)
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The expansion coefficients (wk)ke[l,L] depend on the optimum function that is projected,
on the set of projection functions and also on the constraints put on h(z). Many such
constraints can be used, leading to more or less complicated solutions that may depend on
the mixture characteristics. One way to achieve an easy presentation of the results is to
constrain h(z) to be zero mean. This assumption makes sense since the optimum function
is zero mean®, but this does not ensure that the sub-optimum function thus obtained is
very close to the optimum. This approach is therefore a trade-off between complexity and
optimality. It is illustrated hereafter for the two normalization schemes introduced above
and for strictly causal mixtures.

It should be noted that a sub-optimum approach is only required for the functions F;. On
the contrary, as for the functions G, the optimum is proportional to the identity function,
which is easily implemented and therefore used hereafter.

All the results presented below are also valid in the case when the sources are white signals.
One then just has to replace #; by z; and to set the whitening filters to 1 in the final results.

4.1 Sub-optimum solution for normalization scheme (NW1)

When setting G; to its optimum value (55) and u,, = p, the normalization scheme (NW1)
becomes:

i 1K) = cij(n, k) + el (vi()) 2]

Ev]]

i#je{1,2 ke[l,M].  (59)

Using the sub-optimum approach in (59), F;(z) is made equal to h;(z) defined according
to (58), i.e:

L (2
hi(z) = witix(z) = ) (60)
k=1

At the separating equilibrium state, the stability condition derived from (46) according to
(19) and from (55) reads:

’

E[h;(z;)] > 0. (61)

Combining (50), (53) and (60), the asymptotic error variance becomes:

N (BT + 0 EYha(E)]) 1

S JERRGEERGE)] /BT

Furthermore, h;(Z;) has to meet two constraints: F[h?(Z;)] = 1 and F[hi(z;)] = 0
z). Under

(62)

corresponding respectively to (60) and to the zero-mean assumption made on h;(
those constraints, the error variance becomes:

0,j=2

Ooo = Y / 42 . (63)

ii=tizg Pl (E0)]/ BEF]

%(54) or (56), combined with the assumption lim  p;,(x) = 0 (made in [3]), imply E[Fiop:(z)] = 0.

|z]|——+ 00
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The minimization of o, as defined in (63) then corresponds to the constrained maxim-
ization of E[h;(iz)] which leads to the following set of coefficients (wix)r>1 (see [2]):

sign(Z{?:l %E[i/);k(fz)])

\/25,121 d%(f”E[‘lﬁik(fiWu(fi)] (64)
wip = wn%ﬁ kel2,1]
where d;, k € [1, L], are the entries of the vector D; defined by:
D; = 'y, if Vi=0,
_ Ty, . _ e 65
D, = ‘I’ilFi—(%Ti—eri)%l% if Vi#0, (65)
where
Bl (2:)1i1(2:)] . Bl (2:)¥ir (T5)]
v = : Eli(2:)a(E:)] : , (66)
E[hir (%) Vi (4)] Ehir(%:) i (%4)]
T . . AT
Iy = [E[’@bn(wi)]’ : -wE[%L(%)H ) (67)
and
Vil = [E[pn ()], ..., Elva(@))]" (68)

Note that d;; was assumed to be non null above. If this assumption does not hold, a
permutation of indices in the vector D allows to fulfill this requirement.

4.2 Sub-optimum solution for normalization scheme (NW2)

Here again, the function G, is set to its optimum value (57), which corresponds to the new

form of (NW2):

cij(n+1,k) = ¢ij(n, k) + pF;(vi(n)) % i#7€e{1,2}, ke [1, M]. (69)

Using the sub-optimum approach in (69), F;(z) is made equal to h;(z), so that:

L
fi(z)
hi(z) = ) wintir(z) = —— : (70)
1; Elfi(2)]V El2?]
The stability condition derived from (46) according to (20), (57) and (70) becomes:

E[#3] >0 i€{1,2}, (71)

which is always met, i.e. independently from the properties of the separating functions f;.
Combining (51), (53) and (70), the asymptotic error variance is then:
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O — M f(%?E[h?(@ﬂ + qilEQ[hi(ji)]),—' (72)
i:lz,;# E2[h;(24)] Bl E[Y
Moreover, h;(#;) has to meet two constraints: E[h,(#;)] = —=—== which results from

