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ABSTRACT

In this paper, we first briefly recall the principles of the
”TIme-Frequency Ratio Of Mixtures” (TIFROM) approach
that we recently proposed. We then show that, unlike Inde-
pendent Component Analysis (ICA) methods, our approach
can separate dependent signals, provided there exist some
areas in the time-frequency plane where only one source oc-
curs. We achieve this attractive property because, whereas
ICA methods aim at creating independent output signals,
we use another concept, i.e. we directly estimate the mixing
matrix by using the time-frequency information contained
in the observations. Detailed results concerning mixtures
of voice and music signals are presented and show that this
approach yields very good performance for signals which
cannot be separated with traditional ICA methods.

1. INTRODUCTION

Blind source separation (BSS) consists in estimating a set
of N unknown sources fromP observations resulting from
the mixture of these sources through unknown propagation
channels.

Denoting the mixing operator byA, the relationship be-
tween the sources and observations readsx = As, where
the vectors = [s1, s2, . . . , sN ]T contains the unknown
sources whilex = [x1, x2, . . . , xP ]T represents the ob-
servations. We here only consider linear instantaneous mix-
tures, so that the operatorA corresponds to a scalar matrix.

Traditional Independent Component Analysis (ICA) ap-
proaches basically aim at separating the sources by com-
bining the observations so that the output signals are inde-
pendent [1] which means that the fundamental assumption
of ICA techniques is that the sources must be independent.
Moreover, most of these approaches can only separate sta-
tionary non-Gaussian signals. Because of these limitations,
poor performance is often obtained when dealing with real
sources, like audio signals, which do not match those re-
quirements. Some authors [2]-[6] have proposed different
approaches which take advantage of the non-stationarity of
such sources but they still require their independence or un-
correlation.

Using a different concept, we recently introduced the
TIFROM approach [7], [8], which is based on a Time-Fre-
quency (TF) analysis of the observed mixed signals. We
showed that this method does not require the same assump-
tions as traditional BSS approaches. Especially, when re-
quired conditions are satisfied, this new method applies to
underdetermined mixtures (i.e.N > P ) for which it achi-
eves a partial BSS.

This paper aims at showing that this TIFROM approach
is in addition able to separate dependent signals, which is
a very attractive advantage over classical BSS methods. In
Section 2, we recall the basics of the TIFROM approach. In
Section 3 we show that this method can be applied to depen-
dent signals. We then provide several experimental results
in Section 4 and draw various conclusions in Section 5. For
simplicity we consider throughout this paper the basic case
of two sources and two observations. However, we empha-
size the fact that this approach is not restricted to this case,
as shown in [8] and in a future paper (forN sources andP
observations).

2. PRINCIPLE OF THE ”TIFROM” APPROACH

2.1. Model

We here consider the following linear instantaneous mix-
ture1 of two real-valued sources:{

x1(n) = a11s1(n) + a12s2(n)
x2(n) = a21s1(n) + a22s2(n) (1)

where the coefficientsaij of the mixing matrixA are real,
constant and different from zero.
The separation of the sourcessi can classically only be per-
formed up to a scale factor and a permutation [1] and BSS
may thus be seen as a method for finding an estimate of
Ã−1 = ΛPA−1, whereΛ andP are resp. arbitrary diago-
nal and permutation matrices. Inside this class of matrices,
we here focus on:

Ã−1 =
[

1 1
1/c1 1/c2

]−1

(2)

1The mixtures are assumed to be non-degenerate throughout this paper.
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where
c1 = a11

a21
, c2 = a12

a22
, (3)

which yields :

y(n) = Ã−1x(n) = [a11s1(n), a12s2(n)]T . (4)

2.2. Time-frequency approach

The TIFROM approach is based on a simple and efficient
way to automatically determine the above coefficientsci us-
ing theTF information included in the observations.

To this end we compute theshort-time Fourier trans-
forms (STFT) [9]-[11] of the observations, denotedXi(n, ω),
which represent their contributions in the short time and fre-
quency windows resp. centered onn andω.
We require the following assumptions :

Assumption 1 The mixing matrixA is such thataij 6= 0,
∀ i, j and the power of each source is non negligible at least
at some timesn.

Assumption 2 For each sourcesi, there exist some adja-
centTF windows(nj , ωk) where onlysi occurs, i.e. where2:
Sl(nj , ωk) ¿ Si(nj , ωk), ∀ l 6= i.

