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Abstract: In this paper, we investigate the self-adaptive source separation problem for
convolutively mixed signals. The proposed approach uses a recurrent structure adapted
by a generic rule involving arbitrary separating functions. A stability analysis of this
algorithm is first performed. It especially applies to some classical rules for instantaneous
and convolutive mixtures that were proposed in the literature but only partly analyzed.
The expression of the asymptotic error variance is then determined for strictly causal
mixtures. This enables to derive the optimum separating functions that minimize this error
variance. They are shown to be only related to the probability density functions of the
sources. To perform this error minimization, two normalization procedures that improve
the algorithm properties are proposed. Their stability conditions and their asymptotic
behaviour are analyzed.

Résumé: Dans cet article, nous traitons le probleme de la séparation auto-adaptative de
sources pour des mélanges convolutifs. [.’approche proposée utilise une structure récurrente
adaptée par une régle générique basée sur des fonctions séparatrices arbitraires. On ef-
fectue d’abord une analyse de la stabilité de cet algorithme. Elle s’applique notamment
a plusieurs regles classiques pour des mélanges instantanés ou convolutifs qui n’ont été
que partiellement analysées dans la littérature . L’expression de la variance de ’erreur
asymptotique est ensuite déterminée dans le cas de mélanges strictement causaux. Ceci
permet de calculer les fonctions séparatrices optimales au sens de la minimisation de la
variance de ’erreur. On montre qu’elles ne dépendent que de la densité de probabilité des
sources. Pour réaliser cette minimisation d’erreur, deux procédures de normalisation qui
améliorent les propriétés de ’algorithme sont proposées. Leurs conditions de stabilité et
leurs performances asymptotiques sont analysées.



1 Introduction

Multichannel blind (or self-adaptive) source separation is a basic topic in signal processing.
It has recently received increased attention due to the importance of its potential applica-
tions. It arises in many fields of engineering and applied sciences including antenna array
processing, geophysical data processing, noise reduction, speech processing, biological sys-
tem analysis etc. ... It consists in recovering signals emitted by unknown sources and mixed
by an unkown medium, using only several observations of the mixtures. The only assump-
tions made are the linearity of the mixing system and the statistical independence of the
original signals.

The methods proposed for achieving blind source separation may be classified in various
ways. A possible classification can be made depending whether the mixtures are instantan-
eous or convolutive.

Instantaneous mizture: this corresponds to memoryless mixing systems, i.e. each obser-
vation is only a linear conbination of the source signals at the same time position. This
problem was first formulated independently by Hérault, Jutten and Ans [14] in biological
applications and by Bar-Ness, Carlin and Steinberger [2] in the satellite communication area.
Then, many contributions from different authors emphasized all the potential applications
of this technique and provided new solutions to this problem. Those studies introduced and
developed the concept of Independent Component Analysis as a new method for data pro-
cessing and time series analysis and as an extension of the well known Principal Component
Analysis [7], [16]. The approaches presented in this domain explore the different possible
formulations of statistical independence: cross-moment cancellation criteria [15], minim-
ization of sums of cumulants [5],[8],[18],[20], minimization of constrast functions [7],[21],
maximum likelihood approaches [12],[30] and more recently geometrical approaches [31]
and criteria based on entropy minimization (see e.g. [3]).

Convolutive mizture: this corresponds to mixing systems with time memory. It represents
a more general case than the mere instantaneous mixture assumption, and it especially con-
cerns acoustic applications. The literature in this domain is relatively recent and is more
reduced than in the instantaneous case. Nevertheless, some major contributions were pro-
posed in both time and frequency domains. Especially, Al-Kindi et al. [1] and Van Gerven
et al. [33] suggested to achieve source separation by decorrelating the outputs of the system.
Nguyen et al. developed an extension of the Hérault-Jutten algorithms based on fourth-
order cross-moment or fourth-order cross-cumulant cancellation [24]-[26]. Weinstein et al.
[35] also developed a non-parametric approach using second-order cross-spectra, whereas
Yellin et al. [37] applied the same idea to higher-order cross-spectra.

The difference of maturity between the fields of instantaneous and convolutive mixtures also
concerns the results that have been reported about the properties of the proposed algorithms
resulting from the criteria defined above. These properties concern the equilibrium points,
their stability and the asymptotic behaviour at these points. They have been deeply in-
vestigated for the algorithms proposed for instantaneous mixtures, whereas the results that
have been provided for convolutive mixtures are more restricted [1],[33],[34] because of the
mathematical complexity of the required analyses.

In this paper, we present a detailed investigation of those yet unexplored aspects of con-
volutive source separation. In Section 2, we define the source separation structure and
adaptation algorithm that we consider, and their connection with previously reported ap-
proaches. In Section 3, we consider the equilibrium points of this adaptation algorithm and
we define conditions on its separating functions that guarantee that the separating point
is an equilibrium point. The stability of this separating point is analyzed in Section 4.
General conditions on the separating functions are first provided. As a by-product, they



are then applied to specific algorithms which have been proposed in the literature for con-
volutive or instantaneous mixtures but only partly analyzed up to now. The asymptotic
(i.e. steady-state) error of the proposed approach is described in Section 5. It is shown to
depend on the selected separating functions. The optimum class of functions is then derived.
Specific members of this class are obtained in Section 6 by using two alternative normaliz-
ation procedures. Conlusions drawn from this investigation are presented in Section 7 and
extensions for practical application are outlined.

2 Problem statement

2.1 Mixture model

Let us consider the two-dimensional convolutive mixture model illustrated in Fig. 1, where
(z1(n),z2(n))T and (y1(n),y2(n))T are respectively the source signal vector and the obser-
vation vector. Despite its simplicity, this scheme is frequently used in source separation
studies [24],[35],[37]. The source-observation relationship of this model can be expressed as
follows in the Z-domain:

( Y1 (2) ) _ ( 1 A(2) ) (Xl(z) ) )
YQ(Z) Agl(z) 1 XQ(Z) !

e X;(z) and Y;(z) are respectively the Z-transforms of z;(n) and y;(n).

where:

o A;i(z),1 # 7 € {1,2} is the transfer function of the channel that links source j to

sensor i. The impulse response of this channel is denoted as (a;;(k)),. > hereafter.

The matrix in (1) that transforms (X;(z), X2(2))? into (Yi(z),Y2(2))? is called the
mizing matriz. Furthermore, we assume that:

o (AS1) the filters A;;(2),7 # 7 € {1,2} have a causal moving average (MA) structure
with order M;. The mixing matrix is thus causal and stable.

e (AS2) the sources z1(n) and z3(n) are stationary, zero-mean and statistically inde-
pendent.

The time domain source-observation relationship can then be written as:

M,
y(n) =21(n) + Z az(k)za(n — k)
k=0

M
y2(n) = Z az (k)z1(n — k) + z2(n)
k=0

2.2 Separation structures

The aim of the blind source separation technique is to recover the original sources z;(n) and
z9(n) by using only the observations y;(n) and y2(n). This can be achieved by estimating
the inverse of the mixing matrix [24],[35],[37]. This strategy uses a reconstruction structure
called a separation system, which consists of an implementation of the inverse of the mixing
matrix. The source separation problem is then reformulated as an inverse problem. It
can be solved if the mixing model is ”invertible” (i.e. if the mixing matrix is minimum
phased, as explained at the end of the current subsection). Two basic structures may be



used to implement the inverse of the mixing matrix, i.e. the direct structure [33],[35] (see
Fig. 2) and the recurrent structure [24],[37] (see Fig. 3). Both schemes yield the same
observation-output relationship, i.e. in the Z-domain:

( Si(2) ) _ 1 ( 1 —Cis2) ) ( Yi(2) ) )
S5a(2) 1= Cra(2)Cn(2) \ =Can(2) 1 Ya(z) )

Therefore, the source-output relationship for both schemes is:

( S (2) ) _ 1 ( 1= Cha(2)An(2)  Ara(2) = Cha(2) ) ( X4(2) )
Sa(2) 1- 012(2)021(2) An(2) = Ca(z) 1 -=Co(2)A(2) Xo(2) )
(4)

To achieve source separation, the coefficients of the filters C’;; should be selected so that
the output signals s;(n) are equal to the source signals z;(n), up to a permutation and a
shaping filter. This yields two solutions:

Cij(2) = Aij(2), i#7e{l,2} = Si(z) = Xi(2), 1€{1,2} (5)
Cij(2) = 4;(2), i#je{l2} = Sz-(z)=jf;((?), i£je{1,2}. (o)

Hereafter, the filters C;;(2) are constrained to have a causal MA structure. In this case,
the solution (6) cannot be reached and only the solution defined by (5) is valid. It is called
the separating solution hereafter. However, (5) does not provide a practical means for
choosing the filters of the separation structure, since the mixing filters A;;(z) are unknown.
Therefore, criteria for assigning the filters C;; must be defined. Such criteria are presented
in the next subsection. Before this, we present some assumptions and notations that are
used in the remainder of this paper.

Assumptions:
e (AS3) Order(Cj;) = Order(A;;) = M;, i # j € {1,2}.
° (AS4) M‘[ = MQ =M.

In fact, only the condition Order(C;;) > Order(A;;) is necessary if one wants the filters
C}; to be able to fit exactly the mixing filters A;;. However, (AS3) and (AS4) are used to
allow a simpler presentation of the results.