- VEE]
(70) and the zero-mean constraint E[h;(Z;)] = 0. The asymptotic error variance becomes
then:

1,5=2 ~2
Z’v]’:Li#]’ J

The constrained minimization of o4, leads to the set of coefficients (w;x)r>1 defined by

(see [2]):

1
Wi = I
VEY GE i)
Cida (74)
Wik = wndﬁ kel2, ]
di1
where [d;1,...,d;r]T is the solution of the linear system given in (65).

5 Experimental results

This section is devoted to the experimental validation of the analysis performed in the
previous sections. Three basic conditions are considered, depending on the nature of the
sources and of the mixing matrix: i) synthetic sources and synthetic mixing system, ii)
real sources and synthetic mixing system, iii) real sources and real mixing system. The
assumptions made in the theoretical analysis can be rigorously checked only in the first
case. However, the most interesting case from a practical point of view is the most realistic
one, i.e. the third one. The validation of the theoretical results for the adaptation rules (N1),
(N2), (NW1) and (NW2) is fully detailed in [2]. In seek for brevity, only the experimental
results associated to (NW1) are presented hereafter.

5.1 Definitions

Definition 1 The efficiency of a separating function f;, denoted ef f(f;), is the ratio of
the minimal asymptotic error variance (associated to the optimum function fiope) to the
asymptotic error variance achieved by this separating function f;.

An equivalent definition holds for the separating functions g;.

Definition 2 The Signal to Noise Ratio Improvement at output i of the separating system

is defined as:

SNRI; =10 logio (g&igg = ;;EZ;Q) . foric{1,2}. (75)

SN RI; measures the logarithmic difference between the signal to noise ratio at output i
and the signal to noise ratio at observation i (i.e. at input i of the separating system). In
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other words, SN RI; measures the reduction of the crosstalk achieved by the source separa-
tion sysem for source i. In practice, SN R1I; will be estimated by’ :

Ly

Z (yi(n) — mi(n))Q

’)’L:Ll
Lo !

> (si(n) = zi(n))?

n=L1

SNRI; =10 logyg forie{1,2} (76)

where Ly is the record length and Ly is such that the convergence is achieved for n > L.

Definition 3 SN RI denotes the average Signal to Noise Ratio Improvement defined by:

SNRI, + SNRI,
. .

Definition 4 The Generalized Gaussian Family (GGF) is the set of p.d.f which depend
on a parameter 3 and are expressed as:

SNRI =

(77)

x B
po(e) = Kp em_%) (78)

where

+oo
and I denotes the Gamma function given by I'(z) = / et e,
0

The GGF includes some classical p.d.f such as the Laplace p.d.f (3 = 1), Gaussian p.d.f
(8 = 2) and uniform p.d.f (8 = 4+00) (see Fig. 4). It also allows to approximate a large set
of unimodal symmetric p.d.f.

5.2 Synthetic sources and synthetic mixing matrix

5.2.1 Test strategy and conditions

The experimental validation of the algorithm (NW1) requires to vary the separating func-
tions f1, f2, g1 and go in order to determine the experimentally optimum functions. Such

"SNRI; can be computed only if the contributions of each source in the observed mixed signals are
available. In experimental tests, these contributions may be obtained by emitting a single source signal
at a time and recording the corresponding partial observed signals. Each overall observed mixed signal
is then obtained by adding the above two contributions successively measured for the two sources on the
considered sensor. We used this method in the context of real signals and real mixing systems reported
below.
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a validation would therefore ideally consist of an infinite number of tests. In this paper
however, the complexity of this validation is reduced as explained hereafter. As shown in
(53), the optimality of each function g; is reached when this function is the identity function®,
which is independent from the source statistics and which is the same for g; and g9. A degree
of freedom is therefore removed by restricting the investigation to the case when ¢, = g5.
In order to further reduce the complexity of the simulations, the considered sources have
the same p.d.f hereafter. According to the theoretical result (52), this assumption leads
to the same optimum choice for the separating functions f; and f, and therefore allows to
obtain relevant results by considering only the case f; = f;. With the approach defined
at this stage, the tests are performed in a two-dimensional space spanned by f1 = fo = f
and g1 = g3 = ¢g. This space is eventually restricted to one dimension by investigating
the optimum choice for f; while g; is fixed to its theoretical optimum, and then vice versa.
More precisely, f; or g; is varied as follows. In each series of tests, the p.d.f of both sources
belongs to the above-defined GGF, with a fixed value 8. The optimum separating functions
(52)-(53) may then be shown to become:

