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Abstract : This paper presents a method for processing convolutive mixtures of source
signals. The presented method aims at estimating various features of these sources, with
simpler means than the techniques traditionnally required for completely separating these
signals. The mixed signals are first processed in order to obtain ”associated mixed signals”,
which are only linear instantaneous mixtures of ”associated source signals” (at least to a
first order). These associated mixtures are then processed by a linear instantaneous source
separation device. This yields estimates of the associated sources, which are eventually
used to derive features of the original sources. The performance of this approach has
been checked experimentally in the case when: i) the considered signals are real mixtures
of acoustic sources (speech and/or music), and ii) the extracted features are the average
powers of the source signals. The resulting power estimation errors are lower than 4%,
which is quite acceptable in the considered applications.

Keywords : acoustic signals, autocorrelation function, blind source separation,
convolutive mixtures, higher-order statistics, power estimation.



1 Introduction

Blind source separation is a generic signal processing problem found in many applications
such as antenna or microphone array processing [1], [2]. More precisely, several classes of
such problems may be distinguished, depending on the nature of the mixtures which occur
between the considered source signals. The simplest class is the separation of unknown
source signals X;(t) only available through sensor signals F;(¢) which are linear instan-
taneous unknown mixtures of these source signals. For this Linear Instantaneous Source
Separation (LISS) problem, the basic configuration corresponds to two sources and two
sensors (Fig. 1) and is represented by:

Ei(t) = anXi(t) +a12Xo(t) (1)
Eg(t) = a21X1(t)+a22X2(t) (2)

where the terms a;; are unknown constant mixture coefficients, which may represent the
attenuation of the sources occuring during their propagation to the sensors. The goal is
then to estimate the source signals X;(¢) (up to a permutation and a scaling factor) from
the measured signals F;(t).

A more general class of Attenuation Delay Source Separation (ADSS) corresponds to
mixtures which include the attenuation coefficients of Eqs. (1) and (2) and also elements
of delays to yield the basic configuration:

E(t) = anXi(t—=611)+ a12Xo(t — 012) (3)
Eg(t) = 0,21X1 (t - 921) + G,QQXQ (t — 922) (4)

where the delays 6;; correspond to the unknown propagation times between the emission
locations of the source signals and the sensors.

Finally, the most general class considered in this paper is Convolutive Source Separation
(CSS) which corresponds to wideband convolutive mixtures, i.e. in the basic configuration:

Ei(t) = hi1(t) * X1(t) + hi2(t) * Xo(t) (5)
Eg(t) = ho1 (t) * X, (t) + h22(t) *x Xo (t) (6)

where ”+” represents convolution and h;;(t) are the impulse responses of unknown constant

mixture filters which, for example, model the case when wideband sources propagate with
a frequency-dependent attenuation.

A link between the above-defined classes of source separation problems is created as
follows in this paper. Convolutively mixed signals are considered. For such signals, a
classical CSS approach would aim at restoring precisely each source, but could reach
this goal only at the expense of considerable processing means (i.e. typically a set of
adaptive filters: see e.g. [3]-[10]). On the contrary, the method considered in this paper is
based on a performance/cost trade-off. The function to be performed by the system under
investigation is restricted to the estimation of source features, such as their average powers
in successive time windows. But this is achieved with simpler means than a CSS device:
apart from a pre-processing stage, these means only consist of a LISS device (where each
complete filter of a CSS device is replaced by a single coefficient).

This method applies to acoustic signals, since the propagation of a number of acoustic
sources to a set of microphones provides signals which are superpositions of filtered versions
of these sources, i.e. convolutive mixtures of these sources. Especially, when reflections



may be neglected (e.g. in the case of free-field propagation), this source filtering effect
resulting from propagation becomes restricted to an attenuation and a delay, as in the
above-defined ADSS problem. Acoustic signals are the type of sources that motivated our
investigation and that are used in this paper to illustrate the performance of the proposed
approach.

The remainder of this paper is organized as follows. The detailed principles of the
method outlined above are presented in Section 2. Its performance for artificial mixtures of
acoustic signals is provided in Section 3, whereas the results obtained with real recordings
are reported in Section 4. Section 5 first describes some potential applications of the
proposed method, as they may help understand the motivations of this investigation.
Section 5 then presents the conclusions drawn from this investigation and its potential
extensions.

