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SUMMARY  Electronic systems are progressively replacing
mechanical devices or human operation for identifying people or
objects in everyday-life applications. Especially, the contactless
identification systems available today have several advantages,
but they cannot handle easily several simultaneously present
items. This paper describes a solution to this problem, based
on blind source separation techniques. The effectiveness of this
approach is experimentally demonstrated, especially by using a
real-time DSP-based implementation of the proposed system.
key words: blind source separation, Hérault-Jutten algorithm,
higher-order statistics, identification systems, neural networks.

1. Introduction

Many real-world situations require to identify people,
animals or objects. Typical examples are owner iden-
tification before starting car engines, access control for
restricted areas, cattle identification or control of the
flow of manufactured products in factories. In the past,
the approaches used to perform such identifications were
mainly based on mechanical devices (such as keys for
starting car engines), or human operation (e.g. visual
inspection of people, cattle or products in the above
examples). These approaches are progressively being
replaced by various types of electronic systems, and
especially by systems based on radio-frequency (RF)
communication. Such an RF system [1]-[4] is shown in
Fig. 1. Tt consists of a base station inductively coupled
to portable identifiers (or ”tags”) which contain an LC
resonator, a controller and non-volatile programmable
memory (EEPROM). The memory content is specific to
each tag and allows to identify the tag-bearer (person
or object). The basic mode of operation of this sys-
tem may be represented as follows. The base station
emits an RF sine wave, which is received by a single
tag. The tag is thus powered and answers by emitting
a sine wave at the same frequency, modulated by its en-
coded memory content. The base station receives this
signal, demodulates it, and decodes it so as to determ-
ine the memory content (details of the coding scheme
are presented in Section 3). Tt then checks these data
and controls the actuators of the system accordingly.
This type of system is attractive because it yields
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Fig. 1  Single-tag RF identification system.

contactless operation between the base station and tags
(thus avoiding constraints on the positions of the tag-
bearers), and because it operates with battery-less tags.
However, when two tags are placed in the RF field of
the base station, both tags answer this station. The
demodulated signal determined by this station is then
a mixture of two components, and cannot be decoded
by this basic station. This system is therefore unable
to identify two simultaneously present tag-bearers. A
few attempts to solve this type of problem have been
presented in the literature. Some consist in making the
base station and tags communicate according to a pre-
defined protocol, so that each tag successively provides
its content [5]. This approach is not attractive because
it entails slow operation and yields a complex system,
since significant circuitry must be added to the base
station and tags in order to implement the communica-
tion protocol. Another approach consists in using tags
which operate at different frequencies [6]. This again
yields complex circuitry and requires a large frequency
band to be allocated to the system, which is not always
possible. The approach presented in this paper aims
at avoiding all these drawbacks. This is achieved by
resorting to blind source separation techniques, which
form an emerging area of signal processing.

The remainder of this paper is organized as fol-
lows. The overall structure of the proposed system is
presented in Section 2. Tts source separation module is
depicted in Section 3. The experimental performance of
this system is reported in Section 4. Finally, conclusions
and perspectives are presented in Section 5.
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2. Proposed system

The system proposed in this paper (Fig. 2) for sim-
ultaneously handling two tag signals is an extension of
the standard system described above. It relies on a
base station containing two reception antennas and two
demodulators, which yield two mixed signals. These
mixed signals are processed by a source separation
module, which extracts the two components correspond-
ing to the two tags. Then, by decoding these separated
signals, the memory contents of the two tags are ob-
tained independently.

More precisely, the modulation/demodulation
scheme used in this system is such that the mixed signals
are restricted to their simplest possible form, i.e. they
are linear instantaneous mixtures of the components
corresponding to the two tags. It is now well known (see
e.g. [7]) that the separation of unknown types of source
signals based on linear instantaneous mixtures of these
signals cannot be performed by using only the second-
order statistics of the available signals. Therefore, one
has to resort to the higher-order statistics of these sig-
nals, which results in using nonlinear algorithms for es-
timating the mixture parameters. Various source sep-
aration algorithms based on these principles have been
reported in the literature. A survey of the earliest ap-
proaches may be found in [8]. Since then, many other
approaches have been proposed, including e.g. [9]-[19].
Among all these approaches, the one which has been se-
lected in this investigation is the Hérault-Jutten neural
network, which is depicted in Section 3. This choice is
motivated by several considerations. First, the conver-
gence properties of this network are now well defined
[20]-[23], and they are such that this network does ap-
ply to the type of sources considered in this applica-
tion, as will be shown in the subsequent sections of this
paper. In addition, this network is based on an ad-
aptative algorithm, which makes it able to track easily
evolving mixtures which occur in our application when
tag-bearers are moving. Finally, this network uses very
simple computations, which makes it attractive for the
final real-time implementation targetted in this invest-
igation.

