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Analysis of the Convergence Properties of
Self-Normalized Source Separation Neural Networks

Yannick Deville, Member, IEEE

Abstract— An extended source separation neural network The source separation problem then consists of estimating
was recently derived by Cichocki et al. from the classical the source signals;; () from the measured signals;(¢)
Heérault-Jutten network. It claimed to have several advantages, ) 15 3 permutation and scaling factor. Although the linear
but its convergence properties were not described. In this paper, . - .. .
we first consider the standard version of this network. We Instantaneous mixture model is simple, the separation of a set
determine all its equilibrium points and analyze their stability ~Of sources from such mixed signals has various applications.
for a small adaptation gain. We prove that the stationary Several of them concern radio-frequency systems (e.g.,
independent sources that this network can separate are the gatellite communications [2], protection against garbling in
globally sub-Gaussian signals. As the Brault-Jutten network radar applications [3], multitag identification systems [4],
applies to the same sources, we thus show that the advantage? . .
of the new network are not counterbalanced by a reduced [°)): but others are, e.g., related to the analysis of signals
field of application, which confirms its attractiveness in the Mmeasured in mechanical structures (movements of dams [6],
considered conditions. Moreover, we then introduce and analyze nondestructive control of the generators of nuclear power
a modified version of this network, which can separate the plants [6]).
globally super-Gaussian source signals. These theoretical results’ g firgt two solutions to the linear instantaneous source
are experimentally confirmed by computer simulations. As a . bl db | d
result of our overall investigation, a method for processing each SEpParation problem were proposed by Bar-Netsal. [2] and
one of the two classes of signals (i.e. sub- and super-Gaussianjiérault and Jutten (see, e.g., [1], [7], and [8]) at the beginning
is available. of the 1980’s. Since then, source separation has been a very

active research field, and many alternative approaches have
|. INTRODUCTION been developed. For a survey of all these methods, refer to

]. For the sake of brevity, we only consider hereafter the

BLIND source separation is a generic signal (and dati[’ﬁethods directly related to the specific approach analyzed in

processing technique that applies, e.g., to antenna or rf.’Pfi’s paper, i.e., we focus on the solutions initially proposed by

g

crophone array processing [1]. In its “simplest configuration
two measured signals; (t) andxz.(t) are available (e.g., from
sensors), and these signals are unknown linear instantanet%
mixtures of two unknown independent source signal§)
and s»(t), i.e. (see Fig. 1)

Hérault and Jutten and then extended by other authors.

The Herault—Jutten approach is based on a recurrent ar-
al neural network. The convergence properties of this
network have been analytically studied by various indepen-
dent authors in the “simplest configuration” defined above.
21(t) = a1151(t) + a125a(t) (1) Sorouchyari [10] angl Fort [11] used almost the same method,
o(t) = a1 51(t) + azsa(t) %) which was j[hen revisited and somewhat extended by Moreau
2 2ol 2272 and Macchi [12], [13]. Comoret al. [14] presented another

where the termsa;; are unknown real-valued constanfnethod that yields different results. An approach bridging the

(nonzerd) mixture coefficients such thai,; ass —ai2a # 0. 9aP between these two methods was then proposed by Deville
[15] so that the convergence properties of the simplest versions
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1The case when at least one mixture coefficiestis zero is not detailed Macchi [12], [13], [16] introduced a direct (i.e., nonrecurrent)

here for two reasons. On the one hand, it is of no importance in this papé@rsion of the Hrault-Jutten network based on the same

because it implies that at least one of the measured signéi$ and=2() is  adaptation rule. This network is attractive because it avoids the

not a mixed signal so that the initial source separation configuration reduce iy : ; s
a classical adaptive filtering (or gain control) problem, which should be treattré%mx inversion that must be performed with the recurrent ver

with a simpler signal processing structure than the one considered here. OnS@n in order to derive the outputs from the inputs and network
other hand, not considering that useless case somewhat simplifies the stahjisights. Moreau and Macchi also studied the convergence

analysis, as shown in Section IV. properties of this network in the “simplest configuration,”

2The latter condition corresponds to the invertibility of the mixing matrix . .
A consisting of the mixture coefficients;;. This condition is required; using the same type of method as Sorouchyari and Fort. They

otherwise, the two measured signals are identical (up to a scalar factor)also proposed and studied a mixed version of this network
the latter case, the mixing matrix cannot be inverted by using these meaSL[rfg] [13]_

signals, meaning that the source separation problem cannot be solved (ngy’ . . .

separating equilibrium points with finite weight values exist in this case, as (bn the other hand, CIChQClet al. [17] def'ned. neural
shown in the demonstration of Theorem 2). networks that may be considered to be extensions of the
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above-mentioned ones. These new networks contain additional mixture neural network
self-adaptive weights, which are updated to normalize the, an SEIS08 w
g ] 3 > ¥
scales” of the network outputs. These networks were claimed X1 )
to be able to process ill-conditioned mixtures and badly scaled
source signals to which theérault-Jutten network would not Wig
apply. Both the direct and recurrent versions of these types®-{— 3—2;—)@—‘)@“— W —> y2
of neural networks were described, and it was also proposed , ,

. - . source mixed estimated
to cascade them in a multilayer neural network in order tQjpgs signals SOLTCES

improve performance. To our knowledge, the papers published 1 Basi i — 4 direct Cichocki network
Up to now Only describe the principles Of these netWOl'kS 5? . asiC source separation configuration an Irec ICNOCKI network.
well as their empirical performance derived from numerical

simulations. On the contrary, no theoretical proof has beemn. DEFINITION OF THE CONSIDERED CLASS OF NETWORKS
provided about their convergence properties. This may resultryis saction briefly describes the principles of the class of

from the fact that such analyses are significantly more Compla?fect single-layer Cichocki networks which is analyzed in the

th'ﬁnbfor :]he ré'rau:;c.—‘]utten agd Morer?u—Maccpl ngtworks, asﬁjbsequent sections. This investigation is performed for the
will be shown in this paper, due to the normalization sc emgimplest configuration” defined in Section |, and the source

mtrc;]ducv;zd by C'ﬁhOCk' in his netwr?rkS: hocki . %iﬁ%na|581(t) and s,(t) are assumed to be stationary, zero-
Therefore, at the current stage, the Cichocki networks segil , *anq statistically independent. At each time stethe

to be more powerful than the simpler formerly proposegetwork (shown in Fig. 1) receives both mixed signalgt)

structures, but despite these advantages, we are entitled, 1. ) defined by (1) and (2) and processes them as follows.
hesitate to use them, as their behavior is not well defined. It . .
1) It computes its output signalg;(¢) and y»(t) corre-

is especially not known whether these networks have spurious . . ; : .

stable equilibrium points, that is, weight values toward which ~ SP°Nding to the currentinput signals and internal weight
. . . . valuesw;;, i.e.;

they may converge without providing separated signals at their J

outputs. Similarly, it is not known whether they are able to

separate a limited or large class of source signals. Such re- y1(f) = wina(t) + wiaaa(f) (3)

strictions have been shown to exist for theriult-Jutten and y2(t) = warz1(t) + wazz2(?). 4)

Moreau—Macchi networks. Similar limitations are therefore

expected to arise with the Cichocki networks, and they should2) It also updates its four real-valued weightg according

be determined. This paper therefore aims at precisely defining to the following adaptation rules:

the conditions of operation of these networks. It should first

be noted that the overall properties of the multilayer versions dw;i(t) _ (t (O —1]. iel1.2} (5
of these networks are directly derived from those of the p dt #lf T (®))gly (O] = 1 1.2
mdmdgal layers that compose t.hem bet_:ausg each of these i(®) = —uflu®loly; (1), i#£5€{1,2} (6)
layers is adapted by a locatlaptation rule, i.e., independently dt

from the other layers. Therefore, the convergence analysis

only needs to be performed for the single-layer versions of L ) . .