2 Principles of the proposed approach

2.1 Overall system structure

In this subsection, we consider two types of acoustic source signal mixtures, i.e. respec-
tively the ones corresponding to ADSS and CSS problems. For each case, the proposed
processing method is depicted.

In the case when the available mixed signals are the same as in ADSS problems (see
(3)-(4)), the method proposed in this paper consists of the following three steps (Fig. 2):

1. Estimated mean values < FE;(t) > of the mixed signals E;(t) are computed over
the considered time window. Estimated zero-mean versions e;(t) of the supposedly
stationary mixed signals are then derived as: e;(t) = E;(t)— < E;(t) >. These
signals e;(t) are related to the zero-mean versions z;(t) of the source signals X(¢)
according to the same equations as the ones that exist between the non-zero-mean
signals, i.e:

ei(t) = anzi(t—0611)+ apza(t — 012) (7)
62(15) = a21.’1)1(t — 021) + (1,22.’132(75 — 922). (8)

2. The zero-mean mixed signals e;(¢) are then processed so as to obtain signals called the
”associated mixed signals” and denoted é;(v) hereafter, which depend on a variable
v defined below. This processing step aims at providing signals é;(v) which are linear
instantaneous mixtures of some signals, called the ”associated source signals” and
denoted Z;(v) below. This may be achieved by various processing approaches, so
that the overall generic method described here may be used to define various types of
systems. Especially, a possible approach consists in computing the autocorrelation
function T, (7) of each zero-mean mixed signal e;(¢). The validity of this specific
approach results from the fact that, due to (7)-(8), these autocorrelation functions
[¢,(7) may be expressed as follows with respect to the autocorrelation functions
[z, (7) of the supposedly uncorrelated zero-mean source signals z;(t):

el(T) = a%lrwl(T)"'a%Qsz(T) 9)

T
Fez(T) = a’%lrw1(7)+a’%2rw2(7)' (10)



Comparing these equations to (1)-(2) shows that the autocorrelation functions I, (7)
are indeed linear instantaneous mixtures of the autocorrelation functions T'y, (7).
This paper mainly deals with this case when the associated mixed and source signals
€;(v) and Z;(v) are respectively the autocorrelation functions I, (7) and T'z,(7) (the
variable v on which €; and Z; depend is then the argument 7 of the corresponding
autocorrelation functions). [11] depicts other cases, especially based on the power
spectral densities of the signals.

3. The above-defined second processing step transformed the initial problem into a
LISS problem (concerning the associated source signals). The third step of the
overall proposed method therefore consists in solving the latter problem. To this
end, any classical or original LISS structure may be used. In our investigation, we
considered various such structures. Their principles and application to our approach
are described in the following subsections.

It should be noted that in classical situations the considered source separation unit
directly receives the mixed signals E;(¢) (or their centered versions e;(t)) and aims at
providing output signals S;(t) (or their centered versions s;(¢)) which are estimates of the
original sources. On the contrary, in the overall approach proposed in this paper, the
source separation unit receives the associated mixed signals €;(v). This method therefore
yields a restriction, i.e. its outputs §;(v) are only estimates of the associated source
signals, but not estimates S;(t) of the initial source signals. More precisely, if the second
step of the proposed approach consists in computing autocorrelation functions, the system
provides estimates of the autocorrelation functions T'y; () of the centered source signals!.
In particular, the values of these outputs for 7 = 0 are estimates of the (average) powers
of the centered source signals®. These powers are the major parameters to be determined
with the proposed approach.

In the case when the available mixed signals are the same as in CSS problems (see
(5)-(6)), two alternative approaches may be used. The first one consists in only using the
above-defined method, which then only provides an approximate solution. The second
approach consists of: i) splitting the problem in sub-bands, so as to reduce it in each sub-
band to the basic ADSS-like problem that we described above, and ii) ”gathering” the
results obtained in each sub-band (e.g. by adding the source signal powers estimated in
each sub-band) in order to solve the overall problem. As shown below, ”good performance”
(with respect to the accuracy and product cost required in the considered applications)
may be achieved without splitting the signals in sub-bands, even in real situations where
the mixed signals are expected to be of the same general type as in CSS problems.