fiopt(z) o< sign(z)|z|®1, i€ {1,2} (83)
Giopt(x) o<z, 1 €{l1,2}. (84)

where o stands for the proportionality symbol. Now consider the family of separating
functions F = {/YI\(8)|§|!l, || > 7}, where each function corresponds to a specific value
of the parameter k. The optimum function f;,,; defined in (83) belongs to this family
and corresponds to & = 8 — 1. The optimality of this function can therefore be checked
experimentally by successively performing simulations with functions f; belonging to the
family F and corresponding to various values k& (while ¢;(2) = giope(2) = 2), and by
checking that the minimum experimental error variance is achieved for £ = f— 1. Similarly,
the optimality of g;.p; defined in (84) is checked by considering functions g; belonging to
the family 7 (while f;(z) = fiopt(z) = sign(z)|z|’~1), and by checking that the minimum
experimental error variance is achieved for £ = 1 (for which g; is the identity function). This
test procedure is applied hereafter (and additional tests are defined in Subsection 5.2.4).
To this end, the following experimental conditions are used:

e Sources: coloured versions of i.i.d sequences with GGF p.d.f and with unit power.
The tests are successively performed for § = 1,2 and 7.

e Colouring filters (used to obtain the sources): b, = [1,-0.4,0.5,—0.7] and by =
[1,0.8,0.4,—0.2].

o Mizing filters: we use strictly causal MA(4) filters defined by:

AL = 10.0,-0.38077,0.136010, 0.080955],
AL = [0.0,-0.3268, —0.184256, 0.02734].
(85)

e Separating filters: we use strictly causal MA (4) filters.

#More precisely, optimality corresponds to g; proportional to the identity function. However, we only
consider the algorithm (NW1) here. This algorithm is such that proportionality coefficients on separating
functions have no influence on the separation quality, since they disappear in this algorithm, as can be seen
in (15). There is therefore no need considering proportionality factors on g; here. This also holds for f;
and for the family of functions F defined below.
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5.2.2 Optimal function f;

The evolution of the experimental efficiency ef f(f;) with respect to the parameter & of the
function f; varied in the family F is represented in Fig. 5 for various values of 3. The
optimum separating function (i.e. the one that maximizes the efficiency) corresponds to
k =0, 1 and 6 respectively for # = 1, 2 and 7. This is in full agreement with the above-
mentioned theoretical result, i.e. k¢ = —1. In addition, Fig. 6 represents the normalized
SNRI? for each considered value of 3. It shows clearly that the SNRI is maximized for k£ = 0,
1 and 6 respectively when 8 = 1, 2, and 7. This confirms the optimality of the separating
function f;(z) = sign(z)|z|?~! for GGF sources and the validity of the separating approach
based on the whitening module presented in Section 3.

5.2.3 Optimal function g;

Figure 7 represents the evolution of the experimental efficiency ef f(g;) with respect to the
parameter k of the function g¢; varied in the family F. Each plot corresponds to a specific
value of 3. This figure shows that the experimentally optimum separating function g; is the
identity function (corresponding to k& = 1) whatever 3, which is the expected result. The
measured normalized SNRI (see Fig. 8) leads to the same conclusion.