The TIFROM method is then based on the complex ra-
tio:

α(nj , ωk) =
X1(nj , ωk)
X2(nj , ωk)

, (5)

which is computed for eachTF window. The linearity of
theSTFToperator leads to:

α(nj , ωk) =
a11S1(nj , ωk) + a12S2(nj , ωk)
a21S1(nj , ωk) + a22S2(nj , ωk)

. (6)

Therefore, if only one source occurs in theTF window (nj ,
ωk), thenα(nj , ωk) is equal to the corresponding coeffi-
cient value, amongc1 andc2 defined in (3). Note that in
practical situations there always exists a small amount of
noise in the observations so thatX2(nj , ωk) is always dif-
ferent from zero andα(nj , ωk) is always defined, for each
j andk. We add the following assumption:

Assumption 3 When several sources occur in a given set of
adjacentTF windows they should vary so thatα(n, ω) does
not take the same value in all these windows.

It may be shown easily that if only sourcesi(n) is present in
several time-adjacent windows3 (nj , ωk), thenα(nj , ωk) is
constant and equal toci over these successive windows. On
the contrary, it takes different values over these windows if
both sources are present and if Assumption 3 is met.

2This situation is e.g. common for speech or music signals: the for-
mants of speakers or instruments are located inTF areas which do not
overlap completely.

3The same concept may be applied to frequency-adjacent windows.

To exploit this property, we proposed to analyze, for
each frequencyωk, the sample variance of the complex ra-
tio α(nj , ωk) on seriesΓq of M short half-overlapping time
windows corresponding to adjacentnj : var[α](Γq, ωk) =
1
M

∑M
j=1 |α(nj , ωk)−α(Γq, ωk)|2, where the sample mean

is defined as:α(Γq, ωk) = 1
M

∑M
j=1 α(nj , ωk).

If e.g. S2(nj , ωk) = 0 for theseM windows, then
(6) shows thatα(nj , ωk) is constant over them, so that its
variancevar[α](Γq, ωk) is equal to zero. Conversely, under
Assumption 3, if bothS1(nj , ωk) andS2(nj , ωk) are differ-
ent from zero thenvar[α](Γq, ωk) is significantly different
from zero.

So, by searching for the lowest value ofvar[α](Γq, ωk)
vs all the available series of windows(Γq, ωk), we directly
find aTF domain(Γq, ωk) with only one source. The cor-
responding valueci is then given byα(Γq, ωk). We find the
second coefficient valueci by searching for the next lowest
value ofvar[α](Γq, ωk) vs (Γq, ωk) associated to a signifi-
cantly different value ofα(Γq, ωk) using a threshold set to
the minimum difference that we request between the two
values in (3). We thus obtain estimates of the two coeffi-
cient values defined in (3). The separated signals are then
derived from these values by using i) either the original ver-
sion of the TIFROM approach based on individual source
extractions that we proposed in [7], [8] or ii) its new ver-
sion that we introduced in this paper, which is based on the
matrix (2). If the lowest value of the ratio variance is ob-
tained whens2 is zero this yields (3) and (4). Otherwise a
permutation occurs in (3) and (4).

3. DEPENDENT SIGNALS

As stated above, ICA methods are statistical approaches,
which require the sources to be statistically independent and
which consist in forcing the output signals to become inde-
pendent, so that they get equal to the sources. The TIFROM
approach is totally different, as it uses sample statistics of a
single signal realization to determine some domains in the
TF plane where a single source occurs. It therefore only re-
quires such domains to exist and applies to (realizations of)
various dependent sources which meet this condition.

To illustrate this capability, consider for example the
two source signalss1(n) = u(n) + v(n) and s2(n) =
v(n) + w(n), whereu(n), v(n) andw(n) are three station-
ary independent zero-mean signals and where:
a)v(n) only has components in the frequency band[f1, f2],
andu(n) and/orw(n) also have components at the frequen-
cies wherev(n) occurs,
b) u(n) only has components in the frequency band[0, f2],
c) w(n) only has components abovef1.
The cross-correlation ofs1(n) ands2(n) is non-zero, due
to their common componentv(n). These two source sig-
nals are therefore dependent. However, it may be checked



easily that they match all the assumptions required in our
method. We can then separate (realizations of) these sig-
nals with the TIFROM approach, despite their dependence,
thanks to the differences in theirTF representations.
A similar situation occurs with musical instruments, where
each one has his own time properties (attack, decay, sustain,
release) and frequency components which make it sound
differently from another one. Now two different instruments
playing in the same tone have common frequencies which
make their signals correlated and thus dependent. More-
over, thanks to their own properties, they usually do not vary
in a coherent way over time-adjacentTF windows and as-
sumption (3) of the TIFROM approach therefore holds to
them. This is an important case as traditional BSS meth-
ods, like kurtosis maximization cannot separate this kind of
signals.