these networks. Moreover, only the direct version of these andg are distinct odd functions called the "separating

networks is considered hereafter since it is more attractive functions” below.

than the recurrent one as explained above and because simildih€ Principles of the adaptation rules (5) and (6) may be

results are expected for both versions based on the similagiymmarized as follows:

observed between the properties of théralilt—Jutten and < Rule (6) is used for updating the cross-coupling weights

Moreau—Macchi networks. wiz and wq;. It aims at making the outputs indepen-
The remainder of this paper is organized as follows. The dent and thus, respectively, proportional to each source.

considered type of source separation networks is defined in It is the same rule as that of theékhult-Jutten and

Section 1. Two specific versions of these networks are then Moreau—Macchi networks.

studied. As they yield similar analyses, only the investigation * Rule (5) is used to update the direct weiglits andwso.

of the standard version is reported in detail in the subsequent It aims at normalizing the “scales” of the output signals

sections, whereas the modified version that we introduce %1 (t) andy:(t), respectively. The scaling coefficients,

for processing other types of source signals is described andws; are meant to self-adapt to the processed signals.

more rapidly in Appendix D. More precisely, the presentation ~ This rule is specific to the Cichocki network (whereas

of the standard version contains the following aspects. Its in the Hérault-Jutten and Moreau—Macchi networks;

equilibrium points are studied in Section lll. The stability of ~ andws» are fixed to 1). The above-mentioned advantages

these points is then investigated in Section IV. The theoretical 0f the Cichocki network result from the adaptation of

results thus obtained are checked by means of computer these weights.

simulations in Section V. Eventually, Section VI presents the

conclusions drawn from this investigation and outlines itSsyne weignt valueso;

A . :; depend ort. For readability, this is often omitted
potential extensions. in the notations used below.

where 1 is a small positive adaptation gain, an



1274 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 1999

The last parameters that must be defined in order to fullvhere Y (t) = [y1(t),%2(#)]*, and W is the weight matrix
specify the considered version of the network are the selectammposed of the weight values;;. From (13) and (14), the
separating functionsf and g. These parameters appear iroverall relationship between the source signgig) and the
the Cichocki, Herault—Jutten, and Moreau—Macchi networkutput signalgy; () may be written in matrix form as
Various functions have been considered in the papers related to

all these networks. The most commonly used set of functions Y() = PS5 (15)
is [1], [4], [5], [10]-[13], [15]{17] or explicitly as

f(z)=2® and g(z)=z. (7) y1(t) = pr1si(t) + przs2(t) (16)

Yo(t) = pa151(t) + p22sa(t) (17)

The subsequent sections only concern this specific set, whereas

another set is considered in Appendix D. where PP, which is composed of the real-valued elements
It should be noted that the “neural” nature of thés defined as

Hérault—Jutten, Moreau—Macchi, and Cichocki networks does

not lie in their input/output transfer function. Whereas a

specific feature shared by many neural networks consistBy using (16) and (17) and taking into account the indepen-

in transferring input signals through nonlinear (most oftelence of the source signals, the equilibrium conditions (11)

sigmoidal) functions, the networks considered in this papand (12) may be rewritten &s

have a linear transfer function. Instead, their neural nature 4 / 4 2 92 7 o\/ 2 4 7 4\

resides in their original inspiration [8] and in the nonlinearity pi1<8i> + 6p;1p§2<8;><$§> +pf<$i> =1 (19)

used in their adaptation rules, i.e., in their nonlinear separating P21<31> + 6P21P22<51><32> +Pz2<52> =1 (20)

functions f and/or g. and

P=WA. (18)

ll. EQUILIBRIUM POINTS p?1p21<81k> + 3p11p12(pr2p21 +p11p22)<8§><3§>

+ plap22(s3) =0 (21)
A. Definition of the Equilibrium Points P31p11 (1) + 3parp22(pazpiy + parpi2)(si )(s3)
The equilibrium points of the network adaptation rules (5) + p3,p12(s3) = 0. (22)

and (6) are all the quadruplets of constant weight valu

The resolution of these four equations provides the expressions
(w11, w12, wo1,w22) such that

of the four elements;; of the composite matrix for each
dwi; () \ 0. el 8 equilibrium point with respect to the moments of the source
dt =0, 1,j€11,2} (8) signals. The determination of these elememjsis presented

in the following subsections. The corresponding weight values

where () stands for math_ematical expectation. C_ondition (%ay then be derived from (18) (see the beginning of Appendix
may be rewritten by using (5) and (6), showing that thg)_

equilibrium points are the solutions of
Flu®lglys(®) =1, i€ {1.2} 9) B. Equilibrium Points with at Least One Zero Element

(Fluilgly; (O =0, i #j€e{l2}. (10)  As a first step, we determine the four specific sets of
solutions of (19)—(22) that, respectively, correspond to each
Especially for the separating functions defined in (7), thesg the additional condition®; = 0, pi» = 0, po1 = 0, or
equations become p22 = 0. Straighforward computations show that the condition
4 . p11 = 0 impliesp22 = 0 and vice versa so that each of the two
(®) =1, 7€{1,2} (11) conditionsp;; = 0 andpa2 = 0 leads to the same solution,
([wi®Py; () =0, i#je{l,2}. (12)  corresponding to botip;; = 0 and pgy = 0. Similarly, the
Given the source signals (t) and mixture coefficients,;, condltlorlllsma - OI and lef =0 y|eldfthe f]gr::e slolutlon.
the problem is then to derive the corresponding quadruplé':ll\s/entua Y, .t e solutions o (19)_.(22) or W ich at least one
of weight values that meet (11) and (12). To this end, we fir§ ementp;; 1s zero are _the following ones. _
determine the corresponding composite matriesefined as ¢ @ first set containing four solutions (depending on the

follows (see also [17]). The mixture equations (1) and (2) may Selected values of, and e;)

be rewritten in matrix form as P = 4611/47 e €{-1,1} (23)
X(t) = AS(¥) (13) (s1)
p12 =0 (24)
where X () = [z1(t), 22(£)]", S(t) = [s1(1), 52(£)]", and A par =0 (25)
is the mixture matrix composed of the mixture coefficients e 11 26
a;;. Similarly, (3) and (4), defining the transfer function of the D22 = _<34>1/4’ e € {-1,1}. (26)
2

network, may be rewritten in matrix form as

4In the remainder of this paper, the time indexis omitted in the
Y(t) = WX(t) (14) mathematical expectations of signals.
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These equilibrium points are denotéfl ., hereafter. For ~ These equilibrium points are denotédl, ., ., hereafter.

each of them, (16) and (17) become For all of them, the outputs of the network are still expressed
according to (16) and (17) with (35). Therefore, at these points,
n(t) = pusi(f) (27)  the network outputs mixtures of the two sources, thus failing

y2(t) = paasa(t). (28) to achieve source separation.