2.2 Hérault, Jutten and/or Nguyen LISS devices

As stated above, this subsection summarizes the major principles of the LISS devices used
in this paper. Many other LISS devices exist however. A survey of such devices may be
found e.g. in [2]. The considered devices are based on the recursive structure shown in
Figure 1. They are supposed to receive linear instantaneous mixtures of statistically inde-
pendent source signals (see Fig. 1)3. In the first version, proposed by Hérault and Jutten

1 Up to a permutation and scaling factor, as explained below.

20r more precisely, of the normalized centered source signals (see Subsection 2.3).

3In fact, these devices also apply to sources which only meet some requirements which are less stringent
than statistical independence. For example, let us consider the first version of these devices described



[1], [12]-[14], the adaptive weights c12 and cg; of this structure are updated according to
the following adaptation rule:

Acij() = uf[si(t)]gls; (1), (11)

where (1 is a positive adaptation gain, s;(t) and s;(t) are the (estimated) zero-mean signals
corresponding to the outputs S;(¢) and S;(t) of this structure, and f and g are functions
which should meet some requirements [1],[10]. The most commonly used functions are
f=()%and g = (.). The rule (11) then becomes:

Acij(t) = plsi(0)Ps;(1). (12)

Each weight c;; is thus updated according to a rule which performs a stochastic cancellation
of the expression E{[s;(t)]®s;(t)}, where E{} stands for mathematical expectation. This
expression is the 3.1 cross-moment of the (ordered) couple of zero-mean output signals
corresponding to the considered weight, i.e. outputs ¢ and j respectively (see [15] for
general information about cross-moments of signals; ”73.1” here refers to the powers 3
and 1 with which outputs 7 and j respectively appear in the considered moment). The
structure based on these functions however has a limited field of application, since it can
only separate globally sub-Gaussian sources [16]-[18] i.e. sources such that

E{a1}E{z3} < 9(B{z1})*(B{3})%. (13)
It may be shown that globally super-Gaussian sources, i.e. sources such that
E{z{}E{z3} > 9(E{z1})*(E{z3})?, (14)

are separated by using f = (.) and g = (.)® (see [19]-[20]; this may be shown by adapting
the approach of [16] to the functions considered here). With such functions, each weight
cij is updated according to the rule:

Acij(t) = psi(t)[s; ()], (15)

which performs a stochastic cancellation of E{s;(t)[s;(t)]*}, which is the 1.3 cross-moment
of the couple of zero-mean output signals corresponding to this weight.

The last version of the LISS device used in this paper is the one which has been
proposed by Jutten and Nguyen [4],[6]. It adapts each weight c;; of the above-defined
recursive structure so as to cancel the 3.1 cross-cumulant [15] of the couple of zero-mean
output signals corresponding to this weight. This cross-cumulant cancellation is based on
a stochastic gradient descent, using the square of this cumulant as the cost function, with
a constant or adaptive gain (see [4],[6] for more details). This approach was claimed

to apply to any type of (non-Gaussian) sources, thus avoiding the above-mentioned
restrictions of the cross-moment-based rules. However, it results in a higher computational
complexity.

below, which corresponds to (11), and let us restrict ourselves to the case when its functions are set to
f=()*and g = (). Then, to be separated exactly, the sources only have to be such that the 3.1
cross-moments (defined below) of the zero-mean versions of these sources are zero (in addition to the
condition (13)). Using f = (.) and g = (.)® leads to an equivalent condition. Moreover, non-zero source
cross-moments may be acceptable, provided they only entail minor deviations for the convergence points
of these algorithms, as explained in Sub-section 3.3.



For all these versions of the LISS device, when the weight values are such that ex-
act source separation without a permutation is achieved, the proportionality coefficients
between the sources and the device outputs have specific values, i.e:

Sl(t) = CL11X1(t) (16)
SQ(t) = (I,QQXQ(t). (17)

Comparing these equations to (1)-(2) shows that each device output S;(t) is then equal
exactly (i.e. not only up to an arbitrary factor) to the contribution of source X;(¢) in the
mixed signal E;(t). This property is of importance in the remainder of this paper, where
the signals S;(t) = a;; X;(t) are called the "normalized source signals” (this ”normalization”
refers to the signal magnitudes).