It should be noted that this system meets the re-
quirements defined in Section 1: 1) it yields fast op-
eration by allowing two tags to communicate simultan-
eously with the base station; 2) all the tags have the
same simple structure as in the standard single-tag sys-
tem, and the added complexity only appears in the base
station, i.e. in a single location of the system, so that
its cost is limited; 3) the system uses a single carrier
frequency.

3. Principles and suitability of the Hérault-
Jutten neural network

In the simplest source separation problem (which cor-
responds to the application considered in this paper),
two sensors provide measured signals Fy(t) and Es(t),
which are unknown linear instantaneous mixtures of two
unknown source signals X1 (¢) and X»(t), i.e:

E] (t) = a]]X] (t) +1112X2(t) (1)
and
E2 (f) = (121X1 (f) + (122)(2 (t), (2)

where aq1, ais ... are the unknown mixture coefficients.
The problem is then to estimate the source signals X; ()
from the measured signals E;(t). Hérault and Jutten
are considered as having proposed the first solution to
this problem. This solution has been described in vari-
ous papers (especially [7], [24]), and therefore we only
include here the minimum information on this topic
needed for understanding the current paper. The solu-
tion proposed by Hérault and Jutten requires statistic-
ally independent sources X;(¢). Tt consists in using the
recursive neural network shown in a block of Fig. 2,
which provides the following output signals:

_ El(t) - ClgEQ(t)
1 —craem

Si(t) (3)

Eg(t) - 621E1 (t)

1 —ciacn

Sa(t) = (4)
where ¢15 and ¢91 are the adaptive weights of the neural
network. These weights are updated according to the
following nonlinear unsupervised learning rule, based
on the higher-order statistics of the output signals:

deij/dt = af(si(t)]g[s; (t)], (5)

where a is a positive adaptation gain, s;(t) and s;(t)
are the (estimated) centered signals corresponding to
the network outputs S;(t) and S;(¢), and f and g are
odd functions. Briefly, the motivation for this learning
rule is to force the network outputs Sy (¢) and S3(¢) to
become (almost) statistically independent, thus making
them become respectively proportional to the sources
X1(t) and X4(t), or vice-versa.

When arbitrary odd nonlinear functions f and g
are used, the network is only able to separate (some
types of) symmetric sources [23]. This restriction may
be avoided by using either f = (.) or ¢ = (.) [23] (and
not both because, as stated above, this would result in
using only the second-order statistics of the signals and
it would not guarantee separation if no assumption is
made on the color of the sources [7]). Especially, two
sets of functions are attractive, due to their simplicity
and to the type of sources to which they apply, i.e:
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The choice between these two sets of functions is to
be made according to the type of sources considered:
(6) applies to globally sub-gaussian sources [21], i.e. to
sources such that R < 9, where R is a ratio defined as:

E{ai} B{a3)
(B2 (E{e3))?

and where x;(¢) are the centered versions of the sources
X;(t). Similarly, (7) applies to globally super-gaussian
sources, 1.e. to sources such that R > 9.

These principles are applied as follows to the sys-
tem considered in this paper. Each source to be pro-
cessed by the neural network consists of a succession
of frames. Each frame contains a synchronisation se-
quence followed by data, and these data are encoded
by using a standard coded diphase procedure, which is
defined hereafter.

As a first step, let us consider only the ideal op-
eration of the system for encoded data (i.e. excluding
synchronisation sequences). Ideally, each data bit equal
to 01s encoded as a voltage equal to a value +V during
half a cycle, followed by the opposite voltage —V dur-
ing the other half of the cycle. The bits equal to 1 are
encoded by alternating values, 1.e. a voltage equal to
+V during a complete cycle for one bit equal to 1, and
a voltage equal to —V during a complete cycle for the
next bit equal to 1. This ideal signal may be repres-
ented as a random stationary source, taking the values
-1 and 1 (in units defined by the voltage +V) with a
probability 1/2, whatever the values of the bits that it

R=

(8)

Multi-tag RF identification system.

encodes. As a result, the couple of sources to be separ-
ated may be shown to be such that R = 1. Tt is therefore
strongly sub-gaussian, so that the version of the network
that should be used to process such signals is the one
corresponding to (6).

In the real identification system, the source signals
are significantly distorted and are therefore not binary
valued. In addition, they contain synchronisation se-
quences which are not symmetric. The corresponding
ratio R may therefore be somewhat different from its
theoretical value R = 1, but is expected to remain sig-
nificantly lower than the threshold value R = 9. The
version of the network corresponding to (6) is therefore
expected to be able to separate the real signals. This is
confirmed experimentally in the next section.

4. Experimental results
4.1 Experimental setup

The experimental setup used for checking the effective-
ness of the proposed approach is represented in Figure
3, which provides a vertical section of this setup. The
antennas and tags each consist of a horizontal disk (with
a diameter of 52 mm for the antennas and 28 mm for the
tags). The tags lie on a horizontal plastic plane, while
the antennas correspond to horizontal planes resp. situ-
ated at distances hq and hs below the tag plane.

