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Abstract: Electronic systems are progressively replacing mechanical devices or human op-
eration for identifying people or objects in everyday-life applications. Especially, the radio-
frequency contactless identification systems available today have several advantages, but
they cannot handle easily several simultaneously present items. This paper describes a
solution to this problem, based on blind source separation techniques. The effectiveness of
this approach is experimentally demonstrated, using workstation and real-time DSP-based
implementations of the proposed system. More precisely, various source separation neural
networks are compared, and the networks that we proposed recently are shown to be the
most attractive ones, thanks to their simplicity, good performance and self-normalized
(i.e. automated”) operation.

1 Introduction

Many real-world situations require to identify people, animals or objects. Typical examples
are owner identification before starting car engines, access control for restricted areas,
cattle identification or control of the flow of manufactured products in factories. In the
past, the approaches used to perform such identifications were mainly based on mechanical
devices (such as keys for starting car engines), or human operation (e.g. visual inspection
of people, cattle or products in the above examples). These approaches are progressively
being replaced by various types of electronic systems, and especially by systems based on
radio-frequency (RF) communication.

Such an RF system [10],[19],[20],[22] is shown in Fig. 1. It consists of a base station
inductively coupled to portable identifiers (called ”tags”) which contain an LC resonator,
a controller and non-volatile programmable memory (EEPROM). The memory contents
are specific to each tag and allow to identify the tag-bearer (person or object). The basic
mode of operation of this system may be modelled as follows. The base station emits an
RF sine wave, which is received by a single tag. The tag is thus powered and answers
by emitting a sine wave at the same frequency (due to inductive coupling), modulated
by its encoded memory contents. The base station receives this signal, demodulates it,
and decodes it so as to determine the memory contents (details of the coding scheme are



presented in Appendix B). The overall identification system then checks these data and
controls its actuators accordingly.

This type of system is attractive because it yields contactless operation between the
base station and tags (thus avoiding constraints on the positions of the tag-bearers), and
because it operates with battery-less tags. However, when two tags are placed in the
RF field of the base station, both tags answer this station. The demodulated signal
derived by this station is then a mixture of two components, and cannot be decoded by
this basic station. This system is therefore unable to identify two simultaneously present
tag-bearers. A few attempts to solve this type of problem have been presented in the
literature. Some consist in making the base station and tags communicate according to a
predefined protocol, so that each tag successively provides its contents [4]. This approach
entails slow operation and yields a complex system, since significant circuitry must be
added to the base station and tags in order to implement the communication protocol.
This solution is therefore not attractive. Another approach consists in using tags which
operate at different frequencies [12]. This again yields complex circuitry and requires a
large frequency band to be allocated to the system, which is not always possible. The
approach presented in this paper aims at avoiding all these drawbacks. This is achieved
by resorting to blind source separation techniques, which form an emerging area in the
fields of artificial neural networks and signal processing.

The remainder of this paper is organized as follows. The overall structure of the pro-
posed system is presented in Section 2. Alternative approaches for its source separation
unit are depicted in Section 3, including classical neural networks and extensions that we
recently proposed. The experimental performance of all resulting versions of this system is
reported in Section 4. Conclusions are drawn in Section 5 and specific topics are developed
in the appendices.

2 Overall proposed system

The system proposed in this paper (Fig. 2) for simultaneously handling two tag signals is
an extension of the standard system described above. It relies on a base station containing
two reception antennas and two demodulators, which yield two mixed signals. These mixed
signals are processed by a blind source separation unit, which extracts the two components
corresponding to the two tags. Then, by decoding these separated signals, the memory
contents of the two tags are obtained independently.

More precisely, the nature of the available mixtures of signals is derived from the theo-
retical analysis provided in Appendix A of this paper and confirmed by the experimental
tests reported in Subsection 4.2. This shows that the modulation/demodulation scheme
used in this system is such that the mixed signals provided by the demodulators are re-
stricted to their simplest possible form, i.e. they are linear instantaneous mixtures (as
defined in Section 3) of the components corresponding to the two tags. Many source
separation approaches suited to such mixtures have been proposed in the last 15 years.
A survey of this field may be found e.g. in [1]. In the current paper, we use a class of
available approaches inspired from the field of artificial neural networks, and we investi-
gate their performance when applied to the proposed system. We also consider modified
versions of this type of approaches that we recently introduced, and we benchmark them
against the classical solutions. All these approaches are described in Section 3. They were
selected in this investigation for the following reasons. First, their convergence properties
are well defined in the considered two-source configuration and they are such that these



approaches do apply to the type of sources considered in this application, as will be shown
in the subsequent sections of this paper. In addition, these approaches are based on adap-
tive algorithms, which makes them able to track easily evolving mixtures which occur in
our application when tag-bearers are moving. Finally, they use very simple computations,
which makes them particularly attractive for the final low-cost real-time implementation
targetted in this investigation.

It should be noted that the system thus obtained meets the requirements defined in
Section 1: 1) it yields fast operation by allowing two tags to communicate simultaneously
with the base station; 2) all the tags have the same simple structure as in the standard
single-tag system, and the added complexity only appears in the base station, i.e. in a
single location of the system, so that its cost is limited; 3) the system uses a single carrier
frequency.