5.2.4 Validation of the sub-optimum approach and of the robustness of the
(sub-)optimality with respect to the adaptation gain y

Two topics are addressed in this subsection: the validation of the sub-optimum approach
developed in Section 4 and the test of the robustness of the (sub-)optimality with respect to
the adaptation gain parameter u. We deal with these two items in one global approach by
studying the error variance and the SNRI evolutions vs u for different separating functions
fi (including the optimum function and its projections). The experimental conditions are
the same as the ones we used in the previous subsections except that only the case § =1 is
considered (i.e. the p.d.f of the innovation processes of the sources are fixed to the Laplace
law, as this corresponds to the real signals considered in the subsequent subsections). The
separating functions are still all associated to the normalization scheme (NW1), and a
comparison is made between:

e The classical separating functions, i.e. the functions which are commonly used in
the literature (but which are then applied to classical adaptation rules, as opposed to
the rule (NW1) in which they are used here). These functions are: ((fi(z), ¢:(z)) €

{(z,2), (=% 2)}).

e The original separating functions which result from our approach, i.e: ((fi(z), g:(z)) €
{(sign(z),z), (h?P)(z), z), (hGP)(z),2)}). Among these functions f;(z), sign(z) is
the optimum function for the considered sources, while A(3”)(z) and h(3P)(z) denote
respectively the projection of the optimum function f;,,; on the sub-space spanned by

(z,2%) and (sign(z)/[z], z, z3).

Figures 9, 11 and 13 represent the evolution of the error variance vs the adaptation gain
u for the rules corresponding to the considered functions. All separating functions yield the
same trend: for small values of u, the error variance is relatively high because convergence

?The normalized SNRI is defined as SNR[/SNRImM where SN Rlmaz 1s the maximum value of SNRI.
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is not reached yet at the end of the considered records. For sufficiently high values of p,
the error variance becomes an increasing function of u. This phenomenon corresponds to
the classical trade-off between convergence speed and accuracy.

The SNRI evolution (see Fig. 10, 12 and 14) yields the same trend (taking into account that
when the error variance reduces SNRI grows and vice versa). Fig. 11 and Fig. 12 confirm
that the theoretically optimum rule yields in practice a better separating accuracy than 2D
and 3D projections. These figures also show that the 3D projection performs better than
the 2D projection. Besides, Figures 13 and 14 show that the 2D and the 3D projections
outperform the classical separating functions (f;(z), gi(z)) = (z, z).

To sum up, also taking into account Fig. 9 and 10 and wusing the notation
(fi(l)(m),ggl)(m)) > (fi(2)(m),g§2)(33)) if (fi(l)(m),ggl)(m)) yields better separation perform-
ance than (fi(Z)(w),gz(z)(ac)), the investigation of the evolution of the separating rule per-
formance vs the adaptation gain p shows that (sign(z),z) > (h®*P)(z),z) > (RGP 2) >
(z,2) > (2% z) in the considered conditions. This yields two fundamental results:

e The validity of the optimum and sub-optimum approaches, i.e. the fact that the
associated rules outperform the rules corresponding to classical functions.

e The robustness of the optimum and sub-optimum approaches with respect to the
adaptation gain.

5.3 Real sources and synthetic mixing matrix
5.3.1 Laplace modelling of speech signals

Speech signals are non-stationary sequences (they can be considered as stationary only
over short time periods, i.e. often less than 30 ms). However, it is often convenient to
use a statistical model of speech. We showed in [2] that speech may be approximated
by an AR process. In this model, the order of the AR filters typically ranges from 8
to 20 and the innovation processes of the signals have a Laplace p.d.f (which belongs to
the GGF and corresponds to 3 = 1, as stated above)?. Therefore, speech belongs to the
class of source signals that can be handled by the source separation approach defined in
Sections 3 and 4. Moreover, as the sources are modelled with a Laplace p.d.f here, like
in the previous simulations, the corresponding optimum separating functions of our source
separation system are again (f;(z), g:(z)) = (sign(z), z).

5.3.2 Test conditions and results

The sources used here are two speech signals. I'wo mixing matrices are successively con-
sidered: the first one is based on the same filters Ag) and Agll) as in Subsection 5.2. The

second one is based on 13th-order strictly causal filters Ag) and Ag) defined by:

AP = [0, -0.05268, —0.104256, 0.32734, 0.5997, 0.242796, —0.051458,
—0.0159489,0.010203, 0.00012, 0.002, 0.12, 0.019],

AP = [0,-0.018077, 0.03601, 0.280955, 0.46475, 0.320127, —0.077205,
—0.024521,0.012375, —0.000011, 0.001, —0.32, 0.009).

