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Analysis of the Convergence Properties of
Self-Normalized Source Separation Neural Networks

Yannick Deville, Member, IEEE

Abstract— An extended source separation neural network
was recently derived by Cichocki et al. from the classical
Hérault–Jutten network. It claimed to have several advantages,
but its convergence properties were not described. In this paper,
we first consider the standard version of this network. We
determine all its equilibrium points and analyze their stability
for a small adaptation gain. We prove that the stationary
independent sources that this network can separate are the
globally sub-Gaussian signals. As the H́erault–Jutten network
applies to the same sources, we thus show that the advantages
of the new network are not counterbalanced by a reduced
field of application, which confirms its attractiveness in the
considered conditions. Moreover, we then introduce and analyze
a modified version of this network, which can separate the
globally super-Gaussian source signals. These theoretical results
are experimentally confirmed by computer simulations. As a
result of our overall investigation, a method for processing each
one of the two classes of signals (i.e. sub- and super-Gaussian)
is available.

I. INTRODUCTION

BLIND source separation is a generic signal (and data)
processing technique that applies, e.g., to antenna or mi-

crophone array processing [1]. In its “simplest configuration,”
two measured signals and are available (e.g., from
sensors), and these signals are unknown linear instantaneous
mixtures of two unknown independent source signals
and , i.e. (see Fig. 1)

(1)

(2)

where the terms are unknown real-valued constant
(nonzero1) mixture coefficients such that2 .
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1The case when at least one mixture coefficientaij is zero is not detailed

here for two reasons. On the one hand, it is of no importance in this paper
because it implies that at least one of the measured signalsx1(t) andx2(t) is
not a mixed signal so that the initial source separation configuration reduces to
a classical adaptive filtering (or gain control) problem, which should be treated
with a simpler signal processing structure than the one considered here. On the
other hand, not considering that useless case somewhat simplifies the stability
analysis, as shown in Section IV.

2The latter condition corresponds to the invertibility of the mixing matrix
A consisting of the mixture coefficientsaij . This condition is required;
otherwise, the two measured signals are identical (up to a scalar factor). In
the latter case, the mixing matrix cannot be inverted by using these measured
signals, meaning that the source separation problem cannot be solved (no
separating equilibrium points with finite weight values exist in this case, as
shown in the demonstration of Theorem 2).

The source separation problem then consists of estimating
the source signals from the measured signals
up to a permutation and scaling factor. Although the linear
instantaneous mixture model is simple, the separation of a set
of sources from such mixed signals has various applications.
Several of them concern radio-frequency systems (e.g.,
satellite communications [2], protection against garbling in
radar applications [3], multitag identification systems [4],
[5]), but others are, e.g., related to the analysis of signals
measured in mechanical structures (movements of dams [6],
nondestructive control of the generators of nuclear power
plants [6]).

The first two solutions to the linear instantaneous source
separation problem were proposed by Bar-Nesset al. [2] and
Hérault and Jutten (see, e.g., [1], [7], and [8]) at the beginning
of the 1980’s. Since then, source separation has been a very
active research field, and many alternative approaches have
been developed. For a survey of all these methods, refer to
[9]. For the sake of brevity, we only consider hereafter the
methods directly related to the specific approach analyzed in
this paper, i.e., we focus on the solutions initially proposed by
Hérault and Jutten and then extended by other authors.

The H́erault–Jutten approach is based on a recurrent ar-
tificial neural network. The convergence properties of this
network have been analytically studied by various indepen-
dent authors in the “simplest configuration” defined above.
Sorouchyari [10] and Fort [11] used almost the same method,
which was then revisited and somewhat extended by Moreau
and Macchi [12], [13]. Comonet al. [14] presented another
method that yields different results. An approach bridging the
gap between these two methods was then proposed by Deville
[15] so that the convergence properties of the simplest versions
of this network are now well defined.

Two classes of structures related to the Hérault–Jutten
network were then also proposed for performing linear in-
stantaneous source separation. On the one hand, Moreau and
Macchi [12], [13], [16] introduced a direct (i.e., nonrecurrent)
version of the H́erault–Jutten network based on the same
adaptation rule. This network is attractive because it avoids the
matrix inversion that must be performed with the recurrent ver-
sion in order to derive the outputs from the inputs and network
weights. Moreau and Macchi also studied the convergence
properties of this network in the “simplest configuration,”
using the same type of method as Sorouchyari and Fort. They
also proposed and studied a mixed version of this network
[12], [13].

On the other hand, Cichockiet al. [17] defined neural
networks that may be considered to be extensions of the
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above-mentioned ones. These new networks contain additional
self-adaptive weights, which are updated to normalize the
“scales” of the network outputs. These networks were claimed
to be able to process ill-conditioned mixtures and badly scaled
source signals to which the Hérault-Jutten network would not
apply. Both the direct and recurrent versions of these types
of neural networks were described, and it was also proposed
to cascade them in a multilayer neural network in order to
improve performance. To our knowledge, the papers published
up to now only describe the principles of these networks as
well as their empirical performance derived from numerical
simulations. On the contrary, no theoretical proof has been
provided about their convergence properties. This may result
from the fact that such analyses are significantly more complex
than for the H́erault–Jutten and Moreau–Macchi networks, as
will be shown in this paper, due to the normalization scheme
introduced by Cichocki in his networks.

Therefore, at the current stage, the Cichocki networks seem
to be more powerful than the simpler formerly proposed
structures, but despite these advantages, we are entitled to
hesitate to use them, as their behavior is not well defined. It
is especially not known whether these networks have spurious
stable equilibrium points, that is, weight values toward which
they may converge without providing separated signals at their
outputs. Similarly, it is not known whether they are able to
separate a limited or large class of source signals. Such re-
strictions have been shown to exist for the Hérault–Jutten and
Moreau–Macchi networks. Similar limitations are therefore
expected to arise with the Cichocki networks, and they should
be determined. This paper therefore aims at precisely defining
the conditions of operation of these networks. It should first
be noted that the overall properties of the multilayer versions
of these networks are directly derived from those of the
individual layers that compose them because each of these
layers is adapted by a localadaptation rule, i.e., independently
from the other layers. Therefore, the convergence analysis
only needs to be performed for the single-layer versions of
these networks. Moreover, only the direct version of these
networks is considered hereafter since it is more attractive
than the recurrent one as explained above and because similar
results are expected for both versions based on the similarity
observed between the properties of the Hérault–Jutten and
Moreau–Macchi networks.