3 Blind source separation problem and solutions

In the ”simplest configuration” of the blind source separation problem, two signals E ()
and Es(t) are available, and these signals are unknown linear instantaneous mixtures of
two unknown supposedly statistically independent source signals X1 (¢) and X»(t), i.e:

El(t) = aqu(t) + a12X2(t) (1)
Eg(t) = a91X1 (t) + a22X2(t), (2)

where the terms a;; are unknown real-valued mixture coefficients. Blind source separation
then consists in estimating the source signals X;(¢) from the mixed signals F;(t) up to
an arbitrary permutation and an arbitrary scale factor. As explained above, this generic
problem is faced in the system considered in this paper, where the mixed signals are the
demodulator outputs, whereas the sources to be restored are the encoded tag memory
contents. The remainder of this section describes all the solutions to this generic problem
which are considered in this paper. This includes three related neural approaches available
from the literature and two original solutions that we recently introduced.

The first classical approach, proposed by Hérault and Jutten (see esp. [14],[15]), is based
on the recurrent artificial neural network shown in Fig. 3 in the case of the above-defined
"simplest configuration”. cio and cy; are the adaptive weights of this neural network!.
They are updated according to the following nonlinear unsupervised learning rule:

cij(n +1) = cij(n) — affsi(n)lgls;(n)], (3)

where a is a positive adaptation (or learning) gain, s;(¢) and s;(t) are the (estimated)
centered versions of the network outputs S;(¢) and S;(¢), and f and g are typically odd
functions.

The functions f and g have a major influence on the type of sources that this network
can separate. Their selection is therefore of utmost importance in practical applications
such as the one described in this paper, and may be performed as follows. When arbitrary
odd nonlinear functions f and g are used, the network is only able to separate (some types
of) symmetric sources [6]. As shown in [6], this restriction may be avoided by using either

! As compared to the original papers by Hérault and Jutten, the signs of the weights c12 and c21 have
been changed in Fig. 3, in order to be homogeneous with the subsequent figures of the current paper. The
rule (3) used to update these weights has been modified accordingly.



f=1()or g=(.) (and not both because this would result in using only the second-order
statistics of the signals and it would not guarantee that this algorithm reaches separation
[15]). Especially, two sets of functions are attractive, due to their simplicity and to the
type of sources to which they apply, i.e:

f=() andg={(), (4)

and
f=() andg=()> (5)

The choice between these two sets of functions is to be made depending on the consid-
ered type of sources (to ensure that the network weights converge to values which yield
separated signals at the network outputs): (4) applies to globally sub-Gaussian sources
[5],[11],[17],[18],[21] i.e. to sources such that R < 9, where R is the ratio defined as:

E{zi}E{z3}
(B{z})*(E{«3})*’

and where z(t) are the centered versions of the sources X(t) and E{} stands for mathe-
matical expectation. It may be shown? that (5) applies to globally super-Gaussian sources,
i.e. to sources such that R > 9.

In the system considered in this paper, the sources are expected to be globally sub-
Gaussian, as shown by the theoretical analysis provided in Appendix B. Therefore, the
version of the above-defined network which should be able to separate these signals is the
one corresponding to (4). This is confirmed experimentally in Section 4.

Moreau and Macchi [16],[17],[18] proposed a direct (i.e. non-recurrent) version of the
Hérault-Jutten network (see Fig. 4), adapted with the same rule (3) as the latter network.
They also studied the convergence properties of this network in the ”simplest configura-
tion”. They especially showed that, for this network too, the functions defined in (4) allow
to separate sub-Gaussian signals.

Cichocki et al. [2] also defined neural networks which may be considered as extensions of
the above ones. These extended networks contain additional self-adaptive weights, which
are updated so as to normalize the "scales” of the network outputs. Both the direct and
recurrent versions of this type of neural networks were described, and it was also proposed
to cascade them in a multilayer neural network in order to improve performance. In this
paper, we only consider the direct version of these networks, as it yields the same feature
as the Moreau-Macchi network as compared to the corresponding recurrent structure.
Moreover, we focus ourselves on the single-layer version of this network. We showed
elsewhere [7] that, for this network too, the functions defined in (4) allow to separate
sub-Gaussian signals.

We here also use another type of self-normalized source separation neural networks, that
we recently introduced. Their principles and features are detailed in [9] and summarized
hereafter. This type of networks is based on the same structures as the above-mentioned
classical approaches: they may contain one or several layers, and each layer may have a
recurrent or a direct form. The single-layer versions of these networks are resp. shown
in Fig. 3 and 4 for the case of 2 source signals, and are extended to a higher number
of sources in the same way as for the Hérault-Jutten and Moreau-Macchi networks. The

R= (6)

2This may be shown e.g. by adapting the approach of [21] to the functions defined in (5).



proposed networks differ from the previous ones in the algorithm used to update their
weights, which here reads:

flsim)] _gls;(n)]
VEIP ()] |\ [Blg2(s))]

cij(n+1) =cij(n) —a (7)

The normalizing terms /E[f?(s;)] and {/E[g?(s;)] that we introduced in this rule, as
compared to the classical rule (3), are estimated in practical situations, using first-order
low-pass filtering. When the functions f and g are set to (4), the adaptation rule (7)
becomes:

) sj(n)

VEIsS) /Els3]