°This is to be contrasted with classical speech models [10], in which the AR filters are excited by non
1.1.d signals, i.e. periodic signals for voiced speech or coloured noise for unvoiced speech.
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The separating matrix is based on strictly causal MA filters having the same orders as
the corresponding mixing filters. The whitening filters are MA(20) with zero-lag coefficients
b;(0) set to 1. The separating rules that we test are:

e Algorithm (N1) associated to the separating functions (f(z), g(z)) € {(z, z), (z*,z)}.
These approaches are considered because they provide a good idea of the perform-
ance that can be achieved by classical methods reported in the literature (the only
improvement added here to the classical methods is the normalization scheme (N1)).

e The approaches already defined in Subsection 5.2.4, i.e. algorithm (NW1) associated
to the separating functions:

(f(2),9(2)) € {(z,2), (2% 2), (sign(z), z), (hP)(z), ), (A*P)(z), 2)}.

The comparison of these approaches is performed for different values of the adaptation

gain y. This again enables us to examine the dependency of their performance vs p and to
check that the robustness of the (sub-)optimum approach is valid for real signals. Figures 15
to 18 represent the SNRI evolution vs the adaptation gain u for different rules and for both
mixing matrices. In seek for clarity, only the approaches based on (NW1) are represented
at this stage. For small values of u, the SNRI is relatively low because the convergence is
not reached yet at the end of the considered records. For sufficiently high values of u, the
SNRI becomes a decreasing function of p (this again corresponds to the trade-off between
convergence speed and accuracy mentioned in Subsection 5.2.4). According to these figures,
the maximum SNRI is achieved for the separation rule (f;(z), gi(z)) = (sign(z), z) for both
mixing matrices!®.
In Tables 1 and 2, we provide the simulation results for all the algorithms that we tested.
These results correspond to the best performance achieved for each rule'!. For both mixing
matrices, the optimum and the sub-optimum solutions yield a significant improvement both
in crosstalk reduction (or equivalently SNRI) and in convergence accuracy. More precisely,
the optimum separating functions outperform the classical approaches in terms of SNRI
by about 5 dB for the mixing matrix A()(z) and 9 dB for the mixing matrix A (z). In
addition, Tables 1 and 2 show that the whitening module slightly improves the separation
accuracy and that 2D projection performs better than the classical separating functions.
However, this 2D projection yields lower performance than the 3D projection and the op-
timum approach (see also Fig. 17 and 18). Therefore, the 2D projection is not considered
in the next section.

5.4 Real sources and real mixing matrix

In this part, we consider the realistic situation when both the sources and the mixing filters
are real: the sources are two speech signals considered in the telephone band [300 Hz - 3400
Hz]. These signals are emitted by two loudspeakers and picked up by an antenna made up
of 8 microphones, with the following configuration:

e the inter-source distance is 40 cm,

' As the Laplace model is only an approximation of the actual p.d.f. of the innovation processes of the
considered real sources, fi(z) = sign(z) is only an approximation of the optimum separating function fiopt
for these sources. This is the reason why the functions fi(z) = h(2D)($) and fi(z) = h(SD)(x) slightly
outperform fi(z) = sign(z) in a few cases, although they are sub-optimum for the considered source model.

""For a given separation rule, the best performance is the best SNRI measured for different values of the
adaptation gain p.
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e the source-antenna distance is 40 cm,
e the distance between adjacent microphones is 5 cm.

The underlying motivation for considering different microphone distances d is to invest-
igate the potential degradation of the performance of the source separation algorithms in
the case of ill-conditioned mixtures, which corresponds to small inter-microphone distances.
The measurements were performed inside two different rooms (Room 1 and Room 2) cor-
responding to different volumes. This enables to investigate the influence of the acoustic
channel complexity on the separation performance. The separating filters are strictly causal
MA(30) for Room 1 and MA(100) for Room 2. The whitening filters are again MA(20)
with zero-lag coefficients b;(0) set to 1. Several adaptation rules are considered. They again
correspond to (NW1) with f;(z) € {sign(z), h®P)(z),z,2%} and g;(z) = z.