The remainder of this paper is organized as follows. The
considered type of source separation networks is defined in
Section II. Two specific versions of these networks are then
studied. As they yield similar analyses, only the investigation
of the standard version is reported in detail in the subsequent
sections, whereas the modified version that we introduce
for processing other types of source signals is described
more rapidly in Appendix D. More precisely, the presentation
of the standard version contains the following aspects. Its
equilibrium points are studied in Section III. The stability of
these points is then investigated in Section IV. The theoretical
results thus obtained are checked by means of computer
simulations in Section V. Eventually, Section VI presents the
conclusions drawn from this investigation and outlines its
potential extensions.

Fig. 1. Basic source separation configuration and direct Cichocki network.

II. DEFINITION OF THE CONSIDERED CLASS OF NETWORKS

This section briefly describes the principles of the class of
direct single-layer Cichocki networks which is analyzed in the
subsequent sections. This investigation is performed for the
“simplest configuration” defined in Section I, and the source
signals and are assumed to be stationary, zero-
mean, and statistically independent. At each time step, the
network (shown in Fig. 1) receives both mixed signals
and defined by (1) and (2) and processes them as follows.

1) It computes its output signals and corre-
sponding to the current input signals and internal weight
values , i.e.,3

(3)

(4)

2) It also updates its four real-valued weights according
to the following adaptation rules:

(5)

(6)

where is a small positive adaptation gain, and
and are distinct odd functions called the “separating
functions” below.

The principles of the adaptation rules (5) and (6) may be
summarized as follows:

• Rule (6) is used for updating the cross-coupling weights
and . It aims at making the outputs indepen-

dent and thus, respectively, proportional to each source.
It is the same rule as that of the Hérault–Jutten and
Moreau–Macchi networks.

• Rule (5) is used to update the direct weights and .
It aims at normalizing the “scales” of the output signals

and , respectively. The scaling coefficients
and are meant to self-adapt to the processed signals.
This rule is specific to the Cichocki network (whereas
in the Hérault–Jutten and Moreau–Macchi networks,
and are fixed to 1). The above-mentioned advantages
of the Cichocki network result from the adaptation of
these weights.

3The weight valueswij depend ont. For readability, this is often omitted
in the notations used below.
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The last parameters that must be defined in order to fully
specify the considered version of the network are the selected
separating functions and . These parameters appear in
the Cichocki, H́erault–Jutten, and Moreau–Macchi networks.
Various functions have been considered in the papers related to
all these networks. The most commonly used set of functions
is [1], [4], [5], [10]–[13], [15]–[17]

and (7)

The subsequent sections only concern this specific set, whereas
another set is considered in Appendix D.

It should be noted that the “neural” nature of the
Hérault–Jutten, Moreau–Macchi, and Cichocki networks does
not lie in their input/output transfer function. Whereas a
specific feature shared by many neural networks consists
in transferring input signals through nonlinear (most often
sigmoidal) functions, the networks considered in this paper
have a linear transfer function. Instead, their neural nature
resides in their original inspiration [8] and in the nonlinearity
used in their adaptation rules, i.e., in their nonlinear separating
functions and/or .

III. EQUILIBRIUM POINTS

A. Definition of the Equilibrium Points

The equilibrium points of the network adaptation rules (5)
and (6) are all the quadruplets of constant weight values

such that

(8)

where stands for mathematical expectation. Condition (8)
may be rewritten by using (5) and (6), showing that the
equilibrium points are the solutions of

(9)

(10)

Especially for the separating functions defined in (7), these
equations become

(11)

(12)

Given the source signals and mixture coefficients ,
the problem is then to derive the corresponding quadruplets
of weight values that meet (11) and (12). To this end, we first
determine the corresponding composite matricesdefined as
follows (see also [17]). The mixture equations (1) and (2) may
be rewritten in matrix form as

(13)

where and
is the mixture matrix composed of the mixture coefficients

. Similarly, (3) and (4), defining the transfer function of the
network, may be rewritten in matrix form as

(14)

where and is the weight matrix
composed of the weight values . From (13) and (14), the
overall relationship between the source signals and the
output signals may be written in matrix form as

(15)

or explicitly as

(16)

(17)

where , which is composed of the real-valued elements,
is defined as

(18)

By using (16) and (17) and taking into account the indepen-
dence of the source signals, the equilibrium conditions (11)
and (12) may be rewritten as4

(19)

(20)

and

(21)

(22)

The resolution of these four equations provides the expressions
of the four elements of the composite matrix for each
equilibrium point with respect to the moments of the source
signals. The determination of these elementsis presented
in the following subsections. The corresponding weight values
may then be derived from (18) (see the beginning of Appendix
B).

B. Equilibrium Points with at Least One Zero Element

As a first step, we determine the four specific sets of
solutions of (19)–(22) that, respectively, correspond to each
of the additional conditions or

. Straighforward computations show that the condition
implies and vice versa so that each of the two

conditions and leads to the same solution,
corresponding to both and . Similarly, the
conditions and yield the same solution.
Eventually, the solutions of (19)–(22) for which at least one
element is zero are the following ones:

• a first set containing four solutions (depending on the
selected values of and )

(23)

(24)

(25)

(26)

4In the remainder of this paper, the time indext is omitted in the
mathematical expectations of signals.
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These equilibrium points are denoted hereafter. For
each of them, (16) and (17) become

(27)

(28)

Therefore, at these points, each network output is
proportional to the source having the sameindex ,
i.e., the network achieves the separation of the source
signals without permuting them. These solutions only
differ in the signs of the coefficients by which the source
signals are multiplied.