When a scale factor A is applied to both mixed signals (and therefore to s;(¢) and s;(t)),
the right-hand term of (8) remains unchanged, thanks to the normalizing terms that we
introduced. The weight trajectories achieved by this rule, and hence its convergence speed
and accuracy, are therefore completely insensitive to the common ”level” of the signals,
which is an attractive feature because this level is unknown in practice. These convergence
speed and accuracy are then controlled by the selected adaptation gain a: a low gain yields
good convergence accuracy at the expense of low convergence speed, whereas a high gain
yields opposite features, so that the selection of the adaptation gain value makes it possible
to achieve the desired convergence speed/accuracy trade-off. On the contrary, the classical
Hérault-Jutten and Moreau-Macchi networks do not yield such a controlled convergence
speed/accuracy trade-off. This is our main motivation for considering the proposed self-
normalized rule here. This rule has several other attractive features, most of which hold
for any functions f and g. A complete description of these properties is beyond the scope
of this paper, but several of them may be found in [9]. Especially, these self-normalized
networks lead to the same type of considerations as above about the functions f and g to
be selected, e.g. among (4) and (5), depending on the type of sources to be processed (see
details in [9]).

(8)

cij(n+1) = ¢i5(n) = —a

4 Experimental results

4.1 Experimental setup

The experimental setup used for checking the effectiveness of the proposed approach is
represented in Figure 5. The antennas and tags each consist of a horizontal disk (with a
diameter of 52 mm for the antennas and 28 mm for the tags). The tags lie on a horizontal
plastic plane, whereas the antennas correspond to horizontal planes resp. situated at
distances h; and ho below the tag plane. As explained above, the tags, antennas and
demodulators used in these experiments are those of the standard commercial system
available when performing this investigation. The emission/reception range of this system
is limited, i.e. each tag should be at a distance lower than 60 mm from a base station to
be detected. In the considered setup, this required us to put the tags close to the antennas
i.e: hy = 35 mm and hy = 25 mm. The distance D between the tags was varied in the
experiments. When the tags are close one to the other (i.e. D similar to the tag diameter),
the standard system fails to identify the tags, so that the source separation unit presented



in this paper is required. This is the configuration considered in the remainder of this
paper.

It should be noted that the dimensions of this setup are relevant for various real-world
applications, such as car immobilization. In this case, the tag is located in a classical
mechanical key and its contents are checked when the car owner starts the engine. The
multi-tag situation then arises when one or several other electronic keys corresponding to
other applications (e.g. to another car) are hooked together with the key of the considered
car, so that the signal emitted by the latter key is disturbed by the signals emitted by the
other keys. In such a case, the standard single-antenna base station is unable to identify
the contents of the key corresponding to that car, so that the multiple-antenna system
introduced in this paper is required. Some applications (such as the ones listed in Section
1) involve dimensions which are significantly higher than those in the setup used in this
paper. For such applications, this setup should be considered as a preliminary down-scaled
version of the target system. The real system will then be derived from this setup by using
longer-range emission/reception units.

4.2 Experimental nature of the sources and mixtures

The first experiments performed with the above-defined setup aimed at checking that the
sources and mixtures encountered in this setup actually have the nature derived from the
theoretical analyses mentioned in the previous sections of this paper.

A first set of experimental measurements showed that, for each of the considered source
signals z (), the ratio E{w?} / (E{ac?})2 is close to 1.3. Therefore, the parameter R defined
in (6) is close to 1.7 for each couple of such sources. This confirms that the actual sources
are strongly globally sub-Gaussian. All the source separation experiments reported in
the next subsections were therefore performed with neural networks operating with the
functions defined in (4).

We then checked the experimental nature of the mixtures. As a first step, we verified
that these mixtures are instantaneous. To this end, we successively used two methods.
We first made a qualitative verification, by placing a single tag in the RF field of our
two-antenna base station, and displaying the outputs of both demodulators on an oscillo-
scope. These two signals were thus observed to be proportional with no time delay, which
corresponds to instantaneous mixtures (see (1)-(2): the two signals corresponding e.g. to
tag 1 are: a11X:(¢) and ag1 X1 (t)). This result was then confirmed by using a quantitative
method: with the same configuration (i.e. one tag in the RF field of our two-antenna base
station), we sampled the outputs of both demodulators at 32 kHz3. We then analyzed the
sequence of cross-correlation coefficients of these two signals, i.e:

_ E{si(t)s2(t +7)} .
VE{sT O}/ E{s3(1)}

The complete cross-correlation sequence thus obtained with signals consisting of 8000 sam-
ples is represented in Figure 6 (a). The periodic nature of this cross-correlation sequence
results from the fact that the considered signals are themselves periodic, since they consist
of a succession of identical frames containing about 2000 samples (see Appendix B). A
zoom of this cross-correlation sequence around lag zero is shown in Figure 6 (b). This

(9)

3This frequency was used because it was the only one available in the considered setup. However, a
lower frequency is presumably acceptable for the signals to be processed here.



shows that the cross-correlation coefficient p(7) reaches its maximum exactly for 7 = 0,
and that this maximum is very close to 1. The two considered signals are therefore pro-
portional with no time delay, which confirms the instantaneous nature of the mixtures.