Therefore, at these points, each network outt) is
proportional to(x) the source having the saniedex ¢, .
i.e., the network achieves the separation of the source'© b€ able to solve the source separation problem de-
signals without permuting them. These solutions On|f>|,ne(_j.|n. Secuoh , the system under investigation should have
differ in the signs of the coefficients by which the sourcgauilibrium points at which it outputs separated sources. The

D. Discussion

signals are multiplied. above description shows that the network considered in this
« a second set that also contains four solutions paper indeed meets this requirement (the corresponding points
are the eight pointd, ., and G, .,, which are called the
p11 =0 (29) “separating equilibrium points” below). However, it also has

(30) “spurious” equilibrium points, i.e., equilibrium points at which
it outputs mixtures of the sources (namely, the eight points

€2
= e{-1,1
P12 e e € {—1,1}
H. ., ., which are called the “nonseparating equilibrium

€1
P =" a€ =11} (31) points” below). We must then determine which of these 16
<31> equilibrium points are stable, depending on the nature of the
pz2 =0. (32) sources, or at least which types of sources can be separated by
These equilibrium points are denoted, ., hereafter. For th|s_|r_1§t_work as ta r_(l?rs]u!{t_oftﬁortne .Sta?'lt'rt]y propiertlets_ of these
each of them, (16) and (17) become equilibrium points. That is the topic of the next section.
y1(t) = pr2sa2(t) (33) IV. STABILITY OF THE EQUILIBRIUM POINTS

() = paaa(t) (34) A. Tangent Mean Algorithm and First Stability Conditions
Therefore, at these point, (f) o so(f) and y(t) o 1) General Principles: Sorouchyari [10] and Fort [11] used
s1(t), i.e., the network achieves the separation of thge same approach to investigate the local stability of the
source signals while permuting them. Again, these soldgilibrium points of the ldfault—Jutten network. This method
tions only dlffer in the signs _of_the coefficients by whichyas then also applied by Moreau and Macchi [12], [13],
the source signals are multiplied. [16] (with a reference to the “ordinary differential equation”
technique [18]) to their modified versions of thétdult—Jutten
C. Equilibrium Points with Only Nonzero Elemenis network® For any fixed separating functichand equilibrium
The only solutions of (19)—(22) that were not provided bpoint £, this method consists of i) considering the mean
the method used in the previous subsection are those that n@taptation algorithm, here obtained by replacing the right side

the additional requirement of (5) and (6) by its mathematical expectation and ii) deriving
a first-order development of this mean algorithm at pdiht
pij 70, 4,5 €{1,2}. (35) This yields, in vector form
Their determination is detailed in Appendix A. It yields the dav = JAV (41)
following eight point8 (depending on the selected values of dt
€1, €2 and e3): where .J is the Jacobian matrix of the system at point
¢3 E. AV is the column vector defined aAV = [Awiy,
P11 = 7z @ €{=L1} (36) Awiy, Awny, Aw]”, where each componenkw;; is the
[2<341L> <1+3%)} difference between two values afy;, respectively, at a
VAUNEY considered point in the neighborhood &f and at pointE
P2 = 62;;117 e € {~1,1} (37) itself. A necessary and sufficient condition for poifitto be

locally stable is then as follows: C1) the real parts of all the

pn=caepu, a€{-1L1} (38)  eigenvalues off are negative [10]. An equivalent condition is
Par = —“1bu (39) C2), which is the real parts of all the roots of the characteristic
R polynomial Q(A) associated witl/ are negative, wher@(A)
with is defined as
(s4) 1/4 Q(A) = det(J — AI). (42)
= <s‘f> : (40) _6Morea_u and Macchi al_so coqsidered related ap_proaches targetted at the
discrete-time and stochastic versions of the adaptation rule [12], [13], [16].

7 Although the overall method may be applied to any separating functions,
5 Additional solutions exist in the specific case of globally Gaussian sourcéshas been detailed only for specific functions in the literature, i.e., especially
as explained in Appendix A. for (7).
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It should be clear that this approach is accurate only forTde polynomial P(\) is therefore used as an intermediate
vanishing adaptation gaip because the first-order developvariable in the following analysis.

ment that it uses yields a linearized approximation of the

considered network around the selected equilibrium point. @ Discussion of Stability Conditions

the contrary, for a nonvanishing adaptation gain, this approacl"|3ased on C2), the next natural step of the method would
only provides approximate results. . '
08n3|st of

The first step of the method used in this paper is baséd o ) )

on the principles defined above and consists of computing thd) ~ determining the analytical expressions of the roots of
Jacobian matri¥ and the associated characteristic polynomial P()_‘)_; ] )

Q(A) of the considered network, as shown in the remainderl) deriving the expressions of the roots@{A) [by using

of this subsection. However, the next step, consisting of the  (59)] as well as of their real parts; _
practical exploitation of condition C2), leads to a specific I} Investigating the signs of these real parts,Qderendmg on
approach, which is presented in Sections IV-B2 to IV-B5. the considered equilibrium poitt and on(y;yz) [and,

It should be noted that the adaptation rule of the considered ~ "€Nce, on the source statistics due to (16) and (17)].
network has some similarities with the class of constant This approach could be used for théddult-Jutten network
modulus adaptive (CMA) algorithms. Therefore, the analyskgcause its associated polynomig(\) is only of order 2 so
of its mean behavior presented below has some links wilhat it yields simple computatiorffsFrom a theoretical point
the investigations concerning CMA algorithms reported in tHef view, this method also applies to the network considered in
literature (see, especially, the capture analysis presentedhfi current paper becaus¥\) is of order 4, and the analytical
[19). expressions of its roots can be determined using Ferrari's

2) Application to the Considered NetworkVhen using the method [20]. This approach is, however, very impractical as
separating functions (7), relatively long but straightforwarthe expressions of the roots that we derived for the polynomial

calculations yield corresponding to (49)—(54) turn out to be very complicated.
An alternative approach can be developed by using the
J=rM (43) following principles. In fact, from the stability point of view,
with there is no need to determine the exact expressions of the roots
L of Q(A). Instead, we only need a necessary and sufficient
r= ) (44) condition under which the real parts of all these roots are

(45) negative, i.e., under whicl§)(A) is a Hurwitz polynomial

D= —
iLtay T 2t [20]-[22]. This type of problem has been studied in the

and literature [20]-[22] and yields the following necessary and
sufficient stability condition for any fourth-order polynomial
M= Q)
4w22 —4w21 0 0
=3wi2(yiy?)  Bwii(yiy3) wa2 —wa1 gs >0 )
—wi2 wyy Swaz(yiy3)  —Bwa(yiv3)
0 0 —dwo dwq1 q3 44 >0
(46) Q@
wherew;; are the weight values at the considered equilibrium G @ 0 (56)
point E. Hence, (42) allows the derivation that
@1 @ g¢3|>0
Q(A) =r*P()\) (47) 0 % a
with % >0 /
A=) (48) where the parameterg are the coefficients of)(A), here
4 3 ) derived from the coefficientg, of P()\) by using (47) and
P(X) = paA™ +p3A” + p2 A"+ pid + po (49) (48). This approach is attractive because it directly provides
pa=1 (50) a complete stability condition (56) for each equilibrium point,
p3 = —(wyy +w22)(3<yfy§> +4) (51) unlike the method outlined at the beginning of this subsec-

9 o2 2 2 2 2 tion. However, developing this condition explicitly for the
p2 = <y1y2> Ywi1wae + <y1y2>12(w11 T Wyt 2D) polynomial Q(A) corresponding to (47)—(54) yields some
+ 1dwiwao (52) complicated expressions. From these expressions, we cannot
p1 = —4(wyy +w22)D[9<yfy§>2 + 12(?/%?/5) — 1] (53) easily carry out the last step of the stability analysis, i.e.,
2 ather the stability conditions at all equilibrium points to
po = 1602 [9(yf3)" ~ 1]. (54) ° d q P
. . 8The Herault-Jutten network gives rise to a second-order polynaRial)
Equations (47) and (48) allow us to link the rodtsof Q(A)  pecause it only contains two adaptive weights (singe andw-s are fixed
to the roots); of P()), according to to 1).