4. EXPERIMENTAL RESULTS

To illustrate our ability to separate dependent signals, we
consider the case of musical instruments. Sources1 is a gui-
tar playing aD chord, which consists inD, F#, A. Source
s2 is aD from a singer. These sources are dependent as we
can see on Fig. 1 which shows the absolute value of zero-
lag cross-correlation coefficients|E[s1s2]|/

√
E[s2

1]E[s2
2],

computed for each considered time window. We recorded
these two sources using CD quality (16 bits, 44,1 kHz) and
then mixed them using the matrix :

[
a11 a12

a21 a22

]
=

[
1 0.9
0.8 1

]
(7)

giving for s1 resp. SNR’s of1.6 dB and−1.3 dB on x1

andx2. Spectrograms of the sources (Fig. 2 and 3), with
NSTFT = 256 samples per STFT window, clearly show
that there exist some differences in the TF plane between
these signals. As an example, we analyzed the variance of
α(nj , ωk) for M = 8 on 1.13 s of signal (50000 samples),
which took approximately 1 s with matlab code on a 1GHz
PIII, and plotted in Fig. 4 and 5 the results−log10(var[α]
(Γq, ωk)) and 1

var[α](Γq,ωk) . One can easily see that there
exist some areas with low variance (bright areas in Fig. 4
and peaks in Fig. 5), corresponding to windows where only
one source occurs. These settings give an output SNR of
34.2 dB for s1 and71.3 dB for s2, which are quite good
values for such dependent signals. Note that we have been
unable to separate these sources with the classical kurtosis
maximization method, due to the dependence of the sources.
We give some additional SNR results in Table 1 for different
STFT and variance analysis window sizes. As we can see,
the separation is always achieved with good SNR’s. Exper-
imental results show that the selected areas should have a
variance below10−3 to provide good results for ”normal-
ized” signals.

Table 1: Output SNR vsNSTFT and M for each output.

NSTFT

M 64 128 256

4
s1

s2

25.1
50.4

44.2
82.7

34.0
67.8

6 s1

s2

25.4
34.0

26.0
57.0

28.0
54.1

8 s1

s2

30.4
34.6

34.2
49.0

34.2
71.3

10
s1

s2

24.9
36.7

29.7
50.7

27.8
61.6

12
s1

s2

38.0
42.0

31.0
67.3

29.8
52.7

5. CONCLUSION

In this paper, we recalled the basics of the TIFROM ap-
proach that we recently introduced in [7], [8]. We then
proved and illustrated its ability to separate dependent sig-
nals. Unlike classical ICA methods which separate the sour-
ces by combining the observations so that the output signals
are independent our approach relies on the assumption that
a source is ”visible”, i.e. that it occurs alone (as opposed to
the other sources) in at least one local area in theTF plane.
Then it automatically determines such an area and derives
coefficients which e.g. allow one to directly build an inverse
mixing matrix in the case we considered here. This makes
it possible to separate classes of signals for which classi-
cal methods fail, e.g. dependent signals, provided there ex-
ist some areas in the time frequency plane where only one
source occurs. As an example we recorded audio signals
from a guitar and a singer playing in the same tone, giving
two dependent signals. We then showed that we can suc-
cessfully separate them using the TIFROM approach. For
the sake of clarity we presented the simple case of2 sources
and2 observations but this approach is easily extended for
Nsources andP observations, giving source separation if
N ≤ P or partial source separation otherwise, as will be
shown in a future paper.
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Figure 1: Absolute value of cross-correlation coefficient
|E[s1s2]|/

√
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2] for each 256-sample window.
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Figure 2: Spectrogram of guitars1.
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Figure 3: Spectrogram of voices2.
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Figure 4: Time-Frequency representation of
−log10(var[α](Γq, ωk)). Axes units : Time window
indices, corresponding to [0 s, 1.13 s]. Frequency window
indices, corresponding to [0 Hz, 22.05 kHz].
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Axes units : Time window indices, corresponding to [0 s,
1.13 s]. Frequency window indices, corresponding to [0 Hz,
22.05 kHz].
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