2.3 Application to the proposed method

The application of any of the above-defined LISS devices to the overall method proposed
in this paper deserves the following comments. This device here receives the associated
mixed signals &;(v), not the initial mixed signals F;(t) (see Fig. 2). Especially, in the
major version considered hereafter, it receives the autocorrelation functions I',(7). Each
input sample provided to this device thus corresponds to a specific value of the parameter
7 of the functions I',,(7). From these mixed signals, defined by (9)-(10) in the case of
ADSS, the device derives (estimates of) the associated normalized source signals, i.e:

51(v) = afTg(7) (18)
52(v) = a3ol4,(T) (19)

and, as already stated above, the variable v on which these signals depend is then the
argument 7 of autocorrelation functions. Especially, for 7 = 0, each device output i is
equal to aZT';, (0), which is the (average) power of the normalized source i, i.e. the power
of the component corresponding to source ¢ contained by the zero-mean mixed signal 7. It
should be noted that this power of the normalized source is obtained exactly, i.e. not up
to an arbitrary factor, which would of course be a useless result.

3 Performance with artificial mixtures

3.1 Goal and principles of the tests

The first series of tests aimed at validating the basic principles of the proposed approach
and was performed in the following conditions. The considered sources are three real
speech signals, recorded separately and resp. corresponding to the French words ”bonjour”
and "parle” and to the short sentence ”le camp d’été s’est passé” [6]. The mixed signals,
provided to the processing system proposed in this paper, are artificially created. More
precisely, the tests described in this section aim at investigating the performance of the
proposed approach for the basic type of mixtures for which it was developed, i.e. for mixed
signals which meet exactly (3)-(4). These tests therefore primarily consist in selecting two
of the above-mentioned real source signals, and numerically combining them according
to (3)-(4), so as to create two mixed signals. Associated mixed signals T',(7) are then
derived from the above mixed signals, using the first two steps of the approach described
in Sub-section 2.1. In the third step of this approach, the associated mixed signals are
eventually separated with a LISS device.



In fact, the considered practical implementation is slightly different from the above-
defined basic principles: as the associated mixed signals I'¢,(7) meet exactly (9)-(10) in
the considered conditions, the approach which is actually used consists of the following
steps. The associated source signals T'y,(7) are first computed (the signal means and
autocorrelation functions were computed with the complete available source signals in the
tests reported below*). The associated mixed signals T, (7) are then numerically derived
according to (9)-(10). The latter signals are eventually separated with a LISS device.
As compared to the basic approach described in the previous paragraph, this modified
version avoids the need to introduce the parameters ¢;;, which are not relevant here since
their influence subsequently disappears when processing the signals with the proposed
method®. As for the structure of the LISS device, all the versions described in Section 2
are successively used here. For each of them, the tests carried out aim at checking that the
adaptive weights c1o and ca1 of the considered LISS device actually converge to the values
corresponding to exact source separation without a permutation, i.e. that these weights
converge to the following theoretical values (which are derived by adapting the results in
[1] to the mixture equations (9)-(10) considered here):

2
Qi

The mixture coefficient values a;; used in these tests are selected according to two
criteria. On the one hand, ratios of such coefficients define: i) the magnitude of the
"mixture rate” which occurs between the source signals, and ii) the weight values required
for the LISS device to separate these mixed signals (see (20)). From that point of view,
the tests are performed in the case of moderately high mixture rates, corresponding to
theoretical weight values ¢, = 1/2 and ¢J; = 1/2. On the other hand, applying a common
scaling factor to all these coefficients a;; allows us to set the magnitudes of the associated
mixed signals. This factor is selected so as to scale these signal magnitudes to about 1.

