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Abstract: This paper presents an analysis of the stability of the equilibrium points
of the Hérault-Jutten neural network. We show that a previously reported numerical
analysis method only yields a sufficiency stability condition. By extending this method,
we provide an analytical necessary and sufficiency condition, and we bridge the gap with
another reported method.

Résumé: Ce papier présente une analyse de la stabilité des points d’équilibre du
réseau de neurones de Hérault-Jutten. Nous montrons qu’une méthode d’analyse
numérique précédemment publiée ne fournit qu’une condition suffisante de stabilité.
En étendant cette méthode, nous fournissons une condition analytique nécessaire et
suffisante, et nous faisons le lien avec une autre méthode connue.



1 Problem statement

Blind source separation is a generic signal processing problem which concerns e.g. antenna
or microphone array processing [3]. In its simplest version, two sensors provide measured
signals F(t) and E(t), which are unknown linear instantaneous mixtures of two unknown
source signals X (t) and Xs(¢), i.e:

Ey (t) = a11X1(t) + (112X2(t) and Eg(t) = (121X1(t) + a22X2(t). (1)

The problem is then to estimate the source signals X;(¢) from the measured signals E;(t).
In this paper, we consider the method proposed by Hérault and Jutten [3], which is based
on the recursive neural network shown in Fig. 1. The adaptive weights c12 and c¢2; of this
network are updated according to the following unsupervised adaptation rule:

deij/dt = af[si(t)]g[s; (*)], (2)

where a is a positive adaptation gain, s;(¢) and s;(t) are the (estimated) centered signals
corresponding to the network outputs S;(¢) and S;(t), and f and g are odd functions
[3]. In this paper, we use f = (.)® and g = (.), since it may be shown that this avoids
restrictions on the types of sources that this neural network can separate (this is partly
explained in [1],[4]).

The convergence properties of this algorithm have been studied independently by three
authors. While E. Sorouchyari [4] and J.C. Fort [2] used almost the same method (called
the SF-method below), P. Comon et al. [1] presented another method (called the C-
method below) which yields different results. This paper therefore aims at bridging the
gap between these methods.

2 Stability analysis

2.1 Available results

The above algorithm has four equilibrium points [4]. The approach used in this paper
applies to any of them, but for the sake of brevity it is only presented for the point which
yields perfect source separation with no permutation, and which is denoted point P below.
This point corresponds to ci12 = a12/as2 and ca1 = ag1/a11, and yields:

Sl(t) = 0,11X1(t) and Sg(t) = a22X2(t). (3)

As stated in Section 1, two approaches have been used to study the stability of this
point. The SF-method is based on an analytical analysis, and yields the following stability
condition'>? on the centered sources z; and zs:

E{z1}E{z3} < 9(E{a1})*(E{z3})". (4)

The C-method uses an orthogonal mixture matrix A = [a@ ;- «]. Point P thus meets
the condition ¢o; = —c12. Therefore, only points in the weight space which meet this

'1n addition, the condition ci2c21 < 1 should be met. This condition is skipped in the remainder of this
paper, since it only corresponds to requiring the loop gain of the considered recursive network to be lower
than one in order to ensure the stability of this network [3].

%For readability, the time argument ¢ of the signals is omitted in the remainder of this paper.
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condition are considered. Each such point is defined by 8, with cio = 8 and co; = —6.
This reduces the investigation to a one-dimensional problem. The authors then define:

$;;(0) = E{sis;} fori=1,2; j=1,2; such that i # j. (5)
They state that a set of conditions for point P to be a stable equilibrium point is:
d<I>12(0)/d0 <0 (6)

and
d®o1 (0)/d9 > 0. (7)

They analyze stability for given signals, by computing sample estimates of ®12(f) and
@9 (0) for various values of #, and by checking graphically if conditions (6) and (7) are
met at point P for these signals.