• a second set that also contains four solutions

(29)

(30)

(31)

(32)

These equilibrium points are denoted hereafter. For
each of them, (16) and (17) become

(33)

(34)

Therefore, at these points, and
, i.e., the network achieves the separation of the

source signals while permuting them. Again, these solu-
tions only differ in the signs of the coefficients by which
the source signals are multiplied.

C. Equilibrium Points with Only Nonzero Elements

The only solutions of (19)–(22) that were not provided by
the method used in the previous subsection are those that meet
the additional requirement

(35)

Their determination is detailed in Appendix A. It yields the
following eight points5 (depending on the selected values of

and ):

(36)

(37)

(38)

(39)

with

(40)

5Additional solutions exist in the specific case of globally Gaussian sources,
as explained in Appendix A.

These equilibrium points are denoted hereafter.
For all of them, the outputs of the network are still expressed
according to (16) and (17) with (35). Therefore, at these points,
the network outputs mixtures of the two sources, thus failing
to achieve source separation.

D. Discussion

To be able to solve the source separation problem de-
fined in Section I, the system under investigation should have
equilibrium points at which it outputs separated sources. The
above description shows that the network considered in this
paper indeed meets this requirement (the corresponding points
are the eight points and , which are called the
“separating equilibrium points” below). However, it also has
“spurious” equilibrium points, i.e., equilibrium points at which
it outputs mixtures of the sources (namely, the eight points

, which are called the “nonseparating equilibrium
points” below). We must then determine which of these 16
equilibrium points are stable, depending on the nature of the
sources, or at least which types of sources can be separated by
this network as a result of some stability properties of these
equilibrium points. That is the topic of the next section.

IV. STABILITY OF THE EQUILIBRIUM POINTS

A. Tangent Mean Algorithm and First Stability Conditions

1) General Principles:Sorouchyari [10] and Fort [11] used
the same approach to investigate the local stability of the
equilibrium points of the H´erault–Jutten network. This method
was then also applied by Moreau and Macchi [12], [13],
[16] (with a reference to the “ordinary differential equation”
technique [18]) to their modified versions of the Hérault–Jutten
network.6 For any fixed separating functions7 and equilibrium
point , this method consists of i) considering the mean
adaptation algorithm, here obtained by replacing the right side
of (5) and (6) by its mathematical expectation and ii) deriving
a first-order development of this mean algorithm at point.
This yields, in vector form

(41)

where is the Jacobian matrix of the system at point
. is the column vector defined as

, where each component is the
difference between two values of , respectively, at a
considered point in the neighborhood of and at point
itself. A necessary and sufficient condition for pointto be
locally stable is then as follows: C1) the real parts of all the
eigenvalues of are negative [10]. An equivalent condition is
C2), which is the real parts of all the roots of the characteristic
polynomial associated with are negative, where
is defined as

(42)
6Moreau and Macchi also considered related approaches targetted at the

discrete-time and stochastic versions of the adaptation rule [12], [13], [16].
7Although the overall method may be applied to any separating functions,

it has been detailed only for specific functions in the literature, i.e., especially
for (7).
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It should be clear that this approach is accurate only for a
vanishing adaptation gain because the first-order develop-
ment that it uses yields a linearized approximation of the
considered network around the selected equilibrium point. On
the contrary, for a nonvanishing adaptation gain, this approach
only provides approximate results.

The first step of the method used in this paper is based
on the principles defined above and consists of computing the
Jacobian matrix and the associated characteristic polynomial

of the considered network, as shown in the remainder
of this subsection. However, the next step, consisting of the
practical exploitation of condition C2), leads to a specific
approach, which is presented in Sections IV-B2 to IV-B5.

It should be noted that the adaptation rule of the considered
network has some similarities with the class of constant
modulus adaptive (CMA) algorithms. Therefore, the analysis
of its mean behavior presented below has some links with
the investigations concerning CMA algorithms reported in the
literature (see, especially, the capture analysis presented in
[19]).

2) Application to the Considered Network:When using the
separating functions (7), relatively long but straightforward
calculations yield

(43)

with

(44)

(45)

and

(46)

where are the weight values at the considered equilibrium
point . Hence, (42) allows the derivation that

(47)

with

(48)

(49)

(50)

(51)

(52)

(53)

(54)

Equations (47) and (48) allow us to link the rootsof
to the roots of , according to

(55)

The polynomial is therefore used as an intermediate
variable in the following analysis.

B. Discussion of Stability Conditions

Based on C2), the next natural step of the method would
consist of

i) determining the analytical expressions of the roots of
;

ii) deriving the expressions of the roots of [by using
(55)] as well as of their real parts;

iii) investigating the signs of these real parts, depending on
the considered equilibrium point and on [and,
hence, on the source statistics due to (16) and (17)].

This approach could be used for the Hérault–Jutten network
because its associated polynomial is only of order 2 so
that it yields simple computations.8 From a theoretical point
of view, this method also applies to the network considered in
the current paper because is of order 4, and the analytical
expressions of its roots can be determined using Ferrari’s
method [20]. This approach is, however, very impractical as
the expressions of the roots that we derived for the polynomial
corresponding to (49)–(54) turn out to be very complicated.

An alternative approach can be developed by using the
following principles. In fact, from the stability point of view,
there is no need to determine the exact expressions of the roots
of . Instead, we only need a necessary and sufficient
condition under which the real parts of all these roots are
negative, i.e., under which is a Hurwitz polynomial
[20]–[22]. This type of problem has been studied in the
literature [20]–[22] and yields the following necessary and
sufficient stability condition for any fourth-order polynomial

9

(56)

where the parameters are the coefficients of , here
derived from the coefficients of by using (47) and
(48). This approach is attractive because it directly provides
a complete stability condition (56) for each equilibrium point,
unlike the method outlined at the beginning of this subsec-
tion. However, developing this condition explicitly for the
polynomial corresponding to (47)–(54) yields some
complicated expressions. From these expressions, we cannot
easily carry out the last step of the stability analysis, i.e.,
gather the stability conditions at all equilibrium points to

8The H́erault–Jutten network gives rise to a second-order polynomialP (�)
because it only contains two adaptive weights (sincew11 andw22 are fixed
to 1).