The second step of our investigation of the experimental nature of the mixtures aimed
at checking the linearity of these mixtures. The main origins of non-linear behaviour in
the considered system are presumably the demodulators, while the superposition of the
signals received by the antennas is expected to be linear. Therefore, we only analyzed the
linearity of the demodulators. To this end, we applied a carrier signal modulated by a sine
wave at the input of a demodulator. We varied the magnitude of the modulating sine wave
and we studied the resulting variations of the magnitude of the output of the demodulator.
These variations are represented in Figure 7. The demodulator was thus shown to have a
linear behaviour for a modulation magnitude up to about 1.5 V. This defined the minimum
tag-antenna distance required for ensuring linear operation, i.e. about 1 cm. That is why
the tags were placed on a plane situated a few centimeters above the antennas in the
considered setup, as stated above.

All the investigations described in this subsection showed that the source signals and
mixtures involved in the considered setup indeed have the properties required by the
considered neural networks. Since these requirements were met, we then proceeded to
experiments focused on the performance of the system from the point of view of the
separation of these source signals.

4.3 Separation from artificial mixtures

The first set of source separation experiments was performed with artificial mixtures of
real sources, successively applied to each one of the five types of neural networks defined
in Section 3, i.e:

the Hérault-Jutten network,

the Moreau-Macchi network,

the single-layer direct Cichocki network,

e the two single-layer versions of the networks that we proposed, resp. based on
a recurrent and a direct structure, and resp. denoted NWUr and NWUd below
(where "NWU” refers to the Normalized Weight Updating algorithm used in these
networks).

The goal of these experiments was twofold. On the one hand, they aimed at checking
that all these networks can actually separate the source signals which occur in the real
considered system, assuming these signals are mixed in a linear instantaneous way. On the
other hand, they allowed us to compare the performance of all these networks in various
situations and to select the best networks.

More precisely, these experiments were performed in the following conditions. In order
to create artificial linear instantaneous mixtures of real source signals, a single tag was
first placed in the RF field of the base station. The resulting output of one of the demod-
ulators of the base station was sampled, thus providing a single source signal X (¢). This
tag was then removed and a second tag was placed in the RF field of the base station. The
same measurement procedure as above was carried out for this second tag, thus providing
another source signal X5(t). Two artificial mixtures E;(t) and E(t) of these two sources



were then computed according to (1)-(2). These mixed signals were then provided to soft-
ware implementations of the considered networks operating with floating-point numbers
on a workstation. Two cases were successively considered for the values of the mixture
coefficients a;;. In both cases, a11 and a2 were set to 1. The complexity of the considered
mixture was then defined by the values of a12 and as1, which were selected as follows:

e The first experiments were performed with a1o = 0.4 and ao; = 0.3. These values
correspond to a medium mixture ratio, and are similar to the actual values in the
experimental setup defined above (as may be derived from the results provided in
Subsection 4.4).

e The other experiments were performed with a19 = a9; = 0.98. This corresponds to
a very high mixture ratio, which may esp. occur in long-range systems when two
tags are very close one to the other as compared to the tag-antenna distances. The
sources are then expected to be quite hard to separate, since the two mixed signals
E;(t) and E;(t) provided to the networks are very similar, as can be seen by applying
these values of the mixture coefficients a;; to (1)-(2).

The performance achieved in each experiment is defined by the two parameters con-
sidered in Section 3, i.e. the convergence speed and accuracy of the selected network.
The convergence speed is measured by the number of samples required for all net-
work weights to have converged to their equilibrium values, which is called the ”con-
vergence time” and denoted T, below*. The convergence accuracy is measured by the
Signal to Noise Ratio Improvement (SN RI) provided by the network. This parameter,
which takes large values when the network restores well separated sources, is defined by:
SNRI = (SNRI, + SNRI,)/2. Each term SNRI; of this expression denotes the Signal
to Noise Ratio Improvement provided by output 7 of the network with respect to source
1, expressed in dB. For the Hérault-Jutten and NWUr networks, when source separation
without a permutation is achieved exactly, S;(¢) becomes equal to a;;X;(t) [8],[15]. For
these networks, SN RI; is therefore defined by:

E{(E;(t) — au‘Xi(t))Q}]
E{(Si(t) —auX;(t)%} |

Similarly, the Moreau-Macchi and NWUd networks yield:

SNRI; = 10logio l (10)

SNRI, = 10lo (a11a22 - a12a21>2 ' E{(E;(t) — ai; X;(t))?}
i g10 a11a22 E{(Sz(t) B (a11a22_al20;21)X¢(t))2} ’

whereas the direct Cichocki network leads to:

1 - B{(Ei(t) - aiXi(t)*}

2 BLrd(t 2
af E{z(t)} E{(Si(t) LX) 1) }
Blatm) T

“These convergence times were estimated from the plots representing the evolution of the network
weights vs time.