3.2 Inadequacy of the 3.1 cross-moment-based algorithm

Tests were first performed with the version of the LISS device based on the adaptation
rule (12). The weights of this device then do not converge to their theoretical values. As
shown below, this results from the nature of the sources processed by this device, i.e. in
the current case, it results from the nature of the associated source signals I';; (7).
Generally speaking, the normalized kurtosis (or normalized 4th-order zero-lag cumu-
lant) of a zero-mean stationary signal s is defined as [21]:
4
y = cumi(s)2 _ E’{s2 }2 _3 1)
(B{s?})>  (E{s?})
A super-Gaussian signal [17] corresponds to: y > 0. Moreover, if two signals are super-
Gaussian, the couple that they form is globally super-Gaussian®. As stated in Sub-section

4The considered signals are thus processed as if they were stationary. They do not meet this requirement
exactly from a theoretical point of view, but at least their non-stationarity is limited by the fact that they
consist of relatively short periods of speech without silences. The proposed approach therefore contains an
approximation. This approximation is accepted here because a simple feature extraction method is sought,
at the expense of limited accuracy, as already mentioned at the end of Subsection 2.1 (see additional
comments in Section 5).

SThis version also allows us to compute autocorrelation functions only once, for each zero-mean source.

SIf both signals are such that 4 > 0, one easily derives that their couple meets (14).



2.2, such signals cannot be separated by the LISS algorithm considered here.

These general principles may be applied as follows to the three associated source signals
['z;(7) used here. Their normalized kurtosis” range from 6 to 13. All these signals are
therefore strongly super-Gaussian, which explains why they are not separated in the tests
considered here. This interpretation is confirmed by the results presented in the next
sub-section.

3.3 Performance of the 1.3 cross-moment-based algorithm

The above discussion also shows that the LISS device based on 1.3 cross-moment cancel-
lation is very well suited to the type of source signals considered here, unlike the previous
version of this device. This is confirmed by the tests that we performed with this version,
as the weights then converge close to their theoretical values.

More precisely, the relative difference between the observed and theoretical weight
convergence values typically ranges from 4 to 25%. This non-negligible deviation results
from the fact that the LISS device is designed so as to converge to a point corresponding
to the cancellation of the 1.3 cross-moments of the zero-mean output signals, which is a
bit different from the point corresponding to exact source separation in the specific case
considered in this paper, since the 1.3 cross-moments of the source signals processed here
are not exactly zero: the normalized cross-moments® corresponding to the three associated
source signals I';; (7) used here range from 0.1 to 0.2. These non-negligible moment values
result from the specific nature of the source signals considered in this investigation, i.e.
autocorrelation functions, which especially all contain a high peak at the origin. Anyway,
the resulting weight errors and the associated source signal power errors are small enough
to be acceptable in our target applications (such as those described in Subsection 5.1 and
in [11]).

3.4 Performance of the 3.1 cumulant-based algorithm

Tests were then performed with the LISS device based on the 3.1 cumulants of the output
signals. A constant gain was first used. The weights thus again converged close to their
theoretical values. The difference between the observed and theoretical values typically
ranges from 2 to 10%, which is lower than in the previous case. The version of this
algorithm based on an adaptive gain results in a weight error ranging from 2 to 20%.
These cumulant-based algorithms are studied in more detail in the next section, where
their performance for real signal mixtures is analyzed.

3.5 Preliminary conclusions

At this stage of the investigation, the following preliminary conclusions may be drawn
from the above-described tests:

"These kurtosis are computed for zero-mean versions of these signals, over the entire signals, i.e. again
as if they were stationary.
8By "normalized” 1.3 cross-moments, we here mean a quantity which does not depend on the magnitudes
of the considered u and v signals, i.e. the correlation coefficient of 4 and v* (the numerator of which is the
non-normalized 1.3 cross-moment):
E{uv®}

VE{uYE{vs}

It should be noted that the source signals v and v eventually considered in this paper are autocorrelation
functions, i.e. second-order moments, so that the corresponding moments are ” moments of moments”.

(22)
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e From a general point of view, the overall set of tests allowed us to validate the basic
principles of the proposed approach on an example, as the weights of (some versions
of) the LISS device actually converge close to their theoretical values.

e More precisely, the most classical LISS device, based on 3.1 cross-moments, cannot
be used here, due to the specific nature of the signals to be processed. Other versions
of this device are therefore required. As stated above, these versions actually succeed
in separating the sources in the considered conditions, which is in agreement with
their above-defined theoretical field of application.

e Among these successful versions, the 3.1 cumulant-based ones yield better perfor-
mance than the 1.3 moment-based one and presumably avoid restrictions on the
nature of the sources. Therefore, only these cumulant-based versions are considered
below.