9This description applies to the case whenq4 > 0. This condition is met
here becauseq4 = p4 = 1.
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eventually derive which types of sources can be separated by
the considered network.

Therefore, in addition to the theoretically complete but
impractical solution based on (56) that we already defined
above, we developed an original approach that we describe
hereafter. This method consists of focusing on some specific
stability properties that are sufficient for determining which
types of sources can be separated by the network operating
with the separating functions (7).

C. Necessary Stability Condition

1) General Principles:The proposed approach uses the fact
that a simple necessary condition for any given equilibrium
point to be stable can be derived very easily. This condition is
based on the following theorem, which holds for any fourth-
order polynomial with .

Theorem 1: For any equilibrium point, a necessary stability
condition is C3) .

Proof: If has at least one real positive
and one real negative root because is a continuous
function of and when as , and
so has , whatever the sign of, due to the relationship
(55) between the roots of and . C2) is, therefore,
not met. Similarly, if , one of the roots of and,
therefore, of is zero. C2) is, therefore, not met. In other
words, stability requires . Moreover, .
This yields Theorem 1.

Note that this result can also be derived from (56). Each of
the four conditions contained by (56) is a necessary stability
condition, especially the last one, i.e., , which is
equivalent to since (47) and (48) yield .

2) Application to the Considered Network:When using the
separating functions (7), is defined by (50)–(54). Theo-
rem 1 then shows that for any equilibrium point, a necessary
stability condition is

(57)

This condition should preferably be expressed with respect
to the source signals . To this end, the moment
should first be expressed with respect to these source signals.
This depends on the relationship between the source signals
and output signals and, therefore, on the considered
equilibrium point.

• For any of the equilibrium points , (23)–(28) yield

(58)

Condition (57) then reads

(59)

• All the equilibrium points also yield (58) and (59).

• For any of the nonseparating equilibrium points ,
(16), (17), and (36)–(39) yield

(60)

Condition (57) then reads

(61)

D. Interpretation of the Necessary Stability Condition

When using the separating functions (7), we showed above
that for any equilibrium point, the necessary stability condition
(57) is equivalent to (59) or (61). Therefore, it only depends
on the considered type of sources (and, e.g., not on the values
of the mixture coefficients ). This stability condition can
then be reinterpreted by splitting the analysis according to the
possible types of sources, instead of using the partition related
to the types of equilibrium points, which was considered in
Section IV-C2. This yields the following results.

• The first case corresponds to the union of globally super-
Gaussian and Gaussian sources, where the globally super-
Gaussian sources are defined [11] as the sources that meet
(61), and the globally Gaussian sources are those such
that [11]

(62)

In this case, (59) is not met; therefore, all the separating
equilibrium points are unstable. Therefore, the network
cannot converge to any of these points so it fails to
achieve source separation. This completes our stability
analysis for such sources. The remainder of our analysis,
therefore, only concerns the other type of sources.

• The second case corresponds to the globally sub-Gaussian
sources, which are defined [11] as the sources that meet
(59) and are encountered, e.g., in [4] and [5]. In this
case, (61) is not met; therefore, all the nonseparating
equilibrium points are unstable. Therefore, in this case,
the network cannot converge to any of these undesired
points. With regard to the separating equilibrium points,
no conclusions can be drawn about their stability yet, as
(59), although it has been met here, is only a necessary
condition. Therefore, two situations area priori possible:

—Situation 1: All the separating equilibrium points are
unstable. In that case, the network cannot converge
to any of these points and, therefore, fails to separate
the sources.

—Situation 2: At least one of the separating equilibrium
points is stable. The latter then being the only stable
points, the network can only converge to such a
point10 and thus succeeds in separating the sources.

10This may require an adequate initialization point and a low enough
adaptation gain� for the network to remain in the attraction domain of this
point.
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In order to determine whether the situation that actu-
ally occurs is “situation 1” or “situation 2,” additional
properties are used. They are described in the subsequent
subsection.

E. Definition of a Stable Separating Equilibrium Point

As explained above, we restrict ourselves here to the case
when the separating functions (7) are used and the sources are
globally subGaussian. The last step of the stability analysis is
then based on the following theorems, the proofs of which are,
respectively, provided in Appendices B and C.

Theorem 2: For the separating functions (7), if all mixture
coefficients are nonzero, at least one of the separating
equilibrium points is such that and ,
where is defined in (45).

Theorem 3: For the separating functions (7) and for glob-
ally sub-Gaussian sources, if a separating equilibrium point is
such that and it is stable.

Theorem 2 shows the existence of a specific type of sepa-
rating equilibrium points (when all are nonzero), whereas
Theorem 3 shows its stability in the considered conditions. As
an overall result, the network has at least one stable separating
equilibrium point, i.e., the situation that actually occurs is
“situation 2” defined above. As explained in Section IV-D,
the network is therefore able to separate all the considered
sources, i.e., all the globally sub-Gaussian sources and none
of the other types of sources as was proved in Section IV-D,
which completes the stability analysis.

V. SIMULATION RESULTS

In order to illustrate the theoretical results obtained in the
previous sections, we performed various simulations with the
considered version of the network. The simulation conditions
are defined hereafter, and their results are then described.