SNRIi == 10[0910 (12)
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As explained in Section 3, the overall performance of a given network is defined by the
trade-off between T, and SN RI achieved by this network. This trade-off was determined
by performing experiments for various values of the network adaptation gain a, recording
the values of T, and SN RI obtained in these conditions and plotting the resulting vari-
ations of SNRI vs T,. The results thus obtained are shown in Fig. 8 and 9, resp. for
the two considered sets of mixture coefficients. The part of main interest in these figures
is the one corresponding to the range of values of T, required in practical applications,
which may be defined as follows. As explained above, the data received from a tag by the
base station of a standard single-tag system consists of a series of identical frames, which
contain about 2000 samples. Moreover, when the tag enters the field of the base station
and progressively starts emitting, the base station has to wait until it receives a clean
synchronization sequence (situated at the beginning of a frame) before it can start decod-
ing the received signal. In other words, the base station has an intrinsic latency period of
typically one frame. Therefore, in a multi-tag system, one would like the source separation
network to converge during this latency period, so that it would then provide separated
sources from the first completely clean received frame. Thus, adding such a network to
the original single-tag identification system in order to achieve multi-tag capability would
not slow this system down. A typical target value for T, is therefore about one frame, or
2000 samples. Moreover, various applications can accept somewhat higher response times
(i.e. typically a few frames), as the duration of a single frame is only about 70 ms, which
is quite low as compared to the response times actually required from a user point of view
in many identification applications. Therefore, a selection among the considered networks
is made hereafter by taking into account their performance not only around 7, = 2000
samples, but also in a range typically covering T, = 2000 to 10000 samples (i.e. up to 5
frames).

Fig. 8 and 9 first show that the Moreau-Macchi network should preferably not be used
in the considered application, as it cannot achieve the desired 7, for high mixture ratios.
The Cichocki network is not attractive either because: 1) it cannot reach 7, ~ 2000 samples
(or its SNRI is then rather low) and ii) for any 7 in the considered range, its SNRI is
lower than or equal to that of the remaining three networks, i.e. Hérault-Jutten, NWUr
and NWUd. Among the latter three networks, the preferred ones depend as follows on
the main parameter of interest in the considered application. All three networks can reach
T. ~ 2000 samples (with an acceptable SN RI), but this is almost the limit achievable by
the NWUd network. Therefore, if minimizing 7T, is of utmost importance in the considered
application, the HJ and NWUr networks should be preferred. On the contrary, if the
emphasis is laid on the performance of the network for high mixture ratios, while the
value of T, (within the considered range) is not critical, NWUd should be preferred.

Up to this point, we only considered the performance (in terms of 7, and SNRI) of
the considered networks. But, as explained in Section 3, another feature of these networks
should also be taken into account, i.e. their ability to operate in a self-normalized (or
”automated”) way, i.e. without depending on signal levels. Then, in addition to the
Moreau-Macchi and Cichocki networks, the Hérault-Jutten network is also rejected. In
other words, the preferred networks in the considered application are NWUr and NWUd
(and the eventual selection between these two networks depends whether the emphasis is
laid on a low T, or on high mixture ratios, as explained above). Therefore, only these
two networks are considered hereafter. Moreover, their adaptation gain a is set to the
value which yields T, ~ 2000 samples in the experiments with similar mixture coefficients
reported above, i.e: a = 102 for both networks.
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4.4 Separation from real mixtures

The second set of source separation experiments was performed with the actual system.
To this end, two tags were placed simultaneously in the RF field of the base station,
and the resulting mixed output signals E;(t) and F(t) of the two demodulators were
measured. These two real mixed signals were then used as the inputs of the software
NWUr or NWUd network. Figure 10 shows the evolution of the weights thus obtained
for the NWUr network, when its learning gain is set to a = 1073, This gain value yields
T, ~ 2000 samples, which is completely coherent with the results obtained with artificial
mixtures in Subsection 4.3. The experiments performed with the NWUd network lead to
the same results.

Figure 10 also shows that the network weights converge towards different values. This
results from the fact that the values of the network weights for which source separation
is achieved depend on the values of the mixture coefficients [8], which are here different
due to the physical asymmetry of the setup (see Fig. 5). As these mixture coefficients are
unknown here, the theoretical network weight values corresponding to source separation
and the experimental SNRI (10)-(11) cannot be computed. Another approach should
therefore be used to check if the networks succeed in restoring the source signals. The
alternative method used here consists in providing the network outputs to the decoders of
the system. As explained above, these decoders wait for the first synchronization sequence
in the network outputs, and then provide the restored tag data. Comparing these data
with the original data stored in the tags® here shows that they are exactly the same. In
other words: 1) the NWUr and NWUd neural networks do not slow down the system,
because they converge in a period of about one frame, during which the decoders have
to wait for a synchronization sequence anyway, and 2) after convergence they provide a
perfect restoration of the sources from an application point of view, in the sense that they
restore the bitstreams of the tags without any errors.

4.5 Real-time implementation

Based on the success of the experiments reported above, we developed a real-time imple-
mentation of some of the above approaches, using a DSP board which operates only with
fixed-point numbers. Extensive tests showed that the resulting real-time system converges
at almost the same speed as the floating-point version and that the tag data are decoded
exactly after convergence. These tests also demonstrated the long-term stability of the
considered networks. Moreover, they allowed us to check the ability of these networks to
track varying mixtures.

5 Discussion and conclusions

The investigations presented in this paper demonstrate that blind source separation neural
networks make it possible to achieve multi-tag capability with limited means in identifica-
tion systems. More precisely, among all the source separation methods that we compared,
the new approaches that we proposed were shown to be the most attractive ones, thanks
to their simplicity, good performance and self-normalized (i.e. ”automated”) operation.