Notations:
M
o Cij(z) =) eijlk)z™" i#je{1,2}
k=0
o H(z)=1-C2(2)Co(z) = Z h(lc)z_]‘C
« W) = 12) =3 w(k)e"
k>0



1 -
o We(z2)= = ) A (7] = g%weq(k)z k-

These notations deserve the following comments. The considered (i.e. direct or recur-
rent) separation system should be realizable. This first requires W(z) to be causal (see
Appendix A for a more detailed explanation). This is reflected in the above notations. This
also requires the separation system to be stable. This system should especially meet these
two requirements at the state of interest, i.e. at the separating solution. This has two
consequences. On the one hand, the value of W(z) at the separating solution, i.e. We,(2),
should be causal. This is also reflected in the above notations. On the other hand, the
transfer function of the separation system at the separating solution is equal to the inverse
of the mixing matrix. This inverse of the mixing matrix is thus required to be causal and
stable. Moreover, the mixing matrix itself was already constrained above to be causal, stable
and invertible. Combining all these requirements shows that the mixing matrix should be
minimum phased [29] in the proposed approach.

2.3  Classical separation criteria

One way to assign the filters C}; is to adapt their coefficients (¢;;(k))r>0 so that the out-
puts of the source separation structure become statistically independent. Theoretically, the
statistical independence of two signals is achieved if and only if (iff) one of the following
equivalent requirements is fulfilled:

e the joint probability density function of those signals is equal to the product of the
marginal probability density functions,

e all the cross-cumulants of the signals are equal to zero,

e all the cross-spectra [28] of the signals are equal to zero,
o Elzf(n)a}(n)] = E[z](n)]E[z5(n)], ¥ p,q 20,

o Elf(z1(n))g(za(n))] = E[f(z1(n))]E[g(z2(n))], for any couple of functions f and g¢

that ensures the existence of the above-mentioned mathematical expectations.

It is clear that the above requirements cannot be checked experimentally since it would
require an infinite number of tests. Hence, all reported source separation algorithms use
a limited number of necessary independence conditions with the hope that they are also
sufficient. The intuitive motivation of this method is that only a finite set of equations is
needed to determine a finite set of unknown parameters (the filter coefficients). The criteria
based on this principle which have been reported may be summarized as follows.
Frequency-based criteria using the cross-spectra of the outputs of the separating structure
were proposed by Weinstein et al. [35] and Yellin et al. [37]. Their approaches lead to
recurrent algorithms that can be converted into stochastic adaptive algorithms based either
on output decorrelation [35] or output cross-cumulant cancellation (some hints are provided
in [37]). In the time domain, decorrelation-based algorithms have been presented by Al-
Kindi et al. [1] and Van Gerven et al. [33]. Nguyen et al. [24]-[26] proposed two algorithms,
based on i) the minimization of squared fourth-order cross-cumulants, and on i) fourth-
order cross-moment cancellation. Nguyen et al. also proposed an extension of the Hérault-
Jutten rule to the convolutive domain that reads:

cij(n+1,k) = eij(n k) + pn f(si(n))g(sj(n — k) i # je{l,2},ke[0,M]  (7)



where ¢;;(n, k) is the kth coefficient of filter C; at the nt" iteration, p,, is a “small” positive
adaptation gain, f() and g() are odd nonlinear functions. In addition s; and s; in (7) are
the output signals of the considered recurrent structure (see Fig. 3). They are computed
according to the following formula, which is derived in Appendix A:

M M
(%W%—Z)wmﬂﬁﬂn—@)—Qﬂm®<wm)—zﬁwmﬂﬁﬂn—M)
(n) = k=1 k=1
Sﬁ( ) 1-— c1g(n, 0)02](77,, 0) !

i#je{1,2}. (8)
The Nguyen-Jutten fourth-order cross-moment cancellation algorithm is a specific case

of (7), corresponding to f(z) = z* and ¢g(z) = z, and this is in fact the only case that they
experimentally studied.

2.4 Proposed separation criterion

As stated above, the rule (7) was proposed as an extension of the Hérault-Jutten algorithm to
convolutive mixtures, but neither its convergence properties nor its asymptotic behaviour
have been investigated up to now. This paper addresses this topic, and more generally
speaking provides an analysis of the recurrent structure of Fig. 3 for a larger class of
non-linear algorithms that reads:

cz-j(n—{—l,k) :cz-j(n,k)+unfi(si(n))gi(sj-(n—k)) 275] € {1,2},]66 [O,M] (9)

where f;() and g;() are arbitrary functions that are not necessarily odd.

The gain u, used for updating the filter coefficients may be set in different ways. Espe-
cially, two different classes of algorithms were defined in [4] depending on the properties of

Hon

o The asymptotically constant gain algorithm corresponds to:

pn >0
{ pw= lim p, >0 (10)

n—00
o The decreasing gain algorithm corresponds to:

fin 20
E,u%:ﬂ>0 for some o > 1
n

(11)

Note that the classical choice p, = g, ¥n > 0 belongs to (10), whereas p,, = nlﬁ,Vn >0
belongs to (11). The results presented hereafter are valid for both algorithms. More
detailed properties can be derived for the decreasing gain approach. However, we focus
on the asymptotically constant gain algorithm because it allows to handle non-stationary

systems and especially slowly varying ones [4].



3 Equilibrium states

The algorithm (9) can be formulated in vector form as:

0n+1 =0, + HnH(ona£n+1)a (12)

where 6, £,41 and H (0, &,+1) are column vectors defined as:

071 = [012(77”0)’ . --7012(na M),CQ](TL,O), e -ach(na M)]Ta (13)
o1 =[yi(n),y2(n),s1(n—1),...,81(n— M), s9(n—1),...,82(n — M)]T, (14)

H(0,&nt1) = [fi(si(n))gi(s2(n)), ..., fi(s1(n))g1(s2(n — M)),
fa(s2(n))g2(s1(n)), - . ., fa(s2(n))ga(s1(n — M))]". (15)

The equilibrium points of (12) are defined as the vectors #* for which
EG*[H(G*afn-I-l)] =0, (]6)

where Fyg«[] denotes the mathematical expectation associated to the asymptotic probability
law of the vector &, 41 for a given vector 8*. Using (15), (16) becomes equivalent to':

Bli(si(m)gi(s; (n - K] =0 ke 0,M], i #j e {1,2). (17)

The solutions of (17) depend on the separating functions f; and g;. Hence, looking for
the exact location of all the equilibrium states requires to fix explicitly f; and g;. This is
not within the scope of this paper, since our aim is to study the properties of algorithm (12)
for the largest possible class of separating functions. Therefore, the following approach is
used in this paper. We do not fix the separating functions f; and g; and therefore we do not
investigate all equilibrium points. Instead, we only focus on the properties of the separating
point 6° corresponding to the separating solution, i.e. (see (5) and (13)):

0° = [a12(0), ..., a19(M),as(0),...,an (M), (18)

and we especially determine at which condition this state is an equilibrium point of (12).
When the separating state is reached, each output s;(n) for ¢ € {1, 2} is equal to the source
z;(n), due to (5). The equilibrium condition (17) then becomes:

E[fl(xf(n))gl(wj(n_k))]:Oa ke [OaM]v 1#£J € {LQ}' (19)
Using the mutual statistical independence of the sources z;(n) and z5(n), (19) is equi-
valent to:

L] Eloo)] = 0, i#j€{1,2). (20)

In other words, by requiring the separating point to be an equilibrium state of the

algorithm, we introduce restrictions on the functions f; and g;, i.e. they should be chosen so

as to meet (20). Many such choices can then be made depending on the available information

on the statistical properties of the sources. In order not to constrain both functions f; and
g;, only assumptions on g; are made hereafter, i.e:

Additional conditions on the separating functions will result from the other constraints
set on the considered algorithm in the subsequent sections.

'For readability, the subscript 6* is omitted in the mathematical expectations E[] below.
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4 Stability Analysis

4.1 Stability condition for any equilibrium state

Each equilibrium state 6* of (12) may be stable or not, depending on the properties of the
functional H and on the statistics of the vectors (£,,),>0. The approach used in this paper
to analyze stability is the so-called Ordinary Differential Equation technique (ODE) [4],
which approximates the discrete recurrence (12), under some conditions? on p,, and H, by
a continuous differential system that reads:

df ) ,
o = Jim  Be[H (0, Entr)]- (22)
The differential system (22) is locally stable in the vicinity of an equilibrium point 6* iff

the associated tangent linear system:

df « .
=)0 ) (23)
is stable, i.e. iff all the eigenvalues of .J(#*) have negative real parts. For any state 8, J(6)

denotes the Jacobian matrix of the system, i.e. the matrix of partial derivatives with entries:

Jij(0) = lim 8(E9[H(975n+1)](i))

n—s40 960) v (24)

where Fy[H (0, £n41)]® is the i** component of Eg[H (6, &,41)] and 81 is the j** compon-
ent of vector . An explicit formulation of J;;(6) at any fixed point is given in Appendix B.

4.2 Stability analysis at the separating point

In this sub-section, we apply the general results of Sub-section 4.1 to a specific state, i.e. the
separating point (18) (with g; chosen so that this point is an equilibrium state, as explained
in Section 3). This analysis is first carried out for the general type of mixture defined
above, i.e. causal convolutive mixtures. Then two specific types of mixtures are considered
(namely strictly causal convolutive mixtures and instantaneous mixtures). The associated
stability conditions are derived and analyzed.

4.2.1 Analysis for causal convolutive mixtures

The stability analysis requires the computation of the Jacobian matrix J(6%). Its expression
can be simplified if we assume that:
(ASbH) z1(n) and zo(n) are independent identically distributed (i.i.d) random sequences.

This assumption is made in all this paper, while an extension to the case of coloured

signals is provided in a companion paper [6]. Under (AS5), the Jacobian matrix (24) can
be written as a 2 by 2 block matrix (see Appendix B):

o= (& g2 ) e

where

21, should be sufficiently small and it should meet e.g. (10) or (11). The conditions on H concern
generally its regularity. They are globally met when using the assumptions and the models defined in this
paper.