A. Simulation Conditions

1) Source Signals:Each source used in the simula-
tions was a random binary-value signal, taking the values1
and 1, respectively, with the probabilities and . In
each simulation, the same valuewas used for both sources.
This value was varied over the simulations. It should be noted
that these sources are not zero-mean, except for , as

(63)

The network was modified accordingly, using the approach
already reported [8] for the H́erault–Jutten network. Briefly,
(3) and (4) were applied to the actual nonzero-mean signals

and , and (5) and (6) were used with estimates
of the zero-mean versions of the outputs . The
stability conditions thus apply to the zero-mean sources
corresponding to the actual sources , i.e.,

(64)

It can be easily shown that for the sources considered
here, the global sub-Gaussianity condition (59) is equivalent to

(65)

where the lower and higher boundsand are equal to

(66)

(67)

Similarly, for such sources, the global super-Gaussianity con-
dition (61) is equivalent to

or (68)

To ease the interpretation of the simulation results presented
in the next subsection, a comment should be made here about
the graphical representations of the considered sources. The
representation of one such source consists of a discontinuous
set of points having two -coordinate values, i.e., the two
possible values of the source. These points are visible when
the source is represented over a short time period. However,
they appear as two horizontal lines when a long time period
is considered.

2) Mixture ParametersAll simulations were performed
with artificial mixed signals created as linear instanta-
neous combinations of the above-defined source signals.
In other words, the mixed signals were derived by using the
mixture equations (1) and (2), where all zero-mean signals
were replaced by the actual nonzero-mean signals and

. The following mixture coefficients were used in all
simulations:

• ;
• ;
• ;
• .

Again, it should be noted that each mixed signal has four
possible values so that it appears as four horizontal lines when
represented over a long time period.

B. Simulation Results

Simulations were performed for various values of the prob-
ability defining the sources. The following results were thus
obtained.

1) Simulations with Sub-Gaussian Sources:When is cho-
sen so that (65) is met, the network succeeds in separating
the sources. This is illustrated in Figs. 2 and 3 for the case

. Fig. 2 represents the evolution of the output signal
, which contains the following phases (the output signal
yields the same results).

• The network weights start from 0, and so does , due
to (3).

• The first 4000 samples correspond to the network con-
vergence phase. The four curves that appear in Fig. 2
during this phase result from the fact that then
contains a mixture of the two sources. This corresponds
to the phenomenon described above for mixed signals,
except that the curves are slanted here instead of being
straight and horizontal, as the magnitude of the weights
and, therefore, of increases during this phase.

• After about 4000 samples, the weights have converged to
constant values so that the magnitude of remains
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Fig. 2. Network output signalY1(t) for sources corresponding top = 0:5 (discrete set of points: see text).

constant. Moreover, this signal then appears as only
two lines, which means that it only contains a single
source (like in the above description of source signals,
as opposed to that of mixed signals).

Fig. 3 represents the evolution of the network weights. This
illustrates the considerations about these weights provided
above and makes it possible to analyze the results more quan-
titatively as follows. The general expressions of the weight
values at all separating equilibrium points are provided in
Appendix B. Hereafter, they are applied to the specific sources
and mixture coefficients considered here, taking into account
the expressions of the terms provided in Section III.
Denoting

(69)

the weights at any of the four equilibrium points are
expressed as

(70)

(71)

(72)

(73)

with . Similarly, the weights at any of the
four equilibrium points are expressed as

(74)

(75)

(76)

(77)

Comparing these values with Fig. 3 confirms that the network
does converge to one of the separating equilibrium points
and, more precisely, to . It should be noted that this
provides an experimental validation of Theorem 3. At point

, (70) shows that , (73) shows that , and
. As results in (65),

i.e., in sub-Gaussian sources, Theorem 3 allows us to conclude
that is stable, i.e., that the network can converge to this
point; this actually occurs, as shown above.

2) Simulations with Super-Gaussian Sources:When is
chosen so that (68) is met, the network converges, but to a
nonseparating equilibrium point. This is illustrated in Fig. 4
for the case . This figure yields the same comments
as Fig. 2, except for the following aspects. When the network
has converged to a nonseparating equilibrium point, the output
signal is still a mixed signal. Therefore, it has four
possible values, corresponding to four horizontal lines, as
explained above. Moreover, the situation considered here is
a degenerated case, where two of these four values become
equal. This may be explained as follows. Here, the same value

is used for both sources so that . The expressions
of the terms provided in Section III then show that at any
given nonseparating equilibrium point , corresponding
to a fixed value

(78)

As and , the possible values of
are then , 0, and . In other words, two of the four
values that are different in the general case here both become
equal to 0. The convergence to a nonseparating point then
corresponds to a signal represented as three horizontal lines.
This is what occurs in Fig. 4 after about 9000 samples. It
should be noted that the network here converges less rapidly
than in Fig. 2. This results from two phenomena. On the one
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Fig. 3. Network weights for sources corresponding top = 0:5.

Fig. 4. Network output signalY1(t) for sources corresponding top = 0:1 (discrete set of points: see text).

hand, we observed that in the situations where the network
eventually converges to a nonseparating point, the weight
values always “wander” during a significant period before
evolving toward that nonseparating point. On the contrary,
convergence toward a separating point occurs directly and,
therefore, more rapidly, like in Fig. 2. On the other hand, this
low convergence speed may result from the highly asymmetric
nature of the sources considered here (i.e., ), which
means that a large number of samples must be processed before
the network has received the number of samples equal to 1,

which is required to achieve convergence. This asymmetric,
i.e., “irregular,” nature of the sources is also expected to be
responsible for the large magnitude of the fluctuations of the
weights and, therefore, of , as compared with those that
appear in Fig. 2. These interpretations are confirmed by the
simulations reported in Appendix D.

3) Conclusions Derived from Simulations:The simulations
described above show that the sources that are separated by the
version of the Cichocki network operating with the separating
functions (7) are the globally sub-Gaussian signals. This fully
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confirms the theoretical analysis presented in the previous
sections.