50f course, the data stored in the tags are only known in the tests considered here, whereas they are
unknown during the real operation of the system, when the identification of these data is to be performed.
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The possible extensions of this investigation deserve the following comments. In the
configuration considered above, the proposed approaches are particularly attractive, as
they meet the requirements set by the application with very low computational complexity,
whereas most other approaches are likely to yield more complex implementations. Some
of the approaches available in the literature might become of interest in two other types
of configurations however, i.e:

e in future applications of identification systems which may require lower response
times and should then include source separation units which can converge more
quickly,

e and in applications involving more than two tags. Extended versions of the ap-
proaches considered in this paper may be defined easily for the case when more
than two sources are to be separated. However, their convergence properties are
less clearly defined at this stage. An alternative may then consist in using some ap-
proaches of the literature which have been shown to have guaranteed convergence.
This esp. includes the approach based on kurtosis introduced in [3], which was
subsequently extended in various ways such as in [13].

It should be remembered anyway that various identification systems have a limited
emission/reception range. In such systems, only the tags which are quite close to the
base station yield non-negligible signals. This inherently limits the number of tags to
be considered to a small number, possibly down to two e.g. if the physical structure
of the system restricts the number of tags that may be close to the base station. A
large range of identification applications are therefore covered by the configuration
and solution considered in this paper.

Another possible extension of this investigation concerns the use of source separation for
reducing background RF noise, thus allowing i) higher distances between the base station
and tags, or ii) lower power consumption. Also, the available a priori knowledge about
the sources was only partly used in the approaches considered up to now. This allowed us
to develop a versatile approach, which may be extended to other (identification) systems.
However, a fine-tuned approach dedicated to the specific system considered in this paper
may also be developed, by using a source separation unit which would take more advantage
of this knowledge about the sources to be processed.
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A Theoretical nature of the mixtures

This appendix demonstrates that, in an ideal model of the system described in Section 2,
the mixed signals to be processed by the source separation unit are linear instantaneous
mixtures of the components corresponding to the two tags. As shown below, this nature
of the mixtures results from the modulation/demodulation scheme used in this system,
i.e. a low-frequency amplitude modulation.
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To prove this result, let us consider the successive steps of the propagation and pro-
cessing of the considered signals. Initially, a carrier signal V sinwt is emitted by the base
station. It is received by each tag j with a delay 7; and a multiplying coefficient «;
(related to the attenuation of this signal which occurs during propagation). The signal
received by tag j at time ¢ is thus: o;Vsin[w(t — 7;)]. Assuming that this tag performs an
ideal amplitude modulation of this carrier by its encoded tag data signal z;(t), the signal
emitted by tag j at time ¢ is: z;(t)a;Vsinjw(t — 75)).

Now consider one of the reception antennas of the base station (the same principle
applies to each of these antennas). It receives each emitted tag signal with a delay T]’~ and
a multiplying coefficient a;-. Each tag signal received by this antenna at time ¢ is thus:
ajzj(t — 7;)Vsin[w(t — 7; — 7;)], with: a; = a;a’. This antenna ideally performs a linear
superposition of the contributions received from the two tags. The overall signal received
by this antenna at time ¢ is thus:

a1z (t — 11)Vsin[w(t — 71 — 71)] + agze(t — 5)Vsin[w(t — 72 — 75)]- (13)
This overall received signal may be rewritten as:

sinwtfa1Vry(t — 7] )cospr + asVza(t — T5)cosgs]
+coswt[ar V1 (t — 1)sing1 + a2Via(t — 75)sings] (14)

with: ¢; = —w(7j + 7j) = —27fLj/c, where f is the carrier frequency, L; is the overall
propagation distance (i.e. from the emitting antenna to tag j and then back to the
reception antenna) and with: 7; = I; /c, where I, is the propagation distance from the tag
to the reception antenna only.

In the considered system, these parameters have the following typical numerical values:
f =125 kHz and Lj < 10 cm, so that |¢;| < 2.6 x 107 < 1; in addition, I; <5 cm,
so that 7']'- < 1.7%1071% <« T ~ 10735, where T is the period of the modulating signal.
Due to these values, the overall signal received by an antenna may be approximated by:
sinwt[a1Vz1(t) + aaVza(t)]. The resulting output of an ideal amplitude demodulator is
therefore: a1Vx1(t)+asVxo(t). This signal, which is provided to the source separation unit
is thus indeed a linear instantaneous mixture (as defined in Section 3) of the modulating
signals z1(t) and z2(t) of the two tags. It should be noted that this result also applies to
the case when each tag signal propagates through several paths to the base station: each
path then yields an individual contribution; however, when neglecting all propagation
delays as explained above, all these contributions are merged into a single overall signal
which follows the above model.

B Theoretical nature of the sources

In this appendix, we present a model of the sources encountered in the system under in-
vestigation, which are to be restored by the source separation unit of this system. Each
such source consists of a succession of identical frames. Each frame contains a synchro-
nization sequence followed by data (i.e. the tag memory contents). Moreover, these data
are encoded by using a standard coded diphase procedure, which is defined hereafter.