11



Qi Weq (1) 4 @iwe, (0 o Wey (0 0
o (1) + it (0) 0 e
—iweg (M) + piweg (0)  —ajweg (M — 1) iweg (0)
—Biwey (0) 0 0
0 o ...0|
Gij = : .| i# i edn 2}, (27)
0 0 ... 0
and
o = E[f{(z)]E[z;9:(z;)], where j is chosen so that i #j € {1,2}
B = Elzifi(z)]Elgi(z;)], where j is chosen sothat i #j € {1,2}
vi = a;(0)F [ fi(z)E[z;9:(x;)], where j is chosen so that i # j € {1,2}
weq(0) =

1-— 012(0)‘121(0) (28)

The eigenvalues of J(#°) are the roots of the associated characteristic polynomial, i.e.
P(X) = det(J(0°) — M ). A compact expression of P()) can be easily derived:

P(A) = (Oflweq(0)+/\)M(042weq(0)+/\)M[/\2+‘weq(0)(al+042—991—992)>\+((051—991)(042—992)—ﬂzﬁ2))‘w
29
Hence, the eigenvalues of J(6%) are®
1) _alweq (0) (30)
2) —agwey (0) (31)
3) [~ —prtar—g) £ VA2 ifA>0 (32)
|:—(041—Q01+042—Q02):tl' \/—A}% ’LfA<0 (33)
—(o1 — @1+ ag — @a)we,(0)/2 if A=0 (34)
where
A= [(y = ¢1) = (g — 992)]2 + 451 32. (35)

The stability condition (i.e. all eigenvalues having negative real parts) therefore reads
as follows depending on the sign of A:

o if A>0
a1wey(0) > 0
awey(0) > 0
(1 = 1) (g = p2) > B1 52
(o1 + az)weq(0) > (91 + 2)wey(0)

°In (33), 1 is such that 2 =—1.

12
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o if A
a1 weq (0)
aweq(0)
(a1 + a2)weq(0) > (1 + ©2)weq(0)

>0
>0

4.2.2 Analysis for strictly causal convolutive mixtures

Here, we assume that the coupling mixture filters A;; are strictly causal , i.e. that
the first coefficients a;2(0) and agq(0) are both null. The motivation for studying this
case is that this condition is generally met in acoustic applications due to non-zero
propagation time and it yields also a major simplification of the above results. More
precisely, one takes advantage of this assumption in the separating structure by fixing
c12(0) = c21(0) = 0. The first and (M +2)"* components of 8,, and H (6,,, &,41) (see (13) and
(15)) then disappear. The corresponding rows and columns of the Jacobian matrix .J(6°) at
the separating point (25) also disappear, and J(6°) becomes a 2M by 2M matrix defined as:

J07) = ( _(if e ) (38)

where 0p7 is the M by M null matrix and G is defined as follows (taking into account
that (28) here yields we,(0) = 1):

1 0 0 ... 0
Wey (1) 1 0 .0

G = Wey(2) Weq(1) 1 e 0] (39)
weq(f\} -1) weq(]\:i —-2) weq(]\} -3) 1

It follows that the eigenvalues of J(6°) are —a; and —ay, and so the stability condition

{a1>0 (40)

042>0

18

Using the notations of (28), the condition (40) can be rewritten as:

E[f{(zl)]E[@gl(wz)] >0
{ E[fy(z2)]E[2192(21)] > 0 (41)

Hence for strictly causal mixtures, the stability condition at the separating state does not
depend on the properties of the mixing matrix (except that the mixing matrix is assumed
to be invertible). It should be noted that (41) is met by any couple of odd functions (f;, g;)
whatever the sources.

4.2.3 Analysis for instantaneous mixtures

The assumptions made above on the mixing and the separating structures remain valid in
the case of instantaneous mixtures which only corresponds to setting M = 0 in the analysis
presented in Sub-section 4.2.1 for causal convolutive mixtures. The Jacobian matrix (25)
at the separating state then becomes:

_ [ —lar=p)weg(0)  =Fiwe(0)

J(”S)‘( ey (0) —(ag—w)weq(m)' (#)

13



The characteristic polynomial (29) is then:
P(A) = N+ weq (0) (1 + 02 = g1 = p2) A+ [(a1 — 1) (a2 — 2) = BrBa] wl, (0).  (43)

Hence, the eigenvalues of J(6°) are those defined in (32)-(34). The stability condition
becomes:

o if A>0
(a1 — 1) (a2 — 2) > B3
{ (041 + a?)wﬁq(o) > (991 + 992)weq(0) (44)
o if A
(a1 4 a2)weg (0) > (1 + @2)weq (0). (45)

Note that the stability condition (36) or (37) in the convolutive case is a superset of the
condition corresponding to instantaneous mixtures. Those conditions become equivalent
for some particular source statistics and separating functions. This especially includes the
case when the sources have even probability density functions and the following separating
functions are used?:

filz) = 2t 1€{1,2},m>0 (46)
gi(e) =™, i€ {1,210 0,n+m£0

This specific case was already described in the literature and is discussed more in detail
in the following sub-section.

4.3 Analysis of classical adaptation rules

The generic approach presented for the separating point in Sub-section 4.2 especially applies
to several specific adaptation rules which have been proposed in the literature. This allows
to derive stability conditions for these algorithms, which have almost not been reported up
to now. This method is applied to three classical algorithms hereafter.

4.3.1 Analysis of two classical algorithms for convolutive mixtures

Here, we analyze the stability of two classical algorithms, respectively based on output
decorrelation and on fourth-order (3,1) cross-moment cancellation.

e Analysis of the decorrelation algorithm
This algorithm can be seen as an extension of the classical Adaptive Noise Canceller
adaptation strategy [36] to the Symmetric Adaptive Decorrelation scheme [1],[33],[34].
In the case of causal mixing filters, it corresponds to the following adaptation rule:

cij(n+1,k) =cij(n, k) + pnsi(n)s;(n — k) 1#je{1,2}, ke [0, M]. (47)

This adaptation rule is a particular case of the general framework defined in this paper
(see (9)). It corresponds to the following choice for the separating functions:

filz)=2 i€{1,2}
{gigmgzm ie{1,2} (48)

*In this case, (46) leads to a; > 0,8; > 0 and ¢; = 0. The reader can easily check that the stability
conditions in the intantaneous and convolutive cases are then the same.
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Note that the assumption (21) made on the separating functions g;() is valid here,
since it corresponds to the zero-mean hypothesis made on the sources, i.e:

Elz]=0, i€c{1,2}. (49)

Only some aspects of the convergence properties of (47) were investigated in the
literature [33],[34]. Hereafter, we apply the generic results obtained in Sub-section
4.2 to this rule. The eigenvalues of the Jacobian matrix at the separating state are
derived by applying (30)-(34) to the functions defined in (48), thus yielding:

(50)

Since the eigenvalues are real, the stability condition corresponds to their negativeness
which requires that:

weqa(0) >0 (51)

or equivalently:

1= a12(0)az (0) > 0. (52)

Nevertheless, the algorithm always yields a null eigenvalue. This implies that the
algorithm is not asymptotically stable, but only globally stable with fluctuations.
This means also that there exists a one-dimensional subspace, the Kernel of J(6%),
associated to eigenvectors corresponding to the null eigenvalue, in which asymptotic
convergence cannot be reached. In fact, from a computational point of view, the
estimation associated to the null eigenvalue can take small but non null values that
may be positive, leading then to instability.

In the case of strictly causal filters, the eigenvalues of the Jacobian matrix are — K[z
and —F[z3] that are always negative. Hence, the decorrelation scheme yields an
asymptotically stable separating state in this case and becomes then a potentially
attractive separation procedure.

Analysis of the algorithm based on (3,1) cross-moment cancellation

We have shown above that the decorrelation criterion leads generally to a numerically
unstable algorithm in the general case of causal filters. The cause of this problem
is that the first-order lag coeflicients ¢13(n, 0) and cz1(n,0) are updated by the same
correcting term, i.e. p,s1(n)sz(n). There are different strategies to overcome this
problem. A well-known one consists in using the algorithm (7) with at least one non-
linear separating function f() or g(). A classical algorithm of this family corresponds
to the adaptation rule:

Cij(”"'lvk):Cij(nvk)_f_:uns?(n)sj(n_k) Z%]E {172}ak6 [OaM] (53)
This algorithm is also a particular case of (9), obtained for:

{ filz) =23 ie{1,2} (54)

gilz) =2z 1€{1,2}

(53) was proposed and experimentally studied by Nguyen et al. [24]-[26], but its
stability analysis was not performed. We investigate this aspect in the following, by
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applying (30)-(34) to the algorithm defined in (53). The eigenvalues of the Jacobian
matrix at the separating state become:

—3E[z7]E[z3]we, (0)

{ - (3800 £ /BT 1., 0) 9

and the stability condition is then:

{ Weq (0) > 0 (56)

Elei]E[z3] < 9B [z{] £¥[z]

The second condition in (56) implies that the sources must be globally sub-gaussian. It
should be noted that (56) is the same stability condition as with the version of this algorithm
for instantaneous mixtures [32].

4.3.2 Analysis of a classical algorithm for instantaneous mixtures

Here, we consider the Hérault-Jutten algorithm for intantaneous mixtures, i.e:

cij(n+1) = eij(n) + pn f(si(n)g(sj(n)) i # 5 €{1,2}. (57)

The corresponding stability condition was first studied by E. Sorouchyari [32] for the
limited class of separating functions defined by (46) and symmetrically distributed sources.
Several later contributions [10],[11],[19],[22],[23] reached globally the same results. This
paper extends these results by providing a stability condition at the separating point for
possibly asymmetrically distributed sources and any separating functions f and g: this is a
straightforward application of the results of Sub-section 4.2.3 to the case when f; = fo = f

and g1 = g2 = g.

5 Asymptotic behaviour analysis and optimization of the sep-
arating functions

This section is devoted to the study of the asymptotic behaviour of the algorithm (12),
i.e. once the transient phase ended. The algorithm properties are shown to be closely
related to the choice of the separating functions. Our goal, in this paper, is to determine
the separating functions f;(z) and g;(«) that ensure the best matching of the mixing filters
in the mean square sense, i.e. that minimize K[|, — 6°|%] for large n.