4 Performance with real mixtures

4.1 Goal and principles of the tests

The second series of tests aims at validating the proposed approach in completely realistic
experimental conditions, i.e. with two microphones which are situated in a standard room
and which receive signals emitted by two loudspeakers (Fig. 3)°. Two sets of source signals
are considered: 1) two speech signals, then 2) a speech signal and a music signal'C.
Unlike in the previous section, the analysis is not based on comparing the experimental
weight values to theoretical ones here, as the latter depend on the values of the mixture
parameters, which are unknown here. Instead, the performance criterion used here is the
one which matters in practical applications of the proposed approach, i.e. the relative
error A; made in the estimation of the power of each zero-mean normalized source i, i.e:

fem (0) — Fem (0)

IR ) )
IA‘ezB (O) — I16213 (0)
Aoy R (24)

The quantities which appear in the above expressions are defined as follows:

e I'c,,(0) and I, (0) are the powers of the zero-mean versions of the normalized source
signals. These normalized source signals are denoted E74(t) and Eop(t) hereafter
and are obtained as follows. In a first measurement step, denoted A, only the source
corresponding to loudspeaker 1 is turned on, and two resulting signals Ej4(t) and
E54(t) are resp. measured by microphones 1 and 2. Similarly, in a subsequent
measurement step, denoted B, only the source corresponding to loudspeaker 2 is
turned on, and two signals F1p(t) and E2p(t) are resp. measured by microphones
1 and 2. Each overall mixed signal F;(t) corresponding to microphone 4 is then
derived by superposing the two contributions which were previously obtained for

9Here again, the proposed approach is applied without splitting the signals in sub-bands.
0Means and autocorrelations are again computed over the entire signals, which last 10 seconds and
contain no silences.
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this microphone by turning on a single source!!:

Ei(t) = Eia(t) + EiB(t). (25)

e I, ,(0) and T, (0) are the estimates of the powers T, (0) and T, (0) provided
by the LISS device during the ”resolution phase”, i.e. they are the output values of
this device obtained when providing it with the inputs corresponding to 7 = 0, after
adapting it and freezing its weights.

In addition to the above-defined final performance criterion A;., the magnitude of the
improvement provided by the proposed approach is also analyzed hereafter. To this end,
the errors A;, are compared to the errors A;; which would be obtained by only using each
(mixed, i.e. ”noisy”) microphone signal E;(t) as a rough estimate of the corresponding
source:

Ay = Pel ((pe; f(‘)e)m (0) (26)
A2t _ Fez ((?e_ ](;‘0623 (O) ) (27)

4.2 Performance of the constant-gain 3.1 cumulant-based algorithm

The results obtained with the constant-gain 3.1 cumulant-based algorithm are provided in
Figures 4 and 5. These figures represent the variations of the errors A;, vs the adaptation
gain u. They show that the source power estimation errors A; are lower than 4% in a
range of adaptation gains which applies to all considered signals and which is relatively
large (from 0.1 to 4.5).

This should be contrasted with the errors A, which would be obtained if not inserting
the proposed system after the microphones: these errors range from 60% to 150%, which
shows that the proposed approach yields a major performance improvement.

4.3 Performance of the adaptive-gain 3.1 cumulant-based algorithm

Figures 6 and 7 represent the results obtained with the adaptive-gain 3.1 cumulant-based
algorithm. With this algorithm too, the normalized source powers are estimated with an
accuracy better than 4% in a large range of parameter values. Moreover, this parameter
range again applies to all considered signals.

These errors A;, should be compared to the errors A;;, which are here the same as in
Sub-section 4.2. This version of the approach therefore also yields a major performance
improvement.

5 Applications and conclusion

5.1 Typical applications of the proposed approach

This subsection briefly describes a few typical potential applications of the proposed ap-
proach'?. It aims at showing clearly the motivations of the investigation presented in this

" This method should be distinguished from the artificial mixtures used in the previous section: it only
assumes that each microphone response is an additive function of the received sources, but it actually takes
into account the convolutive transfer functions which exist between each source and each microphone in
the considered experimental setup.