As a first step, let us consider only the ideal operation of the system for encoded data
(i.e. excluding synchronization sequences). Ideally, each data bit equal to 0 is encoded as
a voltage equal to a value +V during half a cycle, followed by the opposite voltage —V
during the other half of the cycle. The bits equal to 1 are encoded by alternating values,
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i.e. a voltage equal to +V during a complete cycle for one bit equal to 1, and a voltage
equal to —V during a complete cycle for the next bit equal to 1. This ideal signal may be
represented as a random stationary source, taking the values -1 and 1 (in units defined by
the voltage +V') with a probability 1/2, whatever the values of the bits that it encodes.
As a result, the couple of sources to be separated may be shown to be such that R = 1,
where R is defined in (6). It is therefore such that R is much lower than the threshold
value R =9, i.e. it is strongly globally sub-Gaussian (see Section 3).

In the real identification system, the source signals are significantly distorted and are
therefore not binary valued. In addition, they contain synchronization sequences which
are not symmetric. The corresponding ratio R may therefore be somewhat different from
its theoretical value R = 1, but is expected to remain significantly lower than the threshold
value R = 9. In other words, the real sources are expected to be strongly globally sub-
Gaussian. This is confirmed experimentally in Section 4.

References

[1] J.-F. Cardoso, Blind signal separation: statistical principles, Proceedings of the IEEE
86 (1998) 2009-2025.

[2] A. Cichocki, W. Kasprzak, S.I. Amari, Multi-layer neural networks with a local adap-
tive learning rule for blind separation of source signals, in: Proc. NOLTA ’95, In-
ternational Symposium on Nonlinear Theory and Its Applications (Las Vegas 1995)
61-65.

[3] N. Delfosse and P. Loubaton, Adaptive blind separation of independent sources: a
deflation approach, Signal Processing 45 (1995) 59-84.

[4] P.R.M. Denne and C.D. Hook, Identification systems, UK patent no. 2 157 132 A,
published 16 Oct. 1985.

[5] Y. Deville, A unified stability analysis of the Hérault-Jutten source separation neural
network, Signal Processing 51 (1996) 229-233.

[6] Y. Deville, Application of the Hérault-Jutten source separation neural network to
multi-tag radio-frequency identification systems, in: Proc. Ecole des Techniques
Avancées en Signal Image Parole (Grenoble, 1996) 265-272.

[7] Y. Deville, Analysis of the convergence properties of self-normalized source separation
neural networks, IEEE Transactions on Signal Processing 47 (1999) 1272-1287.

[8] Y. Deville and N. Charkani, Analysis of the stability of time-domain source separation
algorithms for convolutively mixed signals, in: Proc. ICASSP 97, IEEE International
Conference on Acoustics, Speech, and Signal Processing (IEEE Press, Munich, 1997)
1835-1838.

[9] Y. Deville and N. Charkani, Convergence of source separation neural networks op-
erating with self-normalized weight updating terms, in: Proc. ICA’99, International
Workshop on Independent Component Analysis and Blind Signal Separation (Aussois,
France, 1999) 227-232.

14



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Drews, W. Tobergte, V. Timm, K. Axer, Verfahren zum Steuern des Zugriffs auf
einen Speicher sowie Anordnung zur Durchfuehrung des Verfahrens, German patent
no. 4205567.9, European patent no. 0558132, published 26 Aug. 1993.

J.-C. Fort, Stabilité de I'algorithme de séparation de sources de Jutten et Hérault,
Traitement du Signal 8 (1991) 35-42.

C.D. Hook, C.S. Hall, Transponder system, European patent no. 0 527 172 B1, pub-
lished 5 Apr. 1995.

A. Hyvéarinen and E. Oja, A fast fixed-point algorithm for independent component
analysis, Neural Computation 9 (1997) 1483-1492.

C. Jutten and J. Hérault, Une solution neuromimétique au probléme de séparation
de sources. Traitement du Signal 5 (1988) 389-403.

C. Jutten and J. Hérault, Blind separation of sources, Part I: An adaptive algorithm
based on neuromimetic architecture, Signal Processing 24 (1991) 1-10.

O. Macchi, E. Moreau, Self-adaptive source separation, Part I: convergence analysis of
a direct linear network controled by the Hérault-Jutten algorithm IEEE Transactions
on Signal Processing 45 (1997) 918-926.

E. Moreau, Apprentissage et adaptativité. Séparation auto-adaptative de sources
indépendantes, Ph.D. Thesis, Université Paris XI (Orsay) 1995.

E. Moreau, O. Macchi, Self-adaptive source separation, Part II: comparison of the
direct, feedback and mixed linear network, IEEE Transactions on Signal Processing
46 (1998) 39-50.

Philips Semiconductors data sheet, OM 4282 RF-Identification, Hardware description
& tutorial, ID-No: 8962D26CEA20068F.

Philips Semiconductors data sheet, OM 4282 RF-Identification, Software command
reference & RS 232 transmission protocol, ID-No: 7F3C1206084C995E.

E. Sorouchyari, Blind separation of sources, Part I1I: Stability analysis, Signal Pro-
cessing 24 (1991) 21-29.

W. Tobergte, Datenaustauschanordnung, German patent no. 4323530.1, European
patent no. 0634729, published 19 Jan. 1995.

Biographies

Yannick Deville was born in Lyon, France, in 1964. He graduated from the Ecole
Nationale Supérieure des Télécommunications de Bretagne (Brest, France) in 1986. He
received the D.E.A and Ph.D degrees, both in Microelectronics, from the University of
Grenoble (France), in 1986 and 1989 respectively. From 1986 to 1997, he was with the
Laboratoires d’Electronique Philips at Limeil (France), where he was a Senior Research
Scientist. His investigations during this period concerned various fields, including GaAs
integrated microwave RC active filters, VLSI cache memory replacement algorithms and
architectures, neural network algorithms and applications, and nonlinear systems. Since

15



1997, he has been a Professor at the University of Toulouse (France). His current major
research interests include signal processing, neural networks and especially blind source
separation methods and their acoustic and electromagnetic applications.