In this section, the mixing and the separating coupling filters are assumed to be strictly
causal, based on the motivation presented in Sub-section 4.2.2, i.e. we assume that:

(AS6) a12(0) = az1(0) = 0 and ¢12(0) = ¢91(0) = 0.

Furthermore, we focus on the particular case of the constant gain algorithm, correspond-
ing to the scalar gain condition p,, = p, Vn > 0. (12) then becomes:

Ong1 = Op + pH (0, &) (58)

It is clear that all the results presented above (equilibrium conditions, stability conditions
.. ) especially apply to this specific version of the algorithm.
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5.1 Some theoretical results

In Sub-section 4.1, we derived stability conditions for any equilibrium state #* which are
assumed to be met hereafter. This was done by approximating the stochastic algorithm
(12) by the continuous differential equation (22). #* was then a limit, when time tends to
infinity, of the solution of the ODE (22). The asymptotic behaviour studied here refers to
how far the stochastic algorithm varies from its ODE. This corresponds to the fluctuations
of 6,, around the equilibrium state 6* after a large number n of iterations, assuming that
f, remains in the attraction domain of 6*. To investigate this aspect, we use a theorem
established by Benveniste et al. [4], but before this we recall some theoretical results.

Definition 1 A given matriz K is said to be stable iff all its eigenvalues have negative real
parts.

Theorem 1 ([17]) For a given real stable matriz A and a positive definite real matriz C,
there exists a unique symmetric and positive definite solution B to the so-called Lyapunov
equation

ATB+ BA+C =0. (59)

Theorem 2 (adapted from Benveniste et al. [4]) Let 0(t) be the solution of the ODE
associated to (58). The vector 8,, in (58), is then an approzimation of 6(t,) for t, =

Z Wi = nu. Besides, let the normalized error variable be:
k=1

(60)

and let 7,(t) be the continuous trajectory obtained by a linear interpolation of 7,(t,).
Then, for p — 0 and t — oo, we have:
Zu(t) — N(0, P), (61)

where (61) corresponds to the convergence in law and N(0,P) denotes the Gaussian
probability density function with zero mean and covariance matrix P. The matriz P is the
unique symmetric and positive definite solution of the Lyapunov equation:

JO)P+ PIT(0*) + R(O*) =0 (62)
where J(0*) is the Jacobian matriz (24) at 0* and R(0*) is defined by:

R(07) = ) Cov[H (8", &ns1), H (6%, &0)] (63)

nez

where Covf] denotes the covariance matriz.

This means that for a sufficiently small stepsize u, 8, is an asymptotically unbiased
estimator of #* with a covariance matrix pP. Furthermore, we have:

. P () _ ge())2] —
Jim B[, -0 = lm 3 B0y — 0" ] =pu Tr(P),  (64)
1€[1,M]u[M+2,2M]

where 07(f) and 0*() are respectively the " order entries of 6, and #*. Hence, the
asymptotic error variance of the estimation of 8* can be written as:

Ooo = pu Tr(P). (65)
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5.2 Application to source separation

In the following, we consider the source separation algorithm (58) in its scalar form that
will be called algorithm (NO) and denoted, from here on, by:

cij(n+1,k) =c;j(n, k) + pfi(si(n)gi(s;(n — k) i#7€{1,2},ke[l, M]. (66)

Moreover, we only consider the equilibrium state #°. As shown in Appendix C, the corres-
ponding matrix R(6°) can be written as:

R(6°) = ( 7‘5‘ 72(}%2 ) , (67)

where

1 a ... «
a; 1 T oa
R; = , (68)
a;
a;, ... a; 1
_ Efi(wi)]
“ = H ) o
vi = E[f}(z:)]Eg}(z;)], where j is chosen so that i # j € {1,2}. (70)

Besides, the Jacobian matrix associated to (58) at the equilibrium state #° is defined in
(38). The Lyapunov equation (62) associated to the algorithm (NO) becomes then:

—nG 0 —onGT 0 7Ry 0 B
( 0 —OtQG ) P+ P ( 0 —OtQGT ) + ( 0 ’)/QRQ - 02M (71)

where 0937 is the 2M by 2M null matrix.

The unique symmetric and positive definite solution of (71) can be determined as follows:
let’s consider the equation below, where matrix B is the unknown parameter:

—GB - BGT + R = 0n (72)

where 0pr is the M by M null matrix. The matrix R; is positive definite since its
eigenvalues are 1+ (M — 1)a; and 1 — a;, and these values are strictly positive because®
0 < a; < 1. The real matrix —G is stable since all its eigenvalues are equal to —1. Hence,
(72) is a Lyapunov equation meeting the requirements of Theorem 1. Its unique symmetric
and positive definite solution will be denoted by K;.

The two equations (72) for 7 € {1,2} and their solutions (K;);c(1 2} can be recombined
in the following block matrix form:

0 k0 3K 0 —GT 0 LB 0
—aG 0 ;—221(2 0 ;—221(2 0 —OtQGT 0 ’)/QRQ - M

50 < a; < 1 due to (69). Moreover, a; = 1 corresponds to a constant function f;; however such a
function does not meet the stability requirements (40), so a; = 1 cannot occur here.
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Comparing (71) and (73) shows that:

. 3—1[(1 0
K= ( 0o 2K, ) (74)
a2

is a solution of (71). Moreover, K is symmetric and positive definite (because K; is
symmetric and positive definite and 12> 0 for i € {1,2} due to (40) and (70)). Therefore
K is the unique solution of (71) that Was to be determined. The asymptotic error variance
(65) is then equal to:

SN L PR

Besides, Appendix D shows that:

Tr(K;) = iz + qinai, © € {1,2}, (76)

where ¢;; for i, 7 € {1,2} are real values that depend only on the mixing matrix and «;
is defined in (69). Hence the asymptotic error variance (75) becomes:

EOE[A(2)] Eldd(z))]
i,jz;i;éj Elfi(z:)] Elz;gi(z;)]

The right term of (77) depends on four types of parameters:

Oco = (gi2 + gira;). (77)

e 1 that can be set so as to achieve a tradeoff between the asymptotic error variance
and the convergence speed,

e the separating functions f; and g;,
e the source statistics,
® ¢;; that are related to the mixing matrix.

For a given adaptation gain p and a given set of observations (source statistics and mixing
channel properties), only the separating functions can be optimized in order to reduce the
asymptotic error variance. The aim is then to choose the separating functions f; and g; that

minimize o, as defined in (77). Appendix D shows that ¢;2+¢;1a; > 0fori € {1,2}. There-

fore, when the stability condition (41) is met, the two terms M(ng + ¢ra 7)7[%73]5}

E[f;(xi)]
of 04 respectively corresponding to (7,j) = (1,2) and (2, 1) are positive and depend on

different sets of separating functions, i.e. resp. (f1, g1) and (f2, g2). Therefore, the minim-
ization of 0., can be performed by minimizing these two terms separately. Similarly, each
of these two positive terms can be minimized by minimizing separately its two independent

buti ; “th f . Elfi @l s 2EHER)
contributions associated with f; and ¢;: abs (W(qlg + ¢i1a;) | and abs m .
The minimization of each contribution is then equivalent to the minimization of its squared

B2 (x:)]”
B[f!(=:)]?
Note, however that this minimization problem suffers from a scaling ambiguity: by replacing

(¢i2 + g a;)? and W that is a differentiable function of f; or g;.

value, i.e.
the separating functions f; and g; by €1 f; and ¢;29;, where ¢;; and ¢;5 are scaling factors,

the quantities to be minimized become e?l%(qn + ga;)? and 622%. They

: : : 2 2 : 2 .
are then increasing functions of ¢} and ¢7,. Hence, decreasing (¢;;) ;e (1,2 enables to reduce
the asymptotic error variance, but at the expense of lower convergence speed since ¢;; and
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€, appear as factors of g in (66). Further constraints have then to be set on the separat-
ing functions to remove this scaling ambiguity. Such constraints are presented in the next
section. Before this, only an extremum search is undertaken in the current section since
it is insensitive to the scaling ambiguity mentioned above. The results obtained represent
classes of functions that are determined up to constant scaling factors. This study of the

. . ) Blff(«)]* a2 Elgi(z))]?
separating functions that lead to extremum values of B EOE (gi2 + ¢i1a;)? and Ble,5:,)P
is developed in Appendix E and yields:

Pe, (2)
fiez‘ ) = -V - ) 78
t( ) ! pxz(T) ( )
giext(x) = Vi, (79)

where p,, is the probability density function of source z; and (v;1,v;2) is a couple of
arbitrary real constants. Moreover, it may be shown that (41) here yields v;1v2 > 0 if
p;i(m) — 0 when 2 — $o00, which is most often the case. It should be noted that the
same classes of functions were obtained for linear instantaneous mixtures of white sources
based on a minimum likelihood approach [13],[30].

6 Two algorithms with normalized optimum separating func-
tions

The analysis presented in Section 5 yields the extremum separating functions defined up
to a scaling factor (v;1 and v;2). One way of removing this ambiguity is to normalize these
functions. Two alternative normalization methods are presented hereafter. Each of them
yields a specific algorithm, which is analyzed in terms of stability and asymptotic behaviour.