VI. GENERAL CONCLUSIONS AND PROSPECTS

The Cichocki network has been claimed to have significant
advantages over the previously published Hérault–Jutten net-
work, but up to now, its exact conditions of operation had
not been described. The theoretical analysis and computer
simulations reported in this paper prove that the stationary
independent sources that can be separated by the standard
version of this network are the globally sub-Gaussian signals.
As the corresponding H́erault-Jutten network applies to the
same sources, this shows that the new features provided by
the Cichocki network are not obtained at the expense of a
degradation of the field of application. From this point of
view, this paper confirms the attractiveness of the Cichocki
network on the basis of objective criteria in the considered
conditions. To our knowledge, this is the first reported analysis
for a four-adaptive-weight source separation neural network,
whereas the previous papers concerned networks in which
only two weights are adapted (i.e., the diagonal weights of
their weight matrix are fixed to 1). It should be remembered,
however, that this analysis only applies to a small adaptation
gain, as explained in Section IV-A1.

As this paper shows that the standard version of this network
cannot separate globally super-Gaussian source signals, we are
led to wonder whether a modified version can be defined for
such sources. We propose and analyze such a network, based
on another set of separating functions, in Appendix D. As a
result of our overall investigation, a method for processing
each one of the two classes of signals (i.e., sub- and super-
Gaussian) is thus available.

This investigation may be extended by analyzing the sta-
bility conditions associated with the discrete-time stochastic
version of the network adaptation rules. This analysis could be
based on the approach developed by Moreau and Macchi for
their networks [13], [16]. The behavior of Cichocki networks
should also be studied for nonstationary source signals and for
other “configurations” than the one defined in Section I. It is
likely to be different from that of the H́erault–Jutten networks
due to the self-normalization scheme of these new networks.

APPENDIX A
DETERMINATION OF THE EQUILIBRIUM

POINTS WITH ONLY NONZERO ELEMENTS

As stated in Section III, the equilibrium points of the consid-
ered adaptation rules are all the quadruplets of weight values

, which meet the set of four equations:
EQ . In this appendix, we deter-
mine the solutions of these equations meeting the following
requirement:

(79)

Due to (79), the subset of EQ is equivalent
to , where (80) is defined as the following lin-
ear combination of (19) and (20):

. Equation (80) is chosen to get rid of the term
, which occurs in (19) and (20), and reads explicitly

(80)

Similarly, due to (79), the subset of EQ is equiv-
alent to , where (81) is defined as the following
linear combination of (21) and (22):

. Equation (81) is also chosen to get rid of the term
, which occurs in (21) and (22), and reads explicitly

(81)

On assumption (79), the set of equationsEQ to be
solved is thus replaced by the equivalent setEQ

. The latter set of equations can then
be simplified by using the following theorems.

Theorem 4: At a given point in the weight space, if (79)
is met and if , this point is not an
equilibrium point of the adaptation algorithm considered in
this paper.

Proof: If (79) is met and if , then
(16) and (17) yield

(82)

Hence, we derive

(83)

If the considered point were an equilibrium point, (11) and
(12) would be met and would especially yield

(84)

(85)

As (84) and (85) are not compatible with (83) and (79), we
conclude that in the considered conditions, the point is not an
equilibrium point.

Corollary 1: If a point in the weight space is an equilibrium
point of the adaptation algorithm considered in this paper and
if (79) is met, then .

Hence, we derive that on assumption (79), the set
of equations EQ is equivalent to the setEQ

, where (86) is defined as11

(86)

Moreover, it is easily shown that assuming (79), the subset
of EQ is equivalent to , where (87)

is defined as

(87)

The set of equationsEQ is thus replaced by the equiva-
lent set EQ , which consists of

11The equivalence betweenEQ2 and EQ3, assuming (79), may be shown
as follows: If EQ

2
is met, then the considered point is an equilibrium point;

therefore, Corollary 1 yieldsp11p22 � p12p21 6= 0. This term can then be
simplified in (81), thus yielding (86) and, therefore,EQ

3
. Conversely,EQ

3

always impliesEQ
2

.
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a subset of complicated equations and a subset
of simpler equations. As a first step, we solve the

latter subset of equations, i.e., we use it to expressand
with respect to and the statistics of the source signals.
We thus derive an equivalent subset obtained by multipliying
(87) and (86) either term by term or in a crossed way

(88)

(89)

The solution of these equations (for real-valued terms)
reads

with (90)

with (91)

where the ratio is defined as

(92)

The set of equationsEQ is thus replaced by the equivalent set
EQ . Equations (90) and (91) then
allow us to replace and in (21), thus yielding (still
with and )

(93)

Moreover, due to the signs of its terms, the latter equation has
a solution only when

(94)

for which it becomes

(95)

As stated above, (21) can thus be replaced by (95) inEQ . In
addition, (94) allows us to replace (91) by

(96)

The set of equationsEQ is thus replaced by the equivalent
set EQ . Moreover, (95) may be
rewritten as

(97)

with

(98)

so that the setEQ of equations is equivalent toEQ
. This shows that the considered algo-

rithm yields a specific case, i.e., , which corresponds to
globally Gaussian sources (defined in Section IV). In this case,
(97) is always fulfilled and disappears.EQ then becomes a
set of only three equations with four unknowns (all terms),
which has an infinite number of solutions. In other words, in
this case, the algorithm has an infinite number of equilibrium

points that do not achieve source separation. In the remainder
of this appendix, we only consider the case when the sources
are not globally Gaussian, i.e., . Equation (97) is then
equivalent to

(99)

so that the setEQ of equations to be solved is equivalent
to EQ . Solving (99) yields the
expression of versus , i.e.,

(100)

Inserting (100) in (19) yields

(101)

The set EQ of equations is thus equivalent toEQ
. Equation (100) may eventually be

inserted in (90) in order to express all terms with respect to
, which is defined explicitly in (101).EQ is thus replaced

by a set of four equations, which provide the final solution of
the considered problem and that read explicitly

(102)

(103)

with (104)

(105)

where is defined in (92).

APPENDIX B
PROOF OF THEOREM DEFINING A SPECIFIC

TYPE OF SEPARATING EQUILIBRIUM POINT

In this appendix, we restrict ourselves to the case when the
separating functions (7) are used,12 and we provide the proof
of Theorem 2 of Section IV-E.