Since the mixing filters are unknown, one cannot measure the estimated error variance
defined in the previous sections. Therefore, only the SNRI of the separating system is con-
sidered hereafter (as explained in Subsection 5.1). Tables 3 and 4 provide the best perform-
ance achieved by each rule. They show clearly that the separating function f;(z) = sign(z)
and the 3D-projection f;(z) = h(®P)(z) yield better performance than classical separating
functions in the two experimental situations. The extra improvement is about 5 dB in
Room 1 and about 3 dB in Room 2. These values represent a significant improvement with
respect to the moderate SNRI achieved by classical rules. It should also be noted that the
SNRI decreases when the inter-microphone distances d become very small (i.e. about 5 cm).
This results from the fact that the contributions of each source at the two microphones then
become very similar, which yields a badly conditioned mixing matrix.

6 Conclusion

This paper deals with the separation of two convolutively mixed signals. The proposed
approach is based on a recurrent separation structure adapted by generic rules involving
arbitrary separating functions. While the basic versions of this approach were defined
and analyzed in our companion paper [3], two extensions were considered here. The first
extended approach that we defined is intended for possibly-coloured signals (while only
white signals were considered in [3]). This approach applies to many real signals, including
mixtures of speech sources. The second extension yields a system which may be operated
even when the p.d.f of the sources are unknown and which uses sub-optimum separating
functions.

After defining these extended approaches, we analyzed various aspects of their conver-
gence properties at the separating state, i.e. equilibrium and stability conditions and the
asymptotic error variance at this state. We also determined the optimum separating func-
tions, i.e. the functions which minimize the asymptotic error variance. We then reported
experimental results obtained in various conditions, ranging from synthetic data to mix-
tures of speech signals measured in real situations. These results confirm the validity of the
proposed approach and illustrate its practical performance. They clearly demonstrate the
attractiveness of the (sub-)optimization of the separating functions developed in this paper,
since both the proposed optimum and sub-optimum approaches significantly outperform
classical source separation methods in the considered conditions.
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Tables

| Class of approaches | Algorithm | (f(2),g(2)) || SNRI (dB) [ 0, x107 |

Classical functions (f,g) || (N1) (z,2) 32.3 1.45
without whitening (N1) (z°, z) 29.8 1.54
Classical functions (f,g) || (NW1) (z,2) 33.6 1.16
with whitening (NW1) (23, z) 31.2 1.09
New functions (f, g) (NW1) (h2D)(z), x) 33.7 0.91
with whitening (NW1) (hBP)(z), z) 35.2 0.76

(NW1) (sign(z),z) 37.1 0.42

Table 1: Comparative performance for the mixing matrix based on Ag) and Agll).

Class of approaches | Algorithm | (f(x),g(2)) || SNRI (dB) | 0, x107 |

Classical functions (f,g) || (N1) (z,2) 17.3 7.84
without whitening N1) (23, 2) 17.0 7.14

Classical functions (f, g) (z,2) 17.9 5.30
with whitening (27, z) 16.4 6.83

(
(NW1)
( W ) Y
New functions (f, g) (NW1) (hCD)(z), ) 19.1 3.09
(NW1) (
(NWT1)

(RBP)(z), z) 25.2 0.99
(sign(z),z) 25.8 0.93

with whitening

Table 2: Comparative performance for the mixing matrix based on ‘4522) and Ag)
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d (cm) SNRI (dB)
(wvw) ‘ (wsvx) ‘ (h(SD)(w)’w) ‘ (sign(a;),a:)
5 3.7 4.3 8.0 7.4
10 5.2 5.1 9.1 9.1
15 4.9 4.6 10.3 10.0
20 4.8 5.7 10.0 9.6
25 5.0 6.3 10.0 10.0
30 5.4 6.4 10.0 9.7

Table 3: Comparative performance for Room 1.
Each considered couple of separating functions (f,g) is associated to the adaptation rule (NW1).
d is the inter-microphone distance.

d (cm) SNRI (dB)
(‘r7‘r) ‘ (ZB,m) ‘ (h(BD)($)7$) ‘ (S'ign(‘r)7‘r)
5 3.0 1.8 3.2 3.4
10 3.9 2.4 6.2 5.8
15 4.0 4.0 7.8 7.8
20 4.9 5.2 7.6 7.6
25 5.2 5.6 7.2 7.2
30 6.9 7.5 9.5 9.5

Table 4: Comparative performance for Room 2.
Each considered couple of separating functions (f,g) is associated to the adaptation rule (NW1).
d is the inter-microphone distance.
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Figures
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Figure 1: Basic mixture model for source separation.
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Figure 3: Recurrent separating system for coloured signals.
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Figure 4: Generalized Gaussian family p.d.f for several values of 3.