2.2 Discussion of available results; goal of proposed extensions

A clear difference appears between the SF-method, which is based on a theoretical analysis
and which yields a single condition (4), and the C-method, which consists of an a posteriori
numerical characterization of sample signals and which is based on two conditions (6) and
(7). The remainder of this paper therefore aims at bridging the gap between these methods,
by extending the C-method. For clarity, the analysis is again performed for an orthogonal
mixture matrix A = [a 5; -0 «a].

2.3 First extension

It should first be pointed out that the set of conditions (6) and (7) is a necessary and
sufficiency condition for the stable evolution towards point P only along a trajectory such
that co1 = —c12. It is therefore only a sufficiency condition for the overall stability of point
P (because if these conditions are not met, a stable evolution towards P may be possible
through other trajectories anyway). The C-method therefore only provides partial insight
into stability. We will remove this restriction in the second step of our approach.

Before this, as a first step of our approach, we still restrict ourselves to the trajectory
such that ca;1 = —c19 and we therefore only consider sufficiency conditions, but we move
from the a posteriori numerical characterization of source signals used in the C-method, to
a theoretical investigation of the type of sources for which P is a stable point. To this end,
we consider the exact functionals ®;;(6) defined in (5) instead of their sample estimates and
we investigate the restrictions on the sources which correspond to the stability conditions
(6) and (7). These conditions involve the first derivative of ®;;(0) with respect to 6, which
is derived from (5) and expressed as follows at any point in the weight space:

d®y;(0) . fd(s}s;) | { 2dsi 3@}
10 =F — = E < 3s; d08]+8i 0 [ (8)

This expression depends on s; and so, which may be expressed as follows with respect to

the centered mixed signals e; and es when ¢1o = 60 and cy1 = —6:
e — 962
v 9
S1 1 +92 ) ( )
fe1 + e
=z 10
2T e (10)
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By computing the first derivatives of these expressions with respect to 8, one gets the
following equations (the last expressions of (11) and (12) are obtained by deriving the
expressions of e; and es vs. s and s, from (9) and (10) and by inserting them in the first
expressions of (11) and (12)):

dsy _2061 + (1 —6?)es _031 + 59

ki = 11
de (14 62)? 14627 (11)
@_ (1 —0%)e; — 20ey _ 81— 0Os9 (12)
o (14 62)2 14627
Eventually, by inserting the last expressions of (11) and (12) in (8), one obtains:
d®o1(0) 1 4 2.2 460
a0 = 1 T 02E{32 33132 1 T 92 @21(9) (14)

As stated above, these equations hold for any point in the weight space. Especially, at
equilibrium point P, due to the mixture matrix A considered here, # = §/a and (3) yields
s1 = az1 and s3 = axs. Moreover, at this point, ®12(f) = 0 and ®9;(f) = 0. In addition,
the sources 21 and x5 are supposed to be independent. (13) and (14) then become:

d®15(6) ol

B 5y [B(at) - 3B(3) B(a3)] (15)
dby () ot

& __1+(§)2 |B{e3} - 3B{a}} B{a3}] . (16)

By taking into account (15) and (16), the stability conditions (6) and (7) at point P are
eventually rewritten as follows:

E{z}} - 3E{z}}E{z%} <0 (17)

and
E{z3} — 3E{z2}E{z3} < 0. (18)

In other words, the result obtained at this stage is that, if (17) and (18) are met, point P is
stable according to this first extension of the C-method. This result is coherent with those
of the SF-method, because if (17) and (18) are met, (4) is met, so that the SF-method
also concludes that P is stable.