9This description applies to the case whgn> 0. This condition is met
A =71A. (55) here becausgy = py = 1.
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eventually derive which types of sources can be separated by For any of the nonseparating equilibrium poi#fs, ., .,

the considered network. (16), (17), and (36)—(39) yield
Therefore, in addition to the theoretically complete but (s2)(52)
impractical solution based on (56) that we already defined 5 o 1- Ve (sh)
above, we developed an original approach that we describe <?le2> T, 0 (60)
hereafter. This method consists of focusing on some specific 1+3 (s1)(s2)

stability properties that are sufficient for determining which
types of sources can be separated by the network operating
with the separating functions (7). (s7)(s3) -

1
NENE I

1) General Principles: The proposed approach uses the fa@®. Interpretation of the Necessary Stability Condition

that a simple necessary condition for any given equilibrium \yhen ysing the separating functions (7), we showed above
point to be stable can be derived very easily. This condition gg,¢ for any equilibrium point, the necessary stability condition
based on the following theorem, which holds for any fourtrt57) is equivalent to (59) or (61). Therefore, it only depends

Condition (57) then reads
. (61)

C. Necessary Stability Condition

order polynomialP(A) with ps = 1. __on the considered type of sources (and, e.g., not on the values
Theorem 1: For any equilibrium point, a necessary stabilityf the mixture coefficientss;;). This stability condition can
condition is C3)po > 0. then be reinterpreted by splitting the analysis according to the

Proof: If (0) <0, P(A) has at least one real positivepsssiple types of sources, instead of using the partition related
and one real negative root becaus&)) is a continuous g the types of equilibrium points, which was considered in
function of A andP(A) — +oo whenA — oo asps = 1,and  gection |v-C2. This yields the following results.
so hasQ(A), whatever the sign of, due to the relationship

(55) between the roots adP(\) and Q(A). C2) is, therefore,
not met. Similarly, if P(0) = 0, one of the roots of(\) and,
therefore, ofQ(A) is zero. C2) is, therefore, not met. In other
words, stability requires”?(0) > 0. Moreover, P(0) = po.

« The first case corresponds to the union of globally super-
Gaussian and Gaussian sources, where the globally super-
Gaussian sources are defined [11] as the sources that meet
(61), and the globally Gaussian sources are those such

This yields Theorem 1. O that [11]
Note that this result can also be derived from (56). Each of (st)(s3) 1 62
the four conditions contained by (56) is a necessary stability <S4><S4> ~ 3 (62)
condition, especially the last one, i.ejp > 0, which is 1772
equivalent topo > 0 since (47) and (48) yieldo = 7*po. In this case, (59) is not met; therefore, all the separating
2) Application to the Considered NetworkVhen using the equilibrium points are unstable. Therefore, the network
separating functions (7)?() is defined by (50)—(54). Theo-  cannot converge to any of these points so it fails to
rem 1 then shows that for any equilibrium point, a necessary achieve source separation. This completes our stability
stability condition is analysis for such sources. The remainder of our analysis,
therefore, only concerns the other type of sources.
<y§y§> > % (57) * The second case corresponds to the globally sub-Gaussian

sources, which are defined [11] as the sources that meet
(59) and are encountered, e.g., in [4] and [5]. In this
case, (61) is not met; therefore, all the nonseparating
equilibrium points are unstable. Therefore, in this case,
the network cannot converge to any of these undesired
points. With regard to the separating equilibrium points,
no conclusions can be drawn about their stability yet, as
(59), although it has been met here, is only a necessary

This condition should preferably be expressed with respect
to the source signals;(¢). To this end, the momenyiy3)
should first be expressed with respect to these source signals.
This depends on the relationship between the source signals
and output signalgy;(¢) and, therefore, on the considered
equilibrium point.

* For any of the equilibrium points:, .., (23)-(28) yield condition. Therefore, two situations aagpriori possible:
<S§><S§> —Situation 1: All the separating equilibrium points are
(y2y2) = ) (58) unstable. In that case, the network cannot converge
/< s‘f)( 33> to any of these points and, therefore, fails to separate

the sources.
—Situation 2; At least one of the separating equilibrium
points is stable. The latter then being the only stable
points, the network can only converge to such a
(59) point'® and thus succeeds in separating the sources.

Condition (57) then reads

2\ /.2
(s7)(s3) S
V(1) (s3) . . R

10This may require an adequate initialization point and a low enough
adaptation gaine for the network to remain in the attraction domain of this

+ All the equilibrium pointsZ,, ., also yield (58) and (59). point.

Wl =
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In order to determine whether the situation that actuvhere the lower and higher boungsand p;, are equal to

ally occurs is “situation 1” or “situation 2,” additional 1 3
properties are used. They are described in the subsequent p==—-—r~021 (66)
subsection. 2 6

1 V3

E. Definition of a Stable Separating Equilibrium Point

As explained above, we restrict ourselves here to the caaghilarly, for such sources, the global super-Gaussianity con-
when the separating functions (7) are used and the sources®fgn (61) is equivalent to
globally subGaussian. The last step of the stability analysis is p<p OF p>ph (68)

then based on the following theorems, the proofs of which are,
respectively, provided in Appendices B and C. To ease the interpretation of the simulation results presented

Theorem 2: For the separating functions (7), if all mixturein the next subsection, a comment should be made here about
coefficientsa;; are nonzero, at least one of the separatirfje graphical representations of the considered sources. The
equilibrium points is such thaty; > 0, wsy > 0, andD > 0, representation of one such source consists of a discontinuous
where D is defined in (45). set of points having twd’ -coordinate values, i.e., the two

Theorem 3: For the separating functions (7) and for globpossible values of the source. These points are visible when
ally sub-Gaussian sources, if a separating equilibrium pointtie source is represented over a short time period. However,
such thatwy; > 0, wae > 0, and D > 0, it is stable. they appear as two horizontal lines when a long time period

Theorem 2 shows the existence of a specific type of sep@-considered.
rating equilibrium points (when alt;; are nonzero), whereas 2) Mixture ParametersAll simulations were performed
Theorem 3 shows its stability in the considered conditions. Agth artificial mixed signalsX;(¢) created as linear instanta-
an overall result, the network has at least one stable separafi@gus combinations of the above-defined source sighats.
equilibrium point, i.e., the situation that actually occurs i other words, the mixed signals were derived by using the
“situation 2" defined above. As explained in Section IV-Dmixture equations (1) and (2), where all zero-mean signals
the network is therefore able to separate all the considen&@re replaced by the actual nonzero-mean signalg) and
sources, i.e., all the globally sub-Gaussian sources and nénét). The following mixture coefficients were used in all
of the other types of sources as was proved in Section |V-Bmulations:

which completes the stability analysis. e a;; = 1,
e a2 = 0.8
V. SIMULATION RESULTS e a1 = 0.4

= 1.

In order to illustrate the theoretical results obtained in the * 422 ) )
previous sections, we performed various simulations with tfgain, it should be noted that each mixed signal has four
considered version of the network. The simulation conditio9SSible values so that it appears as four horizontal lines when
are defined hereafter, and their results are then described.epresented over a long time period.