For any of the equilibrium points , (18) and (23)–(26)
yield

(106)

(107)

(108)

(109)

12On the opposite of the situation of Theorem 3, there is no need to require
the sources to be globally sub-Gaussian here.
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with

(110)

It should be noted that the hypothesis
mentioned in Section I is equivalent to . Equations
(106)–(109) show that this condition is required for the equi-
librium points to exist (with finite weight values).

For given nonzero mixture coefficients , (23) and (106)
show that is positive or negative, depending on.
Similarly, (26) and (109) show that is positive or negative,
depending on . Therefore, exactly one of the four possible
couples , i.e., exactly one of the four points , is
such that and are positive.

Similarly, for any of the equilibrium points , (18) and
(29)–(32) yield

(111)

(112)

(113)

(114)

so that exactly one of the four points is such that
and are positive.

Now, consider the corresponding values of, which are
defined in (45). For any of the equilibrium points ,
(106)–(109) yield

(115)

Similarly, for any of the equilibrium points , (111)–(114)
yield

(116)

It should first be noted that all these values ofare nonzero
since , , and are themselves nonzero, as explained
above. Now, consider the two points among and
that are such that and are positive and assume that
the two corresponding values of were negative. Equations
(115) and (116) would then yield

and (117)

or equivalently

and (118)

and therefore, by adding the latter two expressions

(119)

i.e., . Because this is not true, at least one of the two
points among and that are such that and

are positive is, in addition, such that is positive. This
proves Theorem 2.

APPENDIX C
PROOF OF THEOREM DEFINING A

STABLE SEPARATING EQUILIBRIUM POINT

In this appendix, we restrict ourselves to the case when the
separating functions (7) are used and the sources are globally
sub-Gaussian, and we provide the proof of Theorem 3 of
Section IV-E. To this end, we first consider a specific case
for which we derive a restricted version of Theorem 3, and
we then investigate the general case of interest.

A. Theorem and Proof for a Specific Case

The type of separating equilibrium point(s) to be eventually
considered is the one defined in Theorem 2, i.e., the point(s)
such that , , and . Before considering all
such points in subsection B of this Appendix, we here focus on
a subset of these points, consisting of the points that are such
that and (these conditions
entail ). For such points, the following theorem holds.

Theorem 5: For the separating functions (7) and globally
sub-Gaussian sources, if a separating equilibrium point is such
that and , it is stable.

Proof: When setting the condition (without
any additional conditions on and ), the expressions of
the four roots of the polynomial defined in (49)–(54)
become much simpler, i.e.,

(120)

(121)

(122)

(123)

with

(124)

Moreover, it is here assumed that and
the sources are globally sub-Gaussian, i.e., (57) is met for any
separating equilibrium point. In this case, we derive easily
from (120)–(123) that all four roots of the polynomial

are real and positive. Moreover, as ,
(44) yields . All four roots of the polynomial
are therefore real and negative, due to (55). Condition C2)
of Section IV-A1 then entitles us to conclude that any such
separating equilibrium point is stable.

B. Proof for the General Case

In this subsection, we provide a proof of Theorem 3,
based on an extension of Theorem 5 above. To this end, we
investigate the stability of an arbitrary separating equilibrium
point, which is assumed to be such that
and , where a superscript “” is used in the notations
related to the weights and to the parameter defined
in (45), in order to indicate that these values correspond to



1284 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 1999

the point where stability is to be tested. The approach used
below consists of linking the stability of this test point to the
stability of a reference point, which is a separating equilibrium
point corresponding to other values of the mixture coefficients

. The latter coefficients are chosen so that the reference
point has the same values as the test point for the parameters

and but is such that . Especially, we
hereafter consider the reference point defined as follows, where
a superscript “ ” is used in the notations related to the weights

and to the parameter of this reference point

(125)

(126)

(127)

(128)

In order to link these two points, we consider a continuous
trajectory from the test point to the reference point in the
weight space, which corresponds to varying the coefficients

so that at the considered separating equilibrium point
is varied from to . Each point of this trajectory is,
therefore, an intermediate point (leading to a superscript “”
in the notations used for its weights and for the parameter

) between the test point and the reference point, which is
defined as

(129)

(130)

varied from to (131)

(132)

As it is assumed that and , (129) and
(132) yield , and . Moreover,

is a linear function of and is therefore
comprised of and . Therefore,

. The conditions and ,
combined with the fact that the sources are assumed to be
sub-Gaussian [i.e., (57) is met], imply that at the considered
intermediate point, and , respectively, defined in (51)
and (53), are both negative. Therefore, . It can be
shown that the latter condition, combined with the fact that

and (57) imply that none of the
roots of the polynomial corresponding to (50)–(54) has
a zero real part.13 As this applies to any intermediate point, it
means that when the considered intermediate point is varied
continuously from the test point to the reference point, the
real parts of the roots of never become equal to zero.
As these roots vary continuously, this implies that their sign
remains constant and, therefore, equal to the sign that they
have for the reference point, i.e., positive (see Theorem 5

13This result is obtained by determining the purely imaginary solutions of
P (�) = 0, i.e., the solutions with� = ix, wherex is a real unknown. This
yields a set of first- and second-order equations, which has no solution for the
considered polynomial, due to the above-mentioned conditions. For the sake
of brevity, the simple but somewhat long resolution of this set of equations
is omitted here.

and its proof). Moreover, since , (44) yields
for any intermediate point. Therefore, all four roots of the
polynomial have a negative real part, due to (55).
Condition C2) of Section IV-A1 then allows us to conclude
that any such considered intermediate point is stable. The test
point is especially stable, which yields Theorem 3.

APPENDIX D
DEFINITION OF A NETWORK SUITED

TO SUPER-GAUSSIAN SOURCES

In this appendix, we are concerned with the determination of
a set of separating functions and resulting in a Cichocki
network that is able to separate the sources that cannot be
processed by the standard network considered above. In other
words, we look for a version of this network suited to super-
Gaussian sources. To this end, we take advantage of the
similarity of the properties shown above between the standard
versions of the H́erault–Jutten and Cichocki networks, i.e., the
versions that operate with the separating functions defined in
(7) and are called the networks hereafter. Based on this
similarity, we now consider a modified version of the Cichocki
network, which operates with

and (133)

and is called the Cichocki network hereafter. We expect
this modified network to apply to the same type of sources as
the corresponding Hérault–Jutten network, i.e., to super-
Gaussian sources.14. The remainder of this appendix aims at
checking that this conjecture is true. The method used to this
end is the same as in the previous sections. Therefore, only its
aspects specific to the network are detailed hereafter.