0.7 - > _

0.6 -

eff

0.4 -

0.3 b

0.2 i

Figure 5: Efficiency vs parameter k of the separating function f;. Each plot corresponds to
a specific value of the parameter g of the sources: —: =1, ... =2,--: 3=7.
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Figure 6: SNRI/SN Rl vs parameter k of the separating function f;. Each plot cor-
responds to a specific value of the parameter § of the sources: —: g =1, ... § = 2,
-2 B=T.
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Figure 7: Efficiency vs parameter k of the separating function ¢;. Each plot corresponds to
a specific value of the parameter  of the sources: — =1, ... =2, --: =T.
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Figure 8@ SNRI/SNRI,,,, vs parameter k of the separating function g;. Each plot cor-
responds to a specific value of the parameter 8 of the sources: —: 8 =1, ... § = 2,
- f=T.
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Figure 9: Error variance vs adaptation gain . Each plot corresponds to a specific separating
function f;(z) (while g;(z) = z): —: fi(z) = sign(z), ---: fi(z) =z, - - - fi(z) = 2>
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Figure 10: SNRI (dB) vs adaptation gain u. Each plot corresponds to a specific separating
function f;(z) (while g;(z) = z): —: fi(z) = sign(z), -~ fi(z) ==z, -- - fi(zx) = 2.

Error variance

10 . .
107° 10 10 1072

Figure 11: Error variance vs adaptation gain p. Each plot corresponds to a specific sep-
arating function fi(z) (while gi(z) = z): — fi(z) = sign(z), ---: fi(z) = h®P)(z),
S i) = D)
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7

Figure 12: SNRI (dB) vs adaptation gain pu. Each plot corl‘eqpondq to a specific sep-
arating function fz(m) (while g;(z) = z): —: fi(z) = sign(z), ---: fi(z) = hCP)(2),
-+ fi(z) = hP)(z).
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Figure 13: Error variance vs adaptation gain u. FEach plot corresponds to a specific
separating function fi(z) (while g;(z) = z): — fi(z) = =z, -~ fi(z) = hQD)( ),
: file) = hOP) ().
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Figure 14: SNRI (dB) vs adaptation gain pu. Each plot corresponds to a specific sep-
arating function fi(z) (while gi(z) = z): —: fi(z) = 2, --- fi(z) = hEP)(z),
- i) = D))

x

40

adaptation gain

Figure 15: SNRI vs adaptation gain u for the mixing matrix based on (A]4(2), A} (2)).
Each plot corresponds to (NW1) with a specific separating function f;(z) (while g;(z) = z):

—: fi(z) = sign(z), ---: filz) =, - -1 fi(zx) = 2.
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Figure 16: SNRI vs adaptation gain y for the mixing matrix based on (A,(z), A3,(2)). Each
plot corresponds to (NW1) with to a specific separating function f;(z) (while g;(z) = z):

—: fi(z) = sign(z), ---t fi(z) =, - - fi(zx) = °.
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Figure 17: SNRI vs adaptation gain u for the mixing matrix based on (Al,(z), A
i z):

Each plot corresponds to (NW]) with a specific separating function f;(z) (while g;(z )
i) = sign(z), - (1) = AP (z), - = file) = hOP) ().
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Figure 18: SNRI vs adaptation gain u for the mixing matrix based on (A1,(z), A%,(2)). Each
plot corresponds to (NW1) with to a specific separating function f;(z) (while g;(z) = z):
—: fi(z) = sign(z), -~ fi(z) = hCPN(a), - - = fi(z) = RO (2).
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