A. Simulation Conditions B. Simulation Results

1) Source SignalsEach sources;(¢) used in the simula- _S.imulatio.n§ were performed for variou_s values of the prob-
tions was a random binary-value signal, taking the valués ability p defining the sources. The following results were thus
and —1, respectively, with the probabilitiesand (1 — p). In  obtained. . _ .
each simulation, the same valpavas used for both sources. 1) Simulations with Sub-Gaussian Sourcé¥henp is cho-

This value was varied over the simulations. It should be not8§n SO that (65) is met, the network succeeds in separating

p = 0.5. Fig. 2 represents the evolution of the output signal

(Si(t) =2p-1. (63) ¥ (¢), which contains the following phases (the output signal

The network was modified accordingly, using the approagf?(t) yields the same results).

already reported [8] for the &tault-Jutten network. Briefly, * The network weights start from 0, and so da&st), due

(3) and (4) were applied to the actual nonzero-mean signals to (3)_-

Y;(t) and X,(¢), and (5) and (6) were used with estimates ° The first 4000 samples correspond to the network con-

of the zero-mean versiong;(t) of the outputsY;(t). The vergence phase. The four curves that appear in Fig. 2
stability conditions thus apply to the zero-mean sourg¢s) during this phase result from the fact thgi(¢) then

corresponding to the actual sourcggt), i.e., contains a mixture of the two sources. This corresponds

to the phenomenon described above for mixed signals,

si(t) = Si(t) — (9i(t))- (64) except that the curves are slanted here instead of being

straight and horizontal, as the magnitude of the weights
and, therefore, ofy (¢) increases during this phase.

After about 4000 samples, the weights have converged to
D1 <p<pp (65) constant values so that the magnitudeyeft) remains

It can be easily shown that for the sourceét) considered
here, the global sub-Gaussianity condition (59) is equivalent to,
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0.5

1 1 L 1

1 1 L
0 1000 2000 3000

4000 5000 6000 7000 8000
t

Fig. 2. Network output signal7 (¢) for sources corresponding o= 0.5 (discrete set of points: see text).

constant. Moreover, this signal then appears as or@pomparing these values with Fig. 3 confirms that the network
two lines, which means that it only contains a singldoes converge to one of the separating equilibrium points
source (like in the above description of source signaland, more precisely, td" ;. It should be noted that this
as opposed to that of mixed signals).
Fig. 3 represents the evolution of the network weights. Thi&,1, (70) shows thatvi; > 0, (73) shows thatuss > 0, and
illustrates the considerations about these weights provideti= (Cwiiwa2)/(ai1az2) > 0. As p = 0.5 results in (65),
above and makes it possib|e to ana|yze the results more q|_J||a$}.1 in sub-Gaussian sources, Theorem 3 allows us to conclude
titatively as follows. The general expressions of the weigHtat £ 1 is stable, i.e., that the network can converge to this
values at all separating equilibrium points are provided ioint; this actually occurs, as shown above.
Appendix B. Hereafter, they are applied to the specific sources 2) Simulations with Super-Gaussian Sourc&8henp is
and mixture coefficients considered here, taking into accoufitosen so that (68) is met, the network converges, but to a

the expressions of the termg; provided in Section Il

Denoting

C = ay1a2 — aza21

the weights at any of the four equilibrium points, .,

expressed as

with €1, e € {—1,1}. Similarly, the weights at any of the

(69)

are

a—é?pu ~147¢; (70)
—a

Tmpll ~ —1.1861 (71)

—221 Po2 —0.5962 (72)

= a—é}pgg ~ 1.47(:2 (73)

four equilibrium pointsG,, ., are expressed as

—a21
— P = —0.5962

C

a1

— ~ 1.47¢
C D21 €2
%p?l ~ 1.47(:1

%pﬂ ~ —1.18¢.

(74)
(75)
(76)

(77)

provides an experimental validation of Theorem 3. At point

nonseparating equilibrium point. This is illustrated in Fig. 4
for the casep = 0.1. This figure yields the same comments
as Fig. 2, except for the following aspects. When the network
has converged to a nonseparating equilibrium point, the output
signal Y1(¢) is still a mixed signal. Therefore, it has four
possible values, corresponding to four horizontal lines, as
explained above. Moreover, the situation considered here is
a degenerated case, where two of these four values become
equal. This may be explained as follows. Here, the same value
p is used for both sources so that) = (s3). The expressions

of the termsp;; provided in Section Il then show that at any
given nonseparating equilibrium poifft, corresponding

to a fixed valuee;

1,€2,€37

yi(t) = pra[si(t) + ersa(t)]. (78)

As s1(t) = +1 and s2(t) = +1, the possible values af, (¢)

are then2p,, 0, and—2py;. In other words, two of the four
values that are different in the general case here both become
equal to 0. The convergence to a nonseparating point then
corresponds to a signal represented as three horizontal lines.
This is what occurs in Fig. 4 after about 9000 samples. It
should be noted that the network here converges less rapidly
than in Fig. 2. This results from two phenomena. On the one
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Fig. 3. Network weights for sources correspondingpte= 0.5.
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Fig. 4. Network output signalt(t) for sources corresponding o= 0.1 (discrete set of points: see text).

hand, we observed that in the situations where the netwarkich is required to achieve convergence. This asymmetric,
eventually converges to a nonseparating point, the weigtd., “irregular,” nature of the sources is also expected to be
values always “wander” during a significant period beforeesponsible for the large magnitude of the fluctuations of the
evolving toward that nonseparating point. On the contraryeights and, therefore, af; (¢), as compared with those that
convergence toward a separating point occurs directly aragypear in Fig. 2. These interpretations are confirmed by the
therefore, more rapidly, like in Fig. 2. On the other hand, thEmulations reported in Appendix D.

low convergence speed may result from the highly asymmetric3) Conclusions Derived from Simulation§he simulations
nature of the sources considered here (pe< 0.5), which described above show that the sources that are separated by the
means that a large number of samples must be processed befersion of the Cichocki network operating with the separating
the network has received the number of samples equal tofdnctions (7) are the globally sub-Gaussian signals. This fully
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confirms the theoretical analysis presented in the previo(®)) p?,p?,. Equation (80) is chosen to get rid of the term
sections. (s?) (s3), which occurs in (19) and (20), and reads explicitly

(P%1P§2 - P%ﬂ’gl) (P%1P§1<3%> - P%2P§2<33>)

VI. GENERAL CONCLUSIONS AND PROSPECTS 9 9 5 9
) . ) o = P21P22 — P11P12- (80)

The Cichocki network has been claimed to have significant
advantages over the previously publisheér&tlt—Jutten net- Similarly, due to (79), the subs¢f21), (22)} of EQ, is equiv-
work, but up to now, its exact conditions of operation haglent to{(21),(81)}, where (81) is defined as the following
not been described. The theoretical analysis and computggar combination of (21) and (22)81) = (21)paip22 —
simulations reported in this paper prove that the stationaf¥2)p11p21. Equation (81) is also chosen to get rid of the term
independent sources that can be separated by the standéfifs3), which occurs in (21) and (22), and reads explicitly
version of this network are the globally sub-Gaussian signals.
As the corresponding &fault-Jutten network applies to the
same sources, this shows that the new features provideddyy assumption (79), the set of equatiofQ, to be
the Cichocki network are not obtained at the expense ofsalved is thus replaced by the equivalent €0, =
degradation of the field of application. From this point 0{f(19), (80),(21),(81)}. The latter set of equations can then
view, this paper confirms the attractiveness of the Cichodké simplified by using the following theorems.
network on the basis of objective criteria in the considered Theorem 4: At a given point in the weight space, if (79)
conditions. To our knowledge, this is the first reported analysis met and if p11ps2 — prapo; = 0, this point is not an
for a four-adaptive-weight source separation neural netwodquilibrium point of the adaptation algorithm considered in
whereas the previous papers concerned networks in whibiis paper.
only two weights are adapted (i.e., the diagonal weights of Proof: If (79) is met and ifp;1p00 — p1op21 = 0, then
their weight matrix are fixed to 1). It should be remembereg16) and (17) yield
however, that this analysis only applies to a small adaptation '
gain, as explained in Section IV-AL. y1(t) = ——y2(t). (82)