6.1 Normalization scheme (N1)

One way of removing the scaling ambiguity mentioned above is to use scaling factors €;;
and €;9 such that:

Elcy fi(2)] = 1, (80)
Blehg! ()] = 1, (81)
which corresponds to°:
1
o= — (2)
L ERE)
o = 1 (83)

Elgi(z)]

The associated algorithm (N1) is derived by replacing f; and g; respectively by ¢ f; and
€i2g; in (66), which yields for causal convolutive mixtures:

8The opposites of the values of €;; and ;5 provided in (82) and (83) are also solutions of (80) and (81)
but there is no use considering them: they would only allow to change the sign of the adaptation term in
(84), but this degree of freedom is already available through the signs of f; and gi, which are free at this
stage.
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fi(si(m)  gils;(n— k)
VELF(s:)] \/Ele3(s))]

cij(n+1,k) =cij(n, k) + p i#£je{1,2},ke[0,M] (84)

or equivalently,

cij(n+1,k) = cij(n, k) + pti(si(n))Gi(sj(n — k) 1#je{1,2},ke[0,M]  (85)

where

ElgX(z)]

(84) can be seen as a zero-search procedure for the set of correlation coefficients between
the random variables f;(s;(n)) and g;(s;(n—k)), instead of the classical zero-search proced-

ure for the non-normalized correlation between these two variables used in (9). Moreover,
filsi(n))  gi(si(n—k))
VELZ ] VBl (s,)]

state. This value is independent from the scales and statistics of the sources and from the
separating functions, so that the adaptation gain p can be selected independently from these
parameters, which is an attractive feature of this new algorithm (84).

However, this algorithm includes parameters which must be estimated in practical situ-
ations (i.e. /FE[f?(si)] and y/E[g?(s;)]), unlike the previous algorithm (66). Therefore, the
results about stability and asymptotic behaviour presented in the previous sections cannot
be applied directly to (84). However, (84) and the estimation of the associated energies

(\/E[f72(37)], \/E[gf(sj)]) can be formulated as a relaxation scheme of the form (66) with
a second-order perturbation term. This is a classical strategy, which is used for example
in the estimation of the input covariance matrix in the Recursive Least Squares (RLS)

Gi(z) =

the variance of the correcting term is equal to one at the separating

algorithm [4]. It can also be shown that this normalization scheme does not modify fun-
damentally the results obtained in the previous sections. In fact, computations show that
the stability condition and the asymptotic behaviour of this algorithm (84) can be deduced
from the previous solutions by using the following transformation:

fiz) — Fi(z),
gi(z) — Gi(z).

The stability condition is then the same as (36) and (37) applied to I; and G; instead of
fi and g;. Similarly, in the case of strictly causal filters, the stability condition (41) becomes

(87)

explicitly:
E[Flj(:cl)]E[achl(:cQ)] > 0, (88)
E[Fy(z2)]E[z1Ga(z1)] > 0, (89)
or, by inserting (86) in the latter equations:
E[f]j(ml)]E[ingl(mQ)] > 0, (90)
E[fy(z2)]E[z1g92(21)] > 0. (91)
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The asymptotic error variance is derived in the same way from (77), which yields:

VEU @0] /Bl ()]

E[fi(z:)] Elz;gi(z))]

1,J=2
Coo=H D,

ig=1 i#j

(¢i2 + gina;). (92)

Note that, in the transition from (77) to (92), a; was unchanged since it is invariant up to

a scaling factor applied to the function f;. As in Sub-section 5.2, the optimum separating
Elf2 ()]
B (w:)]

abs <M> or their squared values for each couple (7, 5). This leads to the optimum

functions can be determined by minimizing independently abs < (gi2 + g ai)) and

Elzjgi(x;)]
choice (see Appendix E):

~—

e
P ()’

giopt(m) = Vi . (94)

fiopt(z) = —va (93)

where p,, is the probability density function of the source z; and (v;1,vi2) is a couple of
arbitrary real constants. Moreover, it may be shown that (90)-(91) here yield v;;v;5 > 0 if
p;i(x) — 0 when 2 — +o0.

The corresponding optimum functions F; and G; are then derived from (86), which
yields”:

P, (7)
Eopt (.ﬂ) - pz;, L’(x) ) (95)
E[(piZ(ﬂﬁ))Q]
z
Giopt(m) E[xQ] . (96)

It should be noted that the scaling ambiguity indeed disappears in these functions.

6.2 Normalization scheme (N2)

A second strategy to remove the scaling ambiguity mentioned above is to use scaling factors
¢;1 and ¢;9 such that:

Elanfi)] = e (o7)
Blehgi(@)] = 1, (98)
which corresponds to®:
1
T RN o
G = (100)
Elgi(z)]

"The solution obtained by changing the sign of both functions in (95) and (96) also exists (due to
viivia > 0), but it yields the same algorithm (85).
8]iike with the algorithm (N1), there is no use considering the opposite value of €;5.
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The associated algorithm (N2), for causal mixtures, can then be written as:

i+ 1K) = eigln, k) 4+ — 20D gl @R ey oy ke o,
B (sl Fls?] (/Flo?(s))]

(101)

which is equivalent to:

cij(n+1,k) = cij(n, k) + pli(si(n))Gi(s;(n = k) i #j€{1,2},ke[0,M], (102)

where

(2 — fi(z)

RO = e vER (103)

Gi(z) = ﬂ. (104)
)

This normalization scheme is not a classical one and is based on the following principle.
For strictly causal mixtures, when using the initial algorithm (NO) with extremum separ-
ating functions (78)-(79), the Jacobian matrix and therefore the convergence speed of this
algorithm depend on fi.;+ and therefore on the source statistics. This is due to the expres-
sion of fiep (While giepe does not yield any restrictions). This is a drawback, because these
source statistics are generally unknown. A solution to this problem consists in modifying
the algorithm (NO) so that the Jacobian matrix does not depend any more on f;. This is
the target reached by the algorithm (N2) as shown below.

For causal convolutive mixtures, the stability condition and the asymptotic error variance
can be deduced from (36) and (37) using the following tranformation:

fi(m) — f‘;(-ﬂ)
gi(z) — Gi(x).

Under the strict causality assumption, the stability condition derived from (41) reads:

(105)

E[wZG](:cZ)] >0, i#j€e{1,2} (106)

or equivalently:

E[wzgj(acl)] > 0, 1 75] S {1,2}. (107)
It should be noted that this condition is independent from f;(z), as stated above. The
asymptotic error variance associated to (N2) is:

1,j=2 200 FEla?(x:

Ef2 ()] VEli(=)] 1

Too = i i (gi2 + ginai). (108)
2-7]-:122-#:1 E2[fi (x)] Eljgi(z))] | [

The optimum separating functions correspond to the independent minimization of

M(qn + ¢ia;),i € {1,2} and —WVE[QMJ # j € {1,2}. This leads also to the

B2[f! (] Elz;9:(x;
following optimum choice (see Appendix E):

fiopt(m) = —Vi pmt(ﬂ’;)’ (109)

giopt(x) = Vi, (110)



where p,, is the probability density function of the source z; and (v;1,v;2) is a couple
of arbitrary real constants such that v;3 > 0 due to (107) and (110). The corresponding
optimum functions F; and G; are then derived from (103), which yields:

Pz, (%)
Bopt(x) — p’ (7:)1(1') ’ (111)
Bl
T
Giopf(x) = E[$2]’ (112)

It should be noted that, like with the algorithm (N1), the scaling ambiguity disappears
in these normalized functions.

7 Conclusions and prospects

This paper deals with the separation of two convolutively mixed white signals. The proposed
approach is based on a recurrent separation structure adapted by a generic rule involving
arbitrary separating functions. The following aspects of the convergence properties of this
rule are analyzed.

A vector-based formulation of the adaptation scheme is first derived. We then determine
conditions on the separating functions for the separating state to be a stable equilibrium
state of the adaptation rule. This analysis especially applies to specific source separation
algorithms for convolutive mixtures which have been proposed in the literature and experi-
mentally studied, but for which almost no stability analyses have been reported up to now.
It also allows to extend the theoretical results reported for the Hérault-Jutten algorithm for
instantaneous mixtures.

The expression of the asymptotic error variance of the estimation of the mixture filters is
then determined in the case of strictly causal mixtures. The separating functions which
minimize the error variance are derived. They are shown to be only related to the prob-
ability density functions of the sources. This minimization of the error variance leads us
to introduce two alternative normalization procedures. It should be noted that these pro-
cedures also allow to derive normalized versions of various adaptation rules with arbitrary
separating functions (i.e. not necessarily optimum) which yield attractive features®.

As stated above, the proposed approach is developed for white source signals and yields
optimum functions which depend on the source statistics. For this approach to be applic-
able in real situations, it should be extended to the case of possibly-coloured sources with
unknown statistics. This practical extension is presented in the second part of this paper
[6]. The latter paper also describes the performance obtained with the basic and extended
approaches in various situations ranging from synthetic data to audio signals measured in
real conditions. This shows that the optimization of the separating functions yields a major
improvement of the quality of the separation that can be achieved.

A Causality of W(z) and W,,(2)

In Subsection 2.2, we defined the filters W (z) and W,,(2) and briefly showed that they
should be causal in the proposed approach. In this appendix, we provide more detailed

9These normalization procedures are detailed for the case of strictly causal convolutive mixtures, which
is the main topic of this paper, but they may be used in the same way for causal convolutive mixtures and
instantaneous mixtures.
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explanations and expressions about this property (some related information may also be
found in [34]).