A. Equilibrium Points

Whatever the selected couple of separating functions ,
the equilibrium conditions for the corresponding version of
the Cichocki network are (9) and (10). Applying them to the

network based on the separating functions (133) and
rearranging them, we again get (11) and (12). Therefore, the

network considered in this appendix yields exactly the
same equilibrium points as the network analyzed above.
We then conclude, in the same way as in Section III-D, that
the stability of these equilibrium points with respect to the
modified adaptation rule considered in this appendix must be
studied.

B. Stability of the Equilibrium Points

1) Tangent Mean Algorithm and First Stability Conditions:
The local stability of the equilibrium points of the considered
network is analyzed by applying the approach defined in
Section IV-A1 to the separating functions (133). This again
yields (41)–(45) and the associated stability conditions C1)

14This result concerning the(1; 3) Hérault–Jutten network may be derived
from [10] and is explicitly provided in [4] and [5].
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Fig. 5. Output signalY1(t) of the (1; 3) network for sources corresponding top = 0:5 (discrete set of points: see text).

and C2), but with

(134)

From this, we again derive (47)–(49), but with

(135)

(136)

(137)

(138)

(139)

The corresponding new polynomial is therefore used
as an intermediate variable in the following analysis, which
is again based on the original approach introduced in Section
IV-B.

2) Necessary Stability Condition:As shown in Section IV-
C, Theorem 1 applies to any fourth-order polynomial
with and, therefore, to any associated set of separating
functions. When applied to the separating functions (133)
considered here and to the corresponding polynomial (49),
(135)–(139), it yields the necessary stability condition

(140)

Using the expressions of with respect to the source
signals that were derived in Section IV for each equilibrium
point, (140) may be rewritten as follows:

• For any of the separating equilibrium points and
, (140) is equivalent to (61).

• For any of the nonseparating equilibrium points ,
(140) is equivalent to (59).

3) Interpretation of the Necessary Stability Condition:
Using the same approach as in Section IV-D, the above
conditions allow us to conclude the following:

• The network cannot separate globally sub-Gaussian
and Gaussian sources. This completes our stability anal-
ysis for such sources. The remainder of our analysis
therefore only concerns the other type of sources.

• For globally super-Gaussian sources, “situation1” and
“situation2,” defined in Section IV-D, are againa priori
possible at this stage of the investigation. Additional
properties are therefore considered hereafter to determine
which of these situations actually occurs.

4) Definition of a Stable Separating Equilibrium Point:As
explained above, we here restrict ourselves to the case when
the separating functions (133) are used and the sources are
globally super-Gaussian. The last step of the stability analysis
is then based on the following theorems.

Theorem 6: For the separating functions (133), if all mix-
ture coefficients are nonzero, at least one of the separating
equilibrium points is such that and ,
where is defined in (45).

Theorem 7: For the separating functions (133) and for
globally super-Gaussian sources, if a separating equilibrium
point is such that and , it is stable.

A theorem similar to Theorem 6 was only proved for the
network operated with the separating functions (7) in

Section IV. However, it also directly applies to the
network adapted with the functions (133), as the proof of this
theorem only depends on the expressions of the equilibrium
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Fig. 6. Output signalY1(t) of the (1; 3) network for sources corresponding top = 0:1 (discrete set of points: see text).

points, which are the same for both networks. As for Theorem
7, a new demonstration is required for the network considered
in this appendix. This demonstration is not detailed here
because it is based on the same principles as that of the
corresponding theorem of Section IV.15

From these theorems, we derive, in the same way as in
Section IV-E, that the network is able to separate all
the globally super-Gaussian sources (and none of the other
types of sources as was proved above), which completes the
stability analysis.

C. Simulation Results for the Network

The same type of simulations as in Section V was also used
to validate all the results derived above for the network.
These simulations were again performed for various values of
the probability defining the sources. The results thus obtained
are symmetric to those provided in Section V and are therefore
described more briefly hereafter.

With sub-Gaussian sources, i.e., whenis chosen so that
(65) is met, the network converges to a nonseparating equilib-
rium point. This is illustrated in Fig. 5 for the case .
The convergence phase lasts about 7000 samples. This value
is comprised between those observed in the previous two
cases, i.e., 4000 and 9000 samples. This results from the

15Whenw12 w21 = 0; P (�) has the same first two roots as in Section
IV, whereas its last two roots become

�3 =
(w11 +w22) +�1=2

2
and �4 =

(w11 +w22)��1=2

2
(141)

with

� = (w11 �w22)
2 + 36w11w22 y2

1
y2
2

2
: (142)

fact that only one of the two speed-reduction phenomena
defined in Section V-B2 occurs here. The network again
“wanders” before eventually reaching the nonseparating point,
but it does not suffer from any source asymmetry. After
convergence, the output signal again has three possible
values (corresponding to the three horizontal lines in the
figure), showing that the network converges to a nonseparating
point. Moreover, the magnitude of the weight fluctuations is
low, as the sources are symmetric.

With super-Gaussian sources, i.e. whenis chosen so that
(68) is met, the network converges to a separating equilibrium
point. This is illustrated in Fig. 6 for the case where .
The asymmetric nature of the sources is again responsible for
an intermediate convergence speed (7000 samples) and for
the fluctuations of the weights. After convergence, the output
signal only has two possible values (corresponding to
the two horizontal lines in the figure).

Therefore, the sources that are separated by the
network are the globally super-Gaussian signals. This fully
confirms the theoretical analysis presented in the previous
sections of this appendix.
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