As this paper shows that the standard version of this network _ P
cannot separate globally super-Gaussian source signals, wet#ggce, we derive
led to wonder whether a modified version can be defined for 3
such sources. We propose and analyze such a network, based ([ (OPy(t)) = <ZE> {(fy2(D]). (83)
on another set of separating functions, in Appendix D. As a b2
result of our overall investigation, a method for processinf the considered point were an equilibrium point, (11) and
each one of the two classes of signals (i.e., sub- and sup@2) would be met and would especially yield
Gaussian) is thus available.

This investigation may be extended by analyzing the sta- ([ O)) =1 (84)
bility conditions associated with the discrete-time stochastic (i (®)Pya(t)) = 0. (85)

version of the network adaptation rules. This analysis could R@S (84) and (85) are not compatible with (83) and (79), we

based on the approach developed by Moreau and Macchi for . . - N
their networks [13], [16]. The behavior of Cichocki networks?onﬁ:Egﬁr;hzg;gtthe considered conditions, the point 'SSOt an

. . . u
should also be studied for nonstationary source signals and ?gborollary 1: If a point in the weight space is an equilibrium

other “configurations” than the one defined in Section I. It is . . ) . L
. ; point of the adaptation algorithm considered in this paper and
likely to be different from that of the Erault—Jutten networks : :
. . if (79) IS met, thenp11p22 — P12P21 75 0.
due to the self-normalization scheme of these new networks. . .
Hence, we derive that on assumption (79), the set

of equations EQ, is equivalent to the setEQ; =

(p1ip2e — prap21) (P11 P53, (s1) — Pap3a(s3)) = 0. (81)

APPENDIX A {(19), (80),(21),(86)}, where (86) is defined &s
DETERMINATION OF THE EQUILIBRIUM s 2 4 s 9 4
POINTS WITH ONLY NONZERO ELEMENTS p;; PP (51) = Piapaa(s3)- (86)

As stated in Section lll, the equilibrium points of the consid- Moreover, it is easily shown that assuming (79), the subset
ered adaptation rules are all the quadruplets of weight valugg0), (86)} of EQ, is equivalent tof(87), (86)}, where (87)
(wy1, w12, wer,was), Which meet the set of four equationsis defined as
EQ: = {(19),(20),(21),(22)}. In this appendix, we deter-

2.2 _ 2 2
mine the solutions of these equations meeting the following P21P22 = PuPrz- (87)
requirement: The set of equation€Q;, is thus replaced by the equiva-
. lent setEQ, = {(19),(87),(21),(86)}, which consists of
po £0, ide{La 79) Q = {(19), (87), (21), (86)}

11The equivalence betwedBQ, and EQ;, assuming (79), may be shown

Due to (79), the subsef(19),(20)} of E is equivalent as follows: IfEQ, is met, then the considered point is an equilibrium point;
(79) ef(19),(20)} Q 9 therefore, Corollary 1 yieldg11p22 — pi2p21 # 0. This term can then be

to {(19)7 (80)}’ where (80) is defined as the foIIowing Iin'simplified in (81), thus yielding (86) and, therefoieQ;. Conversely EQ,
ear combination of (19) and (20)80) = (19) p3,p3, — always impliesEQ,.
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a subset{(19), (21)} of complicated equations and a subsqioints that do not achieve source separation. In the remainder
{(87),(86)} of simpler equations. As a first step, we solve thef this appendix, we only consider the case when the sources
latter subset of equations, i.e., we use it to expgesandp.:  are not globally Gaussian, i.&Q # 0. Equation (97) is then
with respect tg;1, p12 and the statistics of the source signalequivalent to

We thus derive an equivalent subset obtained by multipliying

(87) and (86) either term by term or in a crossed way P2, — R*p%, =0 (99)
4 4\ _ 4 4
par(s1) = pia(s2) (88) so that the seEQ; of equations to be solved is equivalent
P (s1) = paa(s3). (89) to EQ, = {(19),(99),(90),(96)}. Solving (99) yields the

i ; expression ofp;2 versuspyy, i.e.,
The solution of these equations (for real-valued tepmn9 P P1> P11

reads pr2 = 62211, e €{-1,1}. (100)
p21 = e1pi2 R, with ¢; € {-1,1} (90)
- el with ¢/ € {—1,1} (91) Inserting (100) in (19) yields
R ? - . 7 B
€3
where the ratioR is defined as pu = e NV e3 €{-1,1}
24N 1 4 3058527
) { <31>< - <s§><sg>)}
R= o) (92) (101)

The set of equationgQ, is thus replaced by the equivalent seThe setEQ, of equations is thus equivalent tBQ, =
EQ; = {(19),(21),(90), (91)}. Equations (90) and (91) then{(101), (100), (90), (96)}. Equation (100) may eventually be
allow us to replacepz; and p2 in (21), thus yielding (still inserted in (90) in order to express all terms with respect to
with ¢; € {—1,1} and¢] € {-1,1}) p11, Which is defined explicitly in (101)EQ, is thus replaced

2/ 4 1o\ 2\ 2 by a set of four equations, which provide the final solution of

(B*(s1) + 311 (s7)(s2))Pin the considered problem and that read explicitly
+ (e1€i(s3) + 3R*(s7)(s3))pi, = 0. (93)
€3

Moreover, due to the signs of its terms, the latter equation has P11 = ) i @€ {=1,1}
[2(3‘1‘><1 +3-4 52)))}

a solution only when 2
(s1)(s3

¢ =—a (94) (102)

for which it becomes P12 = 62211, e2€{-1,1} (103)
(R2(st) — 3(s2)(s2)) 2, P =crobi, Wil €LY (09

+ (= (s2) +3R*(s7)(s3))p¥, = 0. 95) 2= (105)

As stated above, (21) can thus be replaced by (9%Q8. In  \yhere R is defined in (92).
addition, (94) allows us to replace (91) by

Doy = —abir (96) APPENDIX B
R PROOF OF THEOREM DEFINING A SPECIFIC
The set of equationEQ; is thus replaced by the equivalent TYPE OF SEPARATING EQUILIBRIUM POINT
setEQ; = {(19),(95),(90),(96)}. Moreover, (95) may be |n this appendix, we restrict ourselves to the case when the
rewritten as separating functions (7) are usEdand we provide the proof
2 _Rp22) g7) ©f Theorem 2 of Section IV-E.
Qriy Piz) ©7) For any of the equilibrium points., ,, (18) and (23)—(26)
with yield
Q =/ (s1)(s3) — 3(s1)(s3) (98) wyy = “_gpn (106)
so that the seEQ; of equations is equivalent t&Q, = _ —a12 (107)
{(19),(97),(90), (96)}. This shows that the considered algo- 2= Tom
rithm yields a specific case, i.&) = 0, which corresponds to A —a21p (108)
globally Gaussian sources (defined in Section V). In this case, 2t c
(97) is always fulfilled and disappearsQ, then becomes a Wap = a_cl}pn (109)

set of only three equations with four unknowns (all tegmyg,
Wh'Ch has an 'nf'n't.e number Oflsqllj't'ons' In other WQI’.dS., N 120, the opposite of the situation of Theorem 3, there is no need to require
this case, the algorithm has an infinite number of equilibriume sources to be globally sub-Gaussian here.
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with
C = aj1a22 — ai200:. (110)

It should be noted that the hypothesig ass — a12a2; # 0
mentioned in Section | is equivalent ¥ # 0. Equations

(106)—(109) show that this condition is required for the equi-

librium points F¢, ., to exist (with finite weight values).
For given nonzero mixture coefficients;, (23) and (106)
show thatw,; is positive or negative, depending on.