Let us first consider the direct structure shown in Fig. 2. This structure explicitly
contains two blocks whose transfer functions are:

B 1
N 1- 012(2)021(2) '

For this separation system to be realizable, these two blocks should themselves be real-
izable, and therefore causal. This condition may be expressed as follows in terms of the
coefficients of the MA filters C;(2). As these causal filters are both assumed to be of order
M, C12(2)C21(2) is a polynomial in z=' of order 2M. Moreover, its constant term is equal
tol%: ¢13(n, 0)eg(n, 0). Therefore:

W(z) (113)

1

IV(Z) - 1— Clg(n, 0)(,'21(77,, 0) + D(Z) (114)
with:
2M
D(z) =" d(k)z"". (115)
k=1

This yields two cases. If 1 —¢12(n, 0)c21(n,0) # 0, a Taylor series expansion of (114) shows
that W (z) may be expressed as:

Wi(z)=> w(k)z"". (116)
k>0
W (z) is then causal. If 1 — ¢13(n,0)c91(n,0) = 0, let ko, with kg > 1, be the lowest index

of the non-zero terms d(k). Then, (114) yields:

1 1
(ko) 1+ D'(2)

W (z) = 2~ (117)

with:

2M —kg
D'(zy= > d'(k)z"" (118)
k=1

Expanding the third term of (117) as a Taylor series again yields a causal term in (117),
but then multiplying it by 2% results in a non-causal overall filter W (z). As a conclusion,
W (z) is causal if and only if 1 —c;2(n, 0)cz1(n, 0) # 0. It should be noted that this condition
only concerns the instantaneous part (i.e. lag zero) of the filters C; ().

We now move to the recurrent structure shown in Fig. 3. The transfer function (113) and
the associated causality condition do not appear explicitly in blocks of this structure, but
they are implicitly present in its connections, and more precisely in its cross-couplings. They
become explicit when considering the ”realizability” of this structure,i.e. when investigating
how to implement it in practice. This yields several approaches, as will now be shown. Let
us first consider the Z-domain representation of this structure. This separation system then
corresponds to the following equations:

"%Here again, c;;(n, k) is the k'" coefficient of filter C;; at the n'” iteration. Both indices are provided in
the notations used for these filter coefficients in order to avoid any ambiguity. On the contrary, the index n
is omitted in the notations for the time-dependent transfer functions Cj;(z) of these filters, as they do not
yield such an ambiguity.
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S1(2) = Yi(z) — Cr2(2)92(2)
{ Sa(2) = Ya(2) — Ca1(2)51(2) (119)

This may be considered as the theoretical definition of the recurrent structure, in the
sense that it does not provide directly a practical means for computing the system outputs
or their Z transforms S;(z) and S3(z). Such a means may be obtained by solving these
equations in the Z domain, which yields (3). The separation system is then implemented
as the cascade connection of the matrix which appears in (3) and of the filters defined by
(113). The latter filters should then be realizable and therefore causal. The condition thus
obtained is therefore the same as for the direct structure. This is normal, as the cascade
connection that we thus introduced as a practical means for implementing the theoretical
recurrent structure, based on the observation-output relationship (3), is in fact identical to
the direct structure shown in Fig. 2.

Now consider the time-domain representation of the recurrent structure. It is defined by

the time-domain counterpart of (119), i.e:

s1(n) = y1(n) = > c1a(n, k)sa(n — k)
vy (120)

s2(n) = ya(n) — Z co1(n, k)si(n — k)

These time-domain equations may be combined in the same way as in the above approach
in the Z domain, which does not deserve any additional comments. However, they may also
be handled in another way, i.e. by splitting the instantaneous terms (i.e. lag zero) of the
convolution products in their right-hand terms, and grouping them with the left-hand terms
of these equations, which yields:

NS

s1(n) + ¢12(n,0)s2(n) = y1(n) — c12(n, k)so(n — k)

k

Il
=

(121)

NE

c21(n, 0)s1(n) + s2(n) = ya(n) — ) car(n, k)si(n — k)

Ee
Il
—

Solving this set of equations with s;(n) and sy(n) as unknowns provides a practical means
for computing the latter quantities with respect to their previous values and current obser-
vations y; (n) and y3(n). The expressions thus obtained are provided in (8). This practical
approach only holds if the set of equations (121) can be solved, i.e. if its determinant is
non-zero, i.e. if 1 — ¢13(n,0)cz1(n,0) # 0. This approach therefore leads to the same con-
dition as the previous ones. It should be noted that this condition is here directly obtained
in terms of the instantaneous part of the filters Cj;(z), because this part was handled in a
specific way in this approach. This is to be contrasted with the previous approaches, where
this condition was initially expressed in terms of the causality of the filter W (z).

Up to this point, the analysis presented in this appendix was performed for any set of
filters C'12(z) and Cyq(z). It especially applies to the state of interest in this investigation,
i.e. to the separating solution. At this state, C2(2) = Ay3(z) and Cy(2) = Agq(2). This
analysis thus shows that in the proposed approach the mixing matrix is required to be such
that

. 1
T 1- Aqa(2) A (2)

is causal, and that this condition is equivalent to: 1 — a12(0)ag1(0) # 0.

Wey(2)

(122)
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B Derivation of the Jacobian matrix at the separating state

B.1 Jacobian matrix at any fixed state

This appendix aims at providing details on the computation of the Jacobian matrix (see
Section 4). The first part of this investigation is performed for an arbitrary state (i.e. not
necessarily an equilibrium state). This state is assumed to be fixed, i.e. not to depend on
the iteration index n. Therefore, this index is omitted hereafter, so that the definition (13)
of this state becomes:

0 = [c12(0),...,c12(M), c21(0), ..., cor (M)]T. (123)

The elements J;;(#) of the Jacobian matrix are defined in (24). Their terms

Eg[H(8,&,41)]" and 8U) may be derived respectively from (15) and (123). This yields

the following expressions, where the subscript 6 of the mathematical expectation Fy and the
limit "lim,_4.,” are omitted for simplicity:

Ji0) = E :a(fl(sl(?c)il((;?_(%_ o 1)))] (i,7) € [1, M +1] x [1, M + 1]

Ji8) = E 'a(fl(sgizzzjl_(sjé"_; + 1)))] (i,7) € [1, M + 1] x [M +2,2M + 2]

Jij(6) = B -a(f2(52("))gi(lzl(§.n__1§+MH)D] (i,5) € [M +2,2M + 2] x [1, M + 1]

Jij(0) = E -6(1[2(82(720):12((;1—(7;‘4__2' ;)M+2)))] (i,§) € [M +2,2M + 2] X [M +2,2M + 2]

(124)

It clearly appears from equation (124) that the computation of the Jacobian matrix
requires the calculus of the partial derivatives of the outputs (s1(n), s2(n)) and their delayed

versions versus the components of 8. For the
the recurrent structure i.e :

fixed state 6, the input-ouput relationship of

M
s = wi(n) = 3 ei(R)sin— k), i #5 € (1,2} (125)
k=0
leads to:

ds1(n) ds2(n)

aclg(k) 2 8612([€) B 82(71 B k)

Jsy(n) e Js1(n) (126)

dera(k) T e (k)

k € [0, M]

where ¢;3 and ¢3; denote respectively the impulse responses of the filters (c12(k))r>0 and
(€21(k)) k>0 and * denotes the convolution product. Solving this set of two equations yields:

ds1(n)
8612 (k)

Js3(n) _
8612(16)

k € [0, M]

(w * €91 x s2)(n — k)

—(w *x sg)(n—k)

(127)
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where w denote the impulse response of the filter (w(k))r>o defined in Sub-section 2.2.
One derives in the same way:

(3;21((7;)) = ~(wxs)n—k)

dsi(n) _ 3 (128)
Don(h) (w* 12 % 51)(n — k)

ke [0, M]

Combining (124), (127) and (128) leads to the explicit formulation of the Jacobian matrix
entries, i.e:

o for (i,5) € [1,M + 1] x [1,M + 1]

Jiy(0) = —E[A(s1(n))(w s s5(n = j + 1)gi(s2(n — i +1)] (120
HE | fi(s1(n)g) (s2(n — i + 1)) (wx ea1 # ;3 (n — i = j+2))]
o for (1,7) € I, M + 1] X [M +2,2M + 2]
Jij(0) = K [f{(sl(n))(w xcrg*s1(n—J7+M+2))g1(s2(n—i+ 1)} (130)
— B [fi(s1(m)g) (s2(n — i+ D) (w1 (n—i = j+ M +3))],
o for (i,j) € [M +2,2M + 2] x [1, M + 1]
Ji0) = B[fsm) e enxsa(n =+ 1))galsin — i+ M +2)]
—E [ fa(s2(n)ga(s1 (n = i+ M +2))(wx sy (n — i — j+ M +3))]
(131)
o for (i,7) € [M +2,2M + 2] x [M + 2,2M + 2]
Ji;j(0) = -K {f;(sg(n))(w* si(n—J+ M +2))ga(s1(n—i+ M+ 2)}
+FE |:f2(82(n))g;(81(n — i+ M+2)(w*crzxs1(n—1 —j+2M+4))} .
(132)

B.2 Jacobian matrix at the separating state for white sources

At the separating state, each output s;(n) is equal to the source z;(n) and ¢;;(k) = a;;(k)
for k € [0, M]. Also taking into account the causality assumption (w(k) = 0 for £ < 0), the
statistical independence of the sources and the whiteness of each source (see (AS5)), (129)
to (132) yield:

o for (4,7) € [1,M + 1] x [1, M + 1]

Jij(6°) = —E[fi(z1)]E[zagi (22)]weq (i — ) + E[fi(21)] E[22g, (22)]weq(0) a2 (0)551,
(133)

o for (i,j) € [1,M + 1] x [M +2,2M + 2]

Jij(0°) = weg(0)ar2(0)Ela fy (1)) Elg1(22)185,mr42 — B[z fi (21)]Elgy (22)]weq (0)8i 185,042,

(134)

28



o for (i,7) € [M +2,2M + 2] x [1, M + 1]
Jij(0°) = weg(0)an (0) Elz2fy(22)]Elga(21)]1dj0 — Eleafa(22)]Egy(21)]we (085,18 a1+,

(135)
o for (i,j) € [M +2,2M + 2] x [M + 2,2M + 2]
Jij(0°) = —E[fy(x2)]Elz1g2(21)]weg (i — 5) + E[fa(22)] E[2195(21)]weq (0)a12(0)5; ar 2,
(136)

where 4, is the Kronecker symbol defined as:

{ 5p,k =1 ifp=k (137)

Opk =0 otherwise

The jacobian matrix can then be written as a block matrix,

s Gn Gz
J(0°) = 138
¢ ( G G ) (138)
where
— QG Wey (0) + WiWeq (0) 0 e 0
— G Weq (1) 4 @iweq (0 —;Weq (0 0
Gy = ol ). pitves (0) .Q( ) , . : (139)
—Weg (M) + @iweg(0) —ojweg(M —1) ... —a;we,(0)
and
ninq(O) - ﬂiweq (0) 0 e 0
Niweq (0) 0 ... 0 o
Gij = : N i#je{1,2} (140)
Niweq (0) 0 ... 0

with the following notations:

o = FElf; (ac7 |E[z;9:(x;))] where j is chosen sothat j # i€ {1,2}
B: = Flaifi(z)|FE [gl(x]))] where j is chosen so that j #1 € {1,2}
i = a;i(0)E[fi(z:)]E[z;9:(z;))] where j is chosen so that j #i € {1,2}
i = a;(0)Elz:f (2:)E[gi(z;))] where j is chosen so that j # i € {1,2}

(141)
and where w.,(0) is the zero-lag coefficient of the filter W, (z) defined in Sub-section 2.2

i.e: weq(o) = 1— (1,12(0)(1/21(0).