Jacques Damour has been with the Laboratoires d’Electronique Philips since 1968.
Until the end of the ’80s, he was involved in the characterization of vacuum tubes designed
in these labs. Since the beginning of the '90s, his interests have mainly concerned hardware
and software aspects of microcontroller and DSP-based systems, and their use in source
separation applications.

Nabil Charkani was born on October 1970. He received the Engineer diploma and
DEA degree (both with highest honours) from the Ecole Nationale d’Electronique et de
Radioélectricité de Grenoble (INPG - France) in 1993. In 1996, he obtained a Ph.D
degree (with highest honours) from INPG completed at Laboratoires d’Electronique of
Philips (LEP-Paris) in the area of Source separation and Speech processing. In 1997, he
joined Philips Consumer Communications (France), as an R&D engineer in the Advanced
Development Department. From early 1998, he was the technical leader of the Digital
Signal Processing team and the ’Audio Improvement’ project manager. During this period,
he initiated and developed numerous projects on speech quality improvement in mobile
telephony. Since 2000, he is the manager of the ’Advanced receivers for 3G/3G+’ project
where he develops new solutions for intra and inter-cell interference cancellation in UMTS
and co-ordinates PCC actions in the advanced receivers field. Mr. Charkani is co-author
of over 15 papers and inventor of 7 patents for PCC (3 patents are implemented in all
Philips mobile phones). He received the INPG Best PhD Awards’ in Signal Processing in
1997.

16



tag base station

gl demodulator M decoder

content of tag memory

Figure 1: Single-tag RF identification system.

tag 1 base station

3
contents of ta;
demodulator > ) memory 1 ’

source separation

contents of ta
control g demodulator 4)} memory 2 g

control

tag 2

I

Figure 2: Multi-tag RF identification system.

17




E1 s @ 81)
Ci12
C 21

% 52)

Figure 3: Hérault-Jutten recurrent neural network.

Ei C+

Coi
Ci2

E2 C+

Figure 4: Moreau-Macchi direct neural network.

D

. tags

antenna 2

antenna 1 7

T e

Figure 5: Vertical section of the experimental setup.

18



0.6 b

0.4r

-0.2r

cross-correlation coefficient
cross—correlation coefficient

-0.6 7 —_0.8} 4

_0.8 . . . 1 . . .
-1 -0.5 (0] 0.5 1 -20 -10 (o] 10 20

Figure 6: Sequence of cross-correlation coefficients. (a): complete sequence, (b): zoom
around lag zero.

19



T T T T T T
600 |- -
500 | -
z
al 400 | -
s
E
E
z
S 300 F i
=
&
=
é
200 | -
100 F -
1 1 1 1 1 1 1
1 12 14 1.6 1.8 2 22 24 26

Input (Magnitude in V)

Figure 7: Magnitude of demodulator output vs. magnitude of signal used to modulate
input carrier.

20



25

SNRI (dB)

10

O L L L T | L L L TR | L L L TR | L L L L
10 10 10° 10° 10°
Tc (number of samples)
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Figure 9: SNRI vs convergence time T,, when a12 = 0.98 and as; = 0.98. Each plot cor-
responds to a neural network: Hérault-Jutten: -.-. Moreau-Macchi: ....  Cichocki: * *
NWUr: — NWUd: -- (for the Moreau-Macchi and Cichocki networks, lower values of
T, than those provided in this figure cannot be reached, as T, and SN RI then become very
sensitive to an increase of the adaptation gain a, and these networks eventually diverge
when a is further increased).
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Figures captions:

Fig. 1: Single-tag RF identification system.

Fig. 2: Multi-tag RF identification system.

Fig. 3: Hérault-Jutten recurrent neural network.

Fig. 41 Moreau-Macchi direct neural network.

Fig. 5: Vertical section of the experimental setup.

Fig. 6: Sequence of cross-correlation coefficients. (a): complete sequence, (b): zoom
around lag zero.

Fig. 7: Magnitude of demodulator output vs. magnitude of signal used to modulate
input carrier.

Fig. 8: SNRI vs convergence time T,, when a1 = 0.4 and a9; = 0.3. Each plot corre-

sponds to a neural network: Hérault-Jutten: -.-.  Moreau-Macchi: ....  Cichocki: * *
NWUr: — NWUd: - -

Fig. 9: SNRI vs convergence time T,., when a1o = 0.98 and as; = 0.98. Each plot cor-
responds to a neural network: Hérault-Jutten: -.-. Moreau-Macchi: ....  Cichocki: * *
NWUr: — NWUd: -- (for the Moreau-Macchi and Cichocki networks, lower values of

T, than those provided in this figure cannot be reached, as T, and SN RI then become very
sensitive to an increase of the adaptation gain a, and these networks eventually diverge
when a is further increased).

Fig. 10: Evolution of the weights of the NWUr network for real mixtures.
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