1283

wayo are positive is, in addition, such that is positive. This
proves Theorem 2.

APPENDIX C
PROOF OF THEOREM DEFINING A
STABLE SEPARATING EQUILIBRIUM POINT

In this appendix, we restrict ourselves to the case when the
separating functions (7) are used and the sources are globally
sub-Gaussian, and we provide the proof of Theorem 3 of

Similarly, (26) and (109) show that,, is positive or negative, Section IV-E. To this end, we first consider a specific case
depending or,. Therefore, exactly one of the four possiblgor which we derive a restricted version of Theorem 3, and

couples(ey, €2), i.e., exactly one of the four points,, ,, is
such thatw;; andwso are positive.

Similarly, for any of the equilibrium pointé:, .,, (18) and
(29)—(32) vyield

—az1

w11 = Tpm (111)
a

w1z = %Pm (112)
a

wa1 = %pm (113)
—a

Wa2 = 012]721 (114)

so that exactly one of the four poin€s,
and wyo are positive.

Now, consider the corresponding values Bf which are
defined in (45). For any of the equilibrium points
(106)—(109) yield

is such thatw;

1,€2

1,627

we then investigate the general case of interest.

A. Theorem and Proof for a Specific Case

The type of separating equilibrium point(s) to be eventually
considered is the one defined in Theorem 2, i.e., the point(s)
such thatvy; > 0, wee > 0, andD > 0. Before considering all
such points in subsection B of this Appendix, we here focus on
a subset of these points, consisting of the points that are such
thatwy; > 0, wee > 0, and wiowe; = 0 (these conditions
entail D > 0). For such points, the following theorem holds.

Theorem 5: For the separating functions (7) and globally
sub-Gaussian sources, if a separating equilibrium point is such
thatwi1 > 0, wes > 0, andwiowo; = 0, it is stable.

Proof: When setting the conditiom,, wo.; = 0 (without
any additional conditions ot;; andwss), the expressions of
the four roots); of the polynomialP(\) defined in (49)—(54)
become much simpler, i.e.,

C )\1 = 4w11 (120)
D = a11a221,U11UJ22. (115) )\2 — 4w22 (121)

(w11 + w22)3<y12y§> + Al/?
Similarly, for any of the equilibrium point&., ., (111)-(114) Az = 5 (122)

yield 3202 — AL/2
) N = (w11 + wa2) §y1y2> (123)

D = w11Wo2. (116)
a120621 with

It should first be noted that all these valuesiofare nonzero A= 9<yfy§>2(w11 — w29)? + 40y wo. (124)

sinceC, wy1, andwsyo are themselves nonzero, as explained

above. Now, consider the two points amahg ., andG., ., Moreover, it is here assumed that; > 0, wso > 0, and

that are such that;; andw,, are positive and assume thathe sources are globally sub-Gaussian, i.e., (57) is met for any

the two corresponding values @} were negative. Equationsseparating equilibrium point. In this case, we derive easily

(115) and (116) would then yield from (120)-(123) that all four roots\; of the polynomial
P()\) are real and positive. Moreover, @5 = w1 w2 > 0,

<0 and <0 (117) (44) yields+ < 0. All four roots of the ponnomiaIQ_(_A)
(11022 (12021 are therefore real and negative, due to (55). Condition C2)
valentl of Section 1V-Al then entitles us to conclude that any such
or equivalently separating equilibrium point is stable.
11022 —a12021
—— <0 and —c = 0 (118)  B. Proof for the General Case

In this subsection, we provide a proof of Theorem 3,
based on an extension of Theorem 5 above. To this end, we
investigate the stability of an arbitrary separating equilibrium
point, which is assumed to be such thaf, > 0, wi, > 0,
and DT > 0, where a superscriptl™ is used in the notations
i.e., 1 < 0. Because this is not true, at least one of the twelated to the weights?: and to the parameted? defined

i
points among#. and GG that are such thatv;; and in (45), in order to indicate that these values correspond to

and therefore, by adding the latter two expressions

11422 — 12021

% <0 (119)

1,€2 €1,€2
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the point where stability is to be tested. The approach usandd its proof). Moreover, sinc®! > 0, (44) yieldsr < 0
below consists of linking the stability of this test point to thdor any intermediate point. Therefore, all four roots of the
stability of a reference point, which is a separating equilibriupolynomial Q(A) have a negative real part, due to (55).
point corresponding to other values of the mixture coefficien®ondition C2) of Section 1V-Al then allows us to conclude
a;;. The latter coefficients are chosen so that the refereribat any such considered intermediate point is stable. The test
point has the same values as the test point for the paramefamt is especially stable, which yields Theorem 3.

wi; and wey but is such thatwiswe; = 0. Especially, we

hereafter consider the reference point defined as follows, where

a superscript " is used in the notations related to the weights APPENDIX D
w;; and to the parameted” of this reference point DEFINITION OF A NETWORK SUITED
TO SUPERGAUSSIAN SOURCES
wh =wh (125) In this appendix, we are concerned with the determination of
R _ T a set of separating functions and g resulting in a Cichocki
Wyp = W2 (126)

R network that is able to separate the sources that cannot be
wy =0 (127) processed by the standard network considered above. In other
wyh = w3y, (128) words, we look for a version of this network suited to super-

Gaussian sources. To this end, we take advantage of the

In order to link these two points, we consider a continuoggMilarity of the properties shown above between the standard

trajectory from the test point to the reference point in theersions of the Erault—Jutten and Cichocki networks, i.e., the

weight space, which corresponds to varying the coefficiergrsions that operate with the separating functions defineq in

a;; SO thatw,; at the considered separating equilibrium poirft/) and are called thg3, 1) networks hereafter. Based on this

is varied fromwY, to wi = 0. Each point of this trajectory is, similarity, we now consider a modified version of the Cichocki

therefore, an intermediate point (leading to a superscipt “Network, which operates with

in the notations used for its Weighi@[j and for the parameter

D) between the test point and the reference point, which is f@)==z and g(z)=2" (133)

defined as

and is called thé1, 3) Cichocki network hereafter. We expect
wl, =} (129) this modified network to apply to the same type of sources as

why = wl, (130) the correspondingl, 3) Hérault-Jutten network, i.e., to super-

. : - R Gaussian sourcéé. The remainder of this appendix aims at
wyy  varied fromwy, 10 wy; =0 (131)  checking that this conjecture is true. The method used to this
w§2 = wi,. (132) end is the same as in the previous sections. Therefore, only its

aspects specific to the, 3) network are detailed hereafter.