As explained above, the tags, antennas and de-
modulators used in these experiments are those avail-
able in the current standard commercial system. The
emission/reception range of this system is limited, i.e.
each tag should be at a distance lower than 60 mm from
a base station to be detected. In our setup, this required
us to put the tags close to the antennas i.e: Ay = 35 mm
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Vertical section of the experimental setup.

and hs = 25 mm. This setup should therefore be con-
sidered as a preliminary down-scaled version of the tar-
get system, from which the real system will then be de-
rived by using longer-range emission/reception units.

The distance D between the tags was varied in the
experiments. When the tags are close one to the other
(i.e. D close to the tag diameter), the standard system
fails to identify the tags, so that the source separation
module presented in this paper is required. This is the
configuration considered in the remainder of this sec-
tion.

4.2 Separation of artificial mixtures

The first set of experiments aimed at checking that the
selected Hérault-Jutten network can separate the source
signals which occur in the real system, assuming they
are mixed in a linear instantaneous way. To this end, a
single tag was first placed in the RF field of the base sta-
tion. The output of one of the demodulators of the base
station (Fig. 2) was sampled at 32 kHz, thus providing
a single source signal X1 (). This tag was then removed
and a second tag was placed in the RF field of the base
station. The same measurement procedure as above was
carried out for this second tag, thus providing another
source signal X»(t). Two artificial mixtures F1(t) and
E5(t) of these two sources were then computed accord-
ing to (1) and (2), and provided to a software imple-
mentation of the Hérault-Jutten network. The mixture
coefficients a;; were chosen so that the mixed signals
provided to the network are roughly in the range [-1,1]
(in order to ensure convergence) and so that the theoret-
ical convergence values of both weights of this network
are equal to 0.4 (which is a typical value occuring in
the real system, as shown in Subsection 4.3). Figure 4
shows the evolution of these weights when the learning
gain is set to a = 0.005, which was selected as a trade-
off between the convergence speed and the magnitude
of the fluctuations of these weights after convergence.
The weights converge towards values which are close to
their theoretical values, thus showing the ability of the
network to operate with the considered sources. The
weight errors after convergence are acceptable, since the
resulting network outputs are decoded correctly, as ex-
plained below.

o 2000 4000 6000 8000 o 2000 4000 6000 8000
sample index sample index

Fig. 4
mixtures.

Evolution of the weights of the network for artificial

4.3 Separation of real mixtures

The second set of experiments was performed with the
actual system. To this end, two tags were placed simul-
taneously in the RF field of the base station, and the res-
ulting mixed output signals F1(¢) and E»(t) of the two
demodulators were measured. These two real mixed
signals were then used as the inputs of the software
Hérault-Jutten network. The evolution of the weights
of the network, for the same learning gain as above,
is shown in Figure 5. The convergence speed of these
weights is coherent with the speed obtained in Subsec-
tion 4.2. Conversely, this figure does not allow one
to know if the network converges to the right solution,
since the theoretical weight values are not known here.
These theoretical values depend on the unknown mix-
ture coefficients which occur in the real setup. Due to
the physical asymmetry of this setup (see Fig. 3), the
mixture coefficients are different, so that the network
weights converge towards different values (see Fig. 5).
The alternative method used here to check that the
network weights converge to the right values consists
in providing the network outputs to the decoders of the
system. These decoders wait for the first synchronisa-
tion sequence in the network outputs, and then provide
the restored tag data. Comparing these data with the
original data stored in the tags shows that they are ex-
actly the same. In other words: 1) the neural network
does not slow down the system, because it converges in
a period shorter than a frame (i.e. about 2000 samples),
during which the decoders have to wait for a synchron-
isation sequence anyway, and 2) after convergence it
provides a perfect reconstruction of the sources in the
sense that 1t restores the bitstream without any error.

4.4  Real-time implementation
Based on the success of the experiments reported above,

we have recently developed a real-time implementation
of this approach based on a DSP board. First experi-
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Fig. 5 Evolution of the weights of the network for real mix-
tures.

ments with this board show that the system, including
the source separation neural network, operates correctly
when using only fixed-point computations. These ex-
periments also demonstrated the long-term stability of
this network.

5. Conclusions and perspectives

The investigations presented in this paper demonstrate
that source separation techniques make it possible to
achieve multi-tag capability with limited means in iden-
tification systems. Future activities will concern the
separation of a larger number of tag signals, and the use
of source separation for reducing background RF noise,
thus allowing i) higher distances between the base sta-
tion and tags, or ii) lower power consumption. Also, the
available a priori knowledge about the sources was only
partly used in the approach considered up to now. This
allowed us to develop a versatile approach, which may
be extended to other (identification) systems. However,
a fine-tuned approach dedicated to the specific system
considered in this paper may also be developed, by us-
ing a source separation module which would take ad-
vantage of this knowledge about the sources to be pro-
cessed.
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