In the case when the separating state #° is also an equilibrium point and under the
condition (21), 7; = 0 so that the matrix G;; for i # j € {1,2} becomes:

~Biweg(0) 0 ... 0
0 0 ... 0 o
Gij = : N E i#je{1,2}. (142)
0 0 0
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C Derivation of R(6°)

As shown in Sub-section 5.2, the estimation of the asymptotic error variance needs the
computation of the matrix R(#*) defined by

R(6°) = > Cov[H(6°,&nqn), H(6°,&)). (143)
neZ

Besides, taking into account (5) and (15) reduced to the case of strictly causal mixtures,
H(6%,&,41) can be written as:

H(Gsa £n+1) = [Zi,m E;,n]Tv (144)
where
{ 23 = h(@in)gi(ze(n —1)),..., fi(z1(n))g1(22(n — M))] (145)
N30 = [fo(z2(n))g2(z1(n = 1)), .., fa(22(n))g2(21(n — M))]

Using the above-mentioned notations, a new formulation of (143) can be derived:

Cov[¥37 X5 o] Cov[X],, 33 ]
R(0°) = UGN N 146
) T;(COU[EQJUELO] COU[ZQ,MEQ,O] (146)
Mk Ou
) 147
( 0M 'YQRQ) ( )
where
1 a; a;
R (148)
. .-. ... a/Z
a; a; 1
E2[fi(z:)]
G = 149
E[f? ()] (149)

vi = E[f}(z:)E[g(z;)], where j is chosen so that i # j € {1,2}, (150)

3
and O is the M by M null matrix. Moreover, the transition from (146) to (147) uses

the fact that #° was assumed to be the separating state and that E[g;(z;)] = 0, as reported
in (21).

D Some properties of the matrices K;

D.1 General formulation of K;

In Section 5, we consider the symmetric and positive solution K; of the Lyapunov equation
(72) that reads:

~GK; — K;GT + R; = 0, (151)
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where GG is a lower triangular matrix, defined in (39), that only depends on the mixing
medium and R; is defined in (68). In fact, R; and therefore K; are functions of a; defined
in (69) and in seek for clarity they are denoted respectively R;(a;) and K;(a;) hereafter.
Taking the partial derivative of (151) with respect to a; leads to:
0K,

L OKior R

_ . NaT O
G 0. (a;) 0. (a;)G" + . (a;) = Opr (152)
where:
0 1 1
OR; |1 0 1
Ba; W) = o (153)
1 ... 1 0

Besides, GG and gff (a;) are independent from a;, i.e. from the sources statistics and the

separating functions. Therefore, as a solution of (152), 2K

' da;
%I;" (a;) = Qi1 where Q41 is a real matrix that depends only on the mixture parameters.

Furthermore, combining (151), (152) and (153), one gets:

(a;) has the same property, i.e.

s (7)) — (Ki(ai) — a; ?(“é))GT + I =0 (154)

—G(I(Z-(az-) — a; 8&2' a

(154) implies also that K;(a;) — a; %{;’ (a;) depends only on the mixing medium, i.e.
Ki(a;) — a; %:(ai) = ;2 where ;7 is a real matrix that only depends on the mixing
system. As a result, the matrix K;(a;) can be written as:

Ki(a;) = Qiz + Qira; (155)

It should be noted that Q2 = K;(0), so that @iz is a symmetric matrix. Similarly,
Qn = %I:ii (@) is also symmetric.

D.2 Some properties of Tr(K;(a;))

For a; € [0, 1], the matrix K;(a;) is symmetric and positive definite by construction (see
Sub-section 5.2). It has then the following properties:

e (P1): for all non null vectors X, we have XT K;(a;) X > 0.
e (P2): all the eigenvalues of K;(a;) are strictly positive.
(P3):

e (P3): the trace of K;(a;) is strictly positive (since it is the sum of the eigenvalues of
Ki(ai)).

Besides, due to (155), the trace of the matrix K;(a;) can be expressed as:

Tr(Ki(ai)) = ¢i2 + gna; (156)
where ¢;; = Tr(Qy;) for 4,5 € {1,2}. It should be noted that ¢;; = Tr(Qi2) =
Tr(K;(0)) > 0 due to (P3).
In the following, we show that ¢;2 + ¢;1a; > 0 for a; € [0, 1]:
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E

® g2+ qira; > 0 for a; € [0, 1] is due to (P3).

® ¢io + ¢;1 > 0. This result is not an immediate consequence of the previous one. Let’s

define K;(1) by:
Ki(1) = l,igll Ki(a;) = Qi + Qi (157)

K;(1) is therefore symmetric. Moreover, due to the continuity of K;(a;) and R;(a;) in
the vicinity of a; = 1, the limit of (151) when «; tends to 1 shows that K;(1) is such
that:

~GK (1) — K;(1)GT + R;(1) = 0py. (158)

Besides, (155) shows that the matrix K;(a;) is a linear function of a;, so that it can
be written as:

Kz-(ai) = (1 — az-)KZ-(O) + aikri(l) (159)
Therefore, whatever the vector X, we have:

XTKi(a)X = (1 - a) XTK:(0)X + ¢, X TK;(1) X. (160)

Let us consider a nonzero vector X. Then XTK;(0)X > 0 due to (P1). Now as-
sume that XTK;(1)X < 0. Then, when q; is varied from 0 to 1, (160) shows that
XTK;(a;) X varies continuously from X7 K;(0)X > 0 to XTK;(1)X < 0. Therefore,
there exists a value a; € ]0, 1] such that XTK;(a;)X = 0. But this is uncompatible
with (P1), which means that the above assumption is false, i.e. whatever the nonzero
vector X XTK;(1)X > 0. K;(1) is thus a semi-positive definite matrix and all its
eigenvalues are positive or null. Moreover, since K;(1) is symmetric, it can be ex-
pressed as K;(1) = UDU" where D is a diagonal matrix containing the eigenvalues
of K;(1) and U is a unitary matrix. Therefore, if all these eigenvalues were null, D
would be the null matrix, and so would K;(1). But this is not compatible with (158).
Hence, at least one of the eigenvalues of K;(1) is strictly positive and so is their sum

iLe. Tr(K;(1)) = ¢z +qa > 0.

Optimum separating functions

In Sections 5 and 6, the extremum or optimum separating functions were shown to be related
to the minimization of the following expressions:

2 (- 2 z 2 o[ F2(z; 2 2
. <E[fi( gy + 2L, )> 7 ( AT (g, 4 Il z))]]qﬂ)> and ELZGIL (4

E[f; ()] Elf; E[f; (z:)] E2[f;(w)]
%[E,);’((x’))] ¢;1) for the choice of the function f; respectively for algorithms (NO), (N1)
and (N2).

2 2
. <FE[EﬁZEsz_j]ﬂ . F% and FQ[%(()})] for optimizing the function g; respect-

ively for algorithms (NO), (N1) and (N2).

In the following, suffixes 7 and j will be omitted to avoid a cumbersome presentation.

Nevertheless, we must keep in mind that f; depends only on the source z; and g; is only

related to ;.
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Using the above-mentioned notations, all the expressions to be optimized can be ex-

pressed as: Li(f) = B )] (%-i—ﬁ;%%) for (k,m) € {(1,1),(1,2),(2,2)} or

k RE)
Ly(g) = %ﬁl for k € {1,2}.

Hereafter, the following assumptions are assumed to be met:

e (AST) the probability density functions of the sources are defined for all real values,

twice continuously derivable and such that lim p(z) =0and lim p'(z) = 0.
|z] =00 |z] =400

e (AS8) f(z) is a continuously derivable function.

o (AS9) g(z) is a continuous function.

Note that some less restrictive assumptions could be used at the expense of a more
cumbersome presentation.

E.1 Optimum choice for f(x)
For given sources and mixture parameters, let us consider the functional L, defined by:
E*[f*(z E?[f(x "
L) = 2@ (qﬁMql) 7 (161)

E2[f'(2)] E[f*(z)]
where (k,m) € {(2,2),(1,2),(1,1)} correspond respectively to (NO), (N1) and (N2).