As it is assumed thaty; > 0 and wi, > 0, (129) and

(132) yield w{, > 0, and w3, > 0. Moreover, D' = A Equilibrium Points
wiwl, — whwl, is a linear function ofwl; and is therefore
comprised ofDT > 0 and D® = w!, wk, > 0. Therefore,

D" > 0. The conditionsw{; > 0, wi, > 0, and D' > 0, the Ci
combined with the fact that the sources are assumed to éig !
sub-Gaussian [i.e., (57) is met], imply that at the consider 3)

intermediate pointp; and ps, respectively, defined in (51)
and (53), are both negative. Therefoge/ps > 0. It can be

shown that the latter condition, combined with the fact th e then conclude, in the same way as in Section lll-D, that

T T T H
wii, Wy > 0, D' > 0, and (57) imply that none of the . N . .
P ; N the stability of these equilibrium points with respect to the
roots of the polynomial’(A) corresponding (o (50)—(54) hasmodified adaptation rule considered in this appendix must be

a zero real part® As this applies to any intermediate point, itSt died
means that when the considered intermediate point is varied '
continuously from the test point to the reference point, the

real parts of the roots aP(\) never become equal to zeroB. Stability of the Equilibrium Points

As these roots vary continuously, this implies that their sign 1) Tangent Mean Algorithm and First Stability Conditions:
remains constant and, therefore, equal to the sign that thfye |ocal stability of the equilibrium points of the considered
have for the reference point, i.e., positive (see Theorempaiwork is analyzed by applying the approach defined in

13This result is obtained by determining the purely imaginary solutions (§.ectlon IV-Al to the separatmg functlons' .(133)' T.h.|S again
P(A) =0, i.e., the solutions witth = iz, wherex is a real unknown. This Yields (41)—(45) and the associated stability conditions C1)
yields a set of first- and second-order equations, which has no solution for the
considered polynomial, due to the above-mentioned conditions. For the sake
of brevity, the simple but somewhat long resolution of this set of equations4This result concerning thel, 3) Hérault-Jutten network may be derived
is omitted here. from [10] and is explicitly provided in [4] and [5].

Whatever the selected couple of separating functighs),
the equilibrium conditions for the corresponding version of
chocki network are (9) and (10). Applying them to the
network based on the separating functions (133) and
rearranging them, we again get (11) and (12). Therefore, the
(1,3) network considered in this appendix yields exactly the
me equilibrium points as th{8, 1) network analyzed above.
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Fig. 5. Output signal’ (¢) of the (1,3) network for sources corresponding o= 0.5 (discrete set of points: see text).

and C2), but with » For any of the separating equilibrium poini$, ., and
G, e,» (140) is equivalent to (61).

M=  For any of the nonseparating equilibrium poi#fs, ., ,,

4dwao —dway 0 0 (140) is equivalent to (59).

—wW12 w11 3w22<yfy§> —3w21<yfy§> 3) Interpretation of the Necessary Stability Condition:

—3w12<yfy§> 3w11<yfy§> w22 —wWa1 ) Using the same approach as in Section IV-D, the above
0 0 —dwio 4wy (134) conditions allow us to conclude the following:
134

» The(1,3) network cannot separate globally sub-Gaussian
and Gaussian sources. This completes our stability anal-

From this, we again derive (47)—(49), but with ysis for such sources. The remainder of our analysis
pi=1 (135) therefore only concerns the other type of sources.
s = —5(w11 + was) (136) . fqr gl_oball,}/ su_per-(_‘;aussw\_n sources, S|tua}t|on1 _ and
5 on2 situation2,” defined in Section IV-D, are agampriori
p2 = —(yiyz) Jwiiwzo possible at this stage of the investigation. Additional
+ (w11 + dwaz) (w2 + dwi1) + 8D (137) properties are therefore considered hereafter to determine
p1 = 4(wig + wgg)D[9<y12y§>2 — 5] (138) which of these situations actually occurs.
2 4) Definition of a Stable Separating Equilibrium Poin&s
po =16D*[1 —9(yiy3)]. (139) ) P 9=d

explained above, we here restrict ourselves to the case when
The corresponding new polynomi#(}) is therefore used the separating functions (133) are used and the sources are
as an intermediate variable in the following analysis, whic§lobally super-Gaussian. The last step of the stability analysis
is again based on the original approach introduced in Secti@nthen based on the following theorems.
IV-B. Theorem 6: For the separating functions (133), if all mix-
2) Necessary Stability ConditionAs shown in Section IV- ture coefficientss;; are nonzero, at least one of the separating
C, Theorem 1 applies to any fourth-order polynomigl\)  equilibrium points is such that;; > 0, wss > 0, andD > 0,
with p, = 1 and, therefore, to any associated set of separatiiere D is defined in (45).
functions. When applied to the separating functions (133) Theorem 7:For the separating functions (133) and for
considered here and to the corresponding polynomial (43)obally super-Gaussian sources, if a separating equilibrium
(135)—(139), it yields the necessary stability condition point is such thatv;; > 0, wee > 0, and D > 0, it is stable.
<y%y§> < 1. (140) A theorem similar to Th_eorem 6 was c_>n|y prov_ed for th_e
3 (3,1) network operated with the separating functions (7) in
Using the expressions dfy?y3) with respect to the source Section 1IV. However, it also directly applies to tte, 3)
signals that were derived in Section IV for each equilibriumetwork adapted with the functions (133), as the proof of this
point, (140) may be rewritten as follows: theorem only depends on the expressions of the equilibrium
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Fig. 6. Output signal’ (t) of the (1,3) network for sources corresponding o= 0.1 (discrete set of points: see text).

points, which are the same for both networks. As for Theorefact that only one of the two speed-reduction phenomena
7, a new demonstration is required for the network considerddfined in Section V-B2 occurs here. The network again
in this appendix. This demonstration is not detailed hefevanders” before eventually reaching the nonseparating point,
because it is based on the same principles as that of the it does not suffer from any source asymmetry. After
corresponding theorem of Section 1. convergence, the output signgj(¢) again has three possible

From these theorems, we derive, in the same way asvialues (corresponding to the three horizontal lines in the
Section IV-E, that the(1,3) network is able to separate allfigure), showing that the network converges to a nonseparating
the globally super-Gaussian sources (and none of the otpeint. Moreover, the magnitude of the weight fluctuations is
types of sources as was proved above), which completes kb, as the sources are symmetric.

stability analysis. With super-Gaussian sources, i.e. wheis chosen so that
(68) is met, the network converges to a separating equilibrium
C. Simulation Results for th@, 3) Network point. This is illustrated in Fig. 6 for the case where= 0.1.

S‘gge asymmetric nature of the sources is again responsible for
an intermediate convergence speed (7000 samples) and for

to validate all the results derived above for fie3) network. ) .
These simulations were again performed for various valuestgf3 fluctuations of the we|ghts._After convergence, the .OUtPUt
signal Y1(¢) only has two possible values (corresponding to

the probabilityp defining the sources. The results thus obtain% e two horizontal lines in the figure)
are symmetric to those provided in Section V and are thereforeThvevreforelz the slourcels thatlilure §eparate d by (the)

described more briefly hereafter, network are the globally super-Gaussian signals. This fully

With sub-Gaussian sources, i.e., whems chosen so that . X . . )
(65) is met, the network converges to a nonseparating equi“coo_nflrms the theoretical analysis presented in the previous
' sections of this appendix.

rium point. This is illustrated in Fig. 5 for the cage= 0.5.
The convergence phase lasts about 7000 samples. This value
is comprised between those observed in the previous two ACKNOWLEDGMENT
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cases, i.e., 4000 and 9000 samples. This results from th . . .
P eI'he author would like to thank A. Deville and N. Charkani
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IV, whereas its last two roots become the stability analysis presented in this paper. He also wishes
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