2.4 Second extension

The first step of our approach presented above provides an analytical condition on the
source signals, but does not yet completely fill the gap with the SF-method, because it
still only provides a sufficiency stability condition. To obtain a condition which is also
necessary, all the trajectories in the weight space should be considered, instead of the single
one used above. Unfortunately, this would require to go back from a one-dimensional
analysis (vs. ) to a two-dimensional one (vs. c¢j2 and c21). An intermediate solution
consists in considering a class of trajectories containing point P, where each trajectory in



the class is defined by the value of a parameter A, and the position on each trajectory is
defined by a single parameter 6, thus still providing a one-dimensional analysis for each
trajectory. The more general the class of trajectories, the more general the condition
on source signals. One may even expect that for a general enough class, the stability
condition of P with respect to this complete class is a necessary and sufficiency condition
for the stability of P with respect to any trajectory. To illustrate this, let us consider the
following class of trajectories: ci12 = 6, and co1 = —0[1 + A(6 — B/a)], designed so that
all these trajectories go through point P, but along a direction which depends on A. We
first consider a single trajectory in this class, corresponding to a fixed value A, and we use
the same method as in Sub-section 2.3 to determine the restrictions on the sources which
correspond to the stability conditions (6) and (7) for this new trajectory. Here again, the
investigation is based on the first derivative of ®;;(#) with respect to 6 which is defined
by (8). However, s; and s are expressed as follows with respect to the centered sources
z1 and xo for the trajectory considered here:

oo L 05)z1 + (& - 9):52’ (19)
14621+ X0 - 2]

A2 01+ 20— D) + {1+ 261+ A0 = £)}as
14621+ X0 - 2)] .

One then computes the first derivatives of these expressions with respect to 8. For the
sake of brevity, only their values at point P are provided hereafter:

S9 =

(20)

dsi g(l +>\§)~T1 + z9
a7 ne )
1+ (2)
dso (1+ )\g)an - gfn
a = AL =
1+ ()
By inserting (21) and (22) in (8), one obtains at point P:
d®15(0 o B
;29( ) _ [0+ 32) Bat) - 3B (et} B{ad), (23)
1+ (£)
d®y1 (0 at B
;10( ) __ 3[B{ad} — 31+ A2) B} Bla)]. (24)
1+ (£)

By taking into account (23) and (24), the stability conditions (6) and (7) at point P are
eventually rewritten as follows for the trajectory corresponding to the considered fixed
value A:

p

Qi) = (1+A2)B{at} - 353} B{a} <0 (25)

and

Q) = Blad} - 30+ D) Bad) BLad) <0 (26)

3The computations are presented in a slightly different way than in Sub-section 2.3 hereafter, in order
to avoid complex equations.



Then, point P is stable with respect to the whole class of trajectories if and only if (25)
and (26) are met for at least one trajectory, i.e. one real value A. Since @Q1(\) increases
with A8/, while Q2()\) decreases, this necessary and sufficiency condition is equivalent
to the following one:

Q1(Xo) <0, (27)
where )\ is the value of A such that:
Q1(N) = Q2(X). (28)
By solving (28), one gets:

B E{z3} + 3E{z?}E{z}}
L2 = B 1 3Bl B ) (29)

Inserting (29) in the expression of Q1(A) provided in (25) yields:

Q10%) = E{z]}E{z3} — 9(E{x}})*(E{z}})?
1A= E{z?} + 3E{a?}E{z3} '

(30)

(30) allows to rewrite (27), which is the overall necessary and sufficiency stability condition
with respect to the complete class of trajectories. The final condition thus obtained is:

E{z1}E{z3} - 9(B{1})*(E{z3})* < 0. (31)

The latter condition turns out to be identical to (4). This proves that the extended
approach that we have defined at this stage is fully coherent with the SF-method, and
that the class of trajectories considered here is general enough to obtain a necessary and
sufficiency stability condition for point P with respect to any trajectory.

3 Conclusions

In this paper, we have shown that the C-method only provides a sufficiency stability
condition. We have extended this method: i) by using an analytical approach instead of a
numerical one, and ii) by deriving a necessary and sufficiency stability condition. We have
thus shown how the C-method can be transformed in order to become fully coherent with
the SF-method. We have thus provided a unified view of the stability of the Hérault-Jutten
network.
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Figure 1: Basic Hérault-Jutten source separation neural network.