(161) can be written in a more explicit form as:

+002$ $$k Oom 2\daz m
Umf<mwd)(2+u+ UMﬁHqJ-

Li(f) = (f:;o £ (2)p(z)dz)? f+00 [ (z)p(z)d

(162)

E.1.1 Extremum condition

L1 is a differentiable functional of f and so its extrema are reached under the necessary
condition:

Ll(fext) (w) =0, (163)
for all the continuously derivable functions ¥. dL;(f)(¢) denotes the differential of L,

at f along the trajectory defined by . Differentiating (162) versus f leads to:
+oo

+oo +oo
f@p@e@ds—m [0 @p@de+ [ p@pe)ds (164

—00 —00

ﬂmmmzm/

— 00

where 1 (2) is a continuously derivable function and

k=17 £2
m = 2E [[f( ()])] (1 (k — m)a+ kqq), (165)
kr 2
N2 = 2F [[f (( ))]] (g2 + qua), (166)
PRI,
3 = 2 B (2] Qm, (167)

B
A O] (168)
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Besides, for all the functions #(z) that increase more smoothly than p(z) decreases, i.e.
which are such that:

lim (a)p(z) = 0, (169)
|| =400
we can derive the following result using a by-part integration:
too +oco ,
[ @p@de=— [ sy @)ds. (170)

The extremum condition (163) applied to (164) then becomes:

m [ @@t [ @ @iz [ pe)vdr=0, ()

—00 — 00

which is equivalent to:

[ a0 (@) + 120’ (@) + ap () () = 0, (172)

—00

(172) should be valid for all the functions #(z) that meet (169), which implies that:

p'(z)
M fewt () = =12 — 13- (173)

p(z)
Besides, the equality 7, = 0 cannot hold since it would require a probability density
function of the form p(z) = viexp(—Ex) where vy is an integration constant. This is

incompatible with (169) and so 7, # 0. Hence, (173) can be rewritten as

Taking the mathematical expectation of (174) and including the expressions of n; for i €

{1,2, 3} provided in (165) to (167) leads to:

Elfeot(2)](kaa + may + (k — m)gra) = 0. (175)

Two cases are to be considered:
e m = k which corresponds to (NO) and (N2). (175) is then equivalent to:

Elfezt(2))(q1 + ¢2) = 0, (176)

which leads to E[f.z¢(z)] = 0 since ¢; + g2 > 0 according to Appendix D. This yields
13 = 0 and therefore

Jeat(2) = —%i((j)). (177)

For algorithm (N2), this results in a unique normalized function as defined in (103),
i.e.

Foi(z) = p(z) . (178)



e m # k, which corresponds to the case (k,m) = (1,2) and the algorithm (N1). com-
bining (161) and (174), the extremum value of L; can be rewritten as

Lleazt = 2] ((12 + QIG)Q (179)

= LGS ,”_2 (2 + qa)”. (180)

Therefore:

1. if E[fezt(2)] = 0, (167) yields 53 = 0 and (168) yields @ = 0. The corresponding
extremum separating function f,; is derived from (174) which yields:

= % (181)

The associated normalized function Fe(iz defined in (86) is given by:

FO@ =420 (182)

(1)

The corresponding value of L., is then denoted Lj ;.

, and reads:

E[(pl(f) )]
L = g — I (183)

E2(EE)]

2. if E[fent(z)] # 0, (167) yields 53 # 0. This solution of (175) holds under the
condition @ = 2+ 3—? which implies that 0 < —¢; < g2 < —2¢; (because a € [0, 1]
and ¢z > 0 as shown in Appendix D.2). This corresponds to the normalized
separating function denoted Fe(2) and defined by:

xt

P'(=)
FO@)=+vT—a| =20 4 — (184)
()2 —a
By
where € € {—1,1}. The associated value of L., is denoted Lg?m and is given
by:

B2y
ngezct = —4q1 (g1 + 92)72 2;(, l) - (185)

E2 (5]
One can then verify easily that Lgle)xt > Lgi)m since 0 < —q1 < g2 < —2¢q.

However, this is achieved at the expense of lower convergence speed, since the

eigenvalues of the Jacobian matrix J(#°) associated to F?)

o1 are equal to those
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associated to Fe(;g attenuated by the factor v/1 — a. The algorithm behaves as

if the adaptation gain p was replaced by p+/1 — a. In order to use a relevant
(2)

comparison strategy, we consider the function I, ;

(z) associated to the adapt-

ation gain \/'IMTG. which leads to the same eigenvalues as Fe(;z associated to the
(2)
adaptation gain u. The new extremum value of L; will then be Lg?;)xt = %
This leads to:
Bl
3 x 3 q 1
Lt =g — B0 = L =), (186)
E2 (5] 2
3 1
= Lge)xt Z Lge)act' (]87)

Hence for a given convergence speed, the separating function Fe(;g behaves better
than Fe(ig from the point of view of the asymptotic error variance. This is

therefore the function kept hereafter.

As a result, for all three algorithms (NO), (N1) and (N2) the separating functions to be
retained are of the form:

(@)

fy(x) = pl‘z('r)

(188)
(189)

where p;, is the probability density function of the source z;.

E.1.2 Optimum functions

The separating functions retained in Sub-section E.1.1 were found using only an extremum
condition which is necessary and not sufficient to guarantee the minimization of Ly (f).
To prove that the extremum functions thus obtained are the optimum ones, we study the
values of L;(f) for some typical functions hereafter. We start with algorithm (N2) because
it is easier to handle due to the uniqueness of the normalized extremum function F.,: (see
(178)). In this case, we just have to exhibit a function f such that L;(f) > Liest.

e Algorithm (N2)
Let us consider the class of separating functions f(”)(:v) = 2" for n > 1. The associ-
ated values of L are:

Elz?"] E2a"]

(n) _
L] - n2E2[m”—1] (QQ + ¢ E[$2n]) (190)
Moreover, f..; is associated to L.z given by:
Rl !
Llert = {2 Z;(/ l) ; = @2 pl(:r:) (191)
EZEY] T Bl(RE)]



Therefore, considering the function f(1) of the above-defined class yields:

% N AR )
= E[z2E — > K 192
T [z E( p(m))] T2 [ p(x)] (192)
1M
= L >1, (193)
Llemt

where the transition in (192) uses the Cauchy-Schwarz inequality.

The equality in (193) holds only for Gaussian probability density functions (p.d.f).
Therefore, for non-Gaussian p.d.f, f(1) is such that L;(f) > Lieps. For Gaussian p.d.f,
we consider another function, i.e. f©) which yields:

) ER)

LY _ BB e p()

- 2 = 194
Thew ~ 0 @) = T T v (194)
AR
= —. 1
= Llez‘t 3 (95)

Hence, under the regularity assumptions made on the p.d.f of the sources, we can
always exhibit functions f such that Ly(f) > Liext. fert corresponds then to the
minimum value of L; and so it is optimum.

e Algorithm (N1)
Let’s consider the extremum function retained in Sub-section E.1.1, i.e. fo(z) =
!
p (x)

V) The associated value of L; is then:
. . 2
Efz(2)] ( B[ feat(2)] )
Liewt = ——0——= | o+ ——01 | - (196)
E2[feni(2)] Elf(2)]

Let’s consider now a separating function f. Like in sub-section E.1.1, to have a rel-
evant comparison criterion for comparing f..; and f, we consider the performance of
these two functions when the algorithms have the same convergence speed at the vicin-
ity of the equilibrium state'!. Under this assumption, the algorithm (N1) associated

’

Elfere(@)] [Elfeai(2)?]
Ef (@] V Elf* (@]

to f behaves as if the adaptation gain p was multiplied by

which corresponds to the value of L:

b — Plila)] BP@) <q2+ 2 ()] ql) _ (197)

T B2, ()] BS (2)] E[f*(z)]

The minimization of (197) 1is then equivalent to the minimization of

5%{;% (qg—f—%ql) which corresponds to the value of L; associated to

the normalization scheme (N2). Hence, the results are the same as those obtained for

(N2), i.e. the optimum separating function is associated to fe.:(z) = —Vpﬂ(f%.
Note also that, for zero-mean separating functions f, we have:
E[f*(z)] , L,
L = 20 = — 198

Yfor a given function g.
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B/ (x)]
E[f?(z)]
matrix at the separating state #(*). Hence, for a given separating function g, the

where A = is the contribution related to f in the eigenvalues of the Jacobian

convergence speed in the vicinity of the equilibrium state is an increasing function

to the absolute value of Ay. Furthermore, the minimization of L; becomes coupled

with the maximization of Ay. The reader can verify easily that separating functions
’

proportional to —% enable simultaneous maximization of the local convergence

speed and the minimization of Ly which is a very important property.

E.1.3 Conclusion for f(z)

Using the suffixes 7, the optimum normalized separating functions F; are eventually ex-
pressed as follows:

e for the algorithm (N1):

Fpt(2) = ——222 (199)

e for the algorithm (N2):
p;i ()

R0 VR

Fiopt(2) = (200)

where p;. is the probability density function of the source z;.

E.2 Optimun choice for g(x)

For the algorithm (NO), the extrema of the functionnal

Elg*(2)]?
L = 201
0= Bleg o) o
have to be determined under the constraint (21). An approach based on Lagrange
multipliers then yields:

gext(m) =nz (202)

where 7 is a constant.
For both algorithms (N1) and (N2) the optimum functions ¢ are the ones which minimize:

Lo(g) = —L20 (203)

The investigation of Ly can be done in two steps as for L. A more compact method can
be based on the Cauchy-Schwarz inequality that enables to handle directly the minimization
of Lg. In fact, the Cauchy-Schwarz inequality implies that:

Elzg(2)]” < Elg*(2)]E[2"] = La(g) 2 (204)

Elz?]
The minimum value of Ly(g) is reached when the equality holds in (204), which corresponds
to:
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gemt(x) =nz. (205)

where 7 is a constant that must meet the algorithm stability condition.
Using the notations with suffixes ¢ and j, the optimum solution is:

Giopt () = ngi . (206)

where 7,; is a real constant.
The contribution of the function g in algorithms (N1) and (N2) is then:

Gio(z) = —Ze® 2 (207)

- JEl@)]  VERT]

where d € {—1,1} depending on the stability condition.
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Figures
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Figure 2: Direct structure for the separation system.
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Figure 3: Recurrent structure for the separation system.
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