12For more details about these and other applications, the reader should refer to [11].
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paper and at allowing us to then draw conclusions about the applicability of this approach
in such applications. Generally speaking, this method is motivated by the fact that the
following conditions are met in various products:

e Some sensors provide convolutively mixed signals.

e Some features related to each of the signals contained by these mixtures should be
extracted. However, a CSS device cannot be used to this end, because its complexity
and therefore its cost are too high for the considered product.

The solution to this problem therefore consists in using the system proposed in this paper,
which is attractive because it is simpler than a CSS device. The proposed approach
can only extract some source features, but these features make it possible to provide the
considered product with interesting functions, such as those described below.

As stated above, various types of source features may thus be extracted. Hereafter,
we first consider the case when these features are the "mean levels” of the (normalized)
sources during various time periods, i.e. their average powers in successive time windows.
The resulting applications especially include control functions in audio products. A first
application of this type is an improved version of automatic volume control in car radios.
A first generation of radios including a basic control function was recently launched. These
radios contain a microphone, which measures the overall ambient sound level inside the
car. The considered control unit increases the volume of the car radio when the ambient
sound level increases. This control rule is motivated by the fact that when the car speed
increases, the overall ambient sound level increases (due to the increase of the ambient
noise level) and that the car radio volume should then be increased, so that the passengers
may keep on listening to the car radio with the same comfort. However, the actual effect
of this control rule is the opposite of the desired one when the passengers start talking:
their speech is part of the overall ambient sound level, so that the car radio considers it
like noise and tries to drown it, whereas it should reduce its level as long as the passengers
keep on talking. In order to solve this problem, a specific control law should be used for
each type of acoustic source present in the microphone signals (i.e. passengers, engine
noise, wind noise ... and the car radio output itself, which should have no influence on
the car radio volume). The approach proposed in this paper makes it possible to design
such an improved control unit, as it provides estimates of each source level separately (or
at least of the major sources to be taken into account, the microphones being placed close
to these sources).

Similarly, the estimation of the levels of acoustic sources may be used to detect when
a person is speaking in a microphone, while being insensitive to the ambient "noise” (this
"noise” may include other people’s speech). This allows to transmit the microphone signal
of the considered person only when this person is actually speaking. This may be used to
reduce the data rate of the transmitted signal and/or to improve the perceived comfort
of the people who are listening to this signal, by not transmitting the noise periods. This
approach may be used in hand-free car phones, during conversation but also to detect
when the user is uttering the phone number to be called, in order to then trigger a voice
recognition unit. It also allows to automatically switch between participants in audio
control products for (single or multiple) conference rooms.

The proposed approach may also be used to extract the power spectral densities (PSD)
of all the sources contained in microphone signals [11]. This especially makes it possible
to extract the PSD of the signal received by a microphone from a car radio, or more
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generally speaking from an audio product situated in a room or a car. Comparing the
audio PSD in the microphone signal to the initial output PSD of the audio product would
then allow to characterize the acoustic channel and the response of the loudspeaker, and to
automatically control the tone of the audio product, so as to achieve an adequate acoustic
frequency response in this room or car.

5.2 Conclusion

In this paper, we proposed a signal processing method for convolutively mixed sources,
which aims at extracting specific features of the considered source signals with simple pro-
cessing means. The principles and performance of the proposed approach were especially
detailed in the case when the parameters to be extracted are estimated powers of the (nor-
malized) source signals. The approach has been experimentally validated in this case. The
power estimation errors thus achieved for real acoustic signals are lower than 4%, which is
quite satisfactory for the considered applications of this approach. This investigation also
highlighted some properties of several well-known LISS algorithms, especially related to
the types of sources that they can separate (these results were summarized in Sub-section
3.5 and are therefore not repeated here).

Beyond the validation of the proposed approach that was thus achieved, various ex-
tensions of this investigation might be considered. They may especially consist in using a
larger database, so as to check more extensively the estimation accuracy of the proposed
approach and to extend the signal nature analysis which was presented above. These
investigations should preferably be performed in connection with one of the target appli-
cations of the approach presented above and in [11]. Taking this application into account
would have the following consequences:

e [t would make it possible to define precisely in which conditions the mixed signals
should be measured.

e It would result in splitting the signals into successive time windows and in using the
proposed approach so as to estimate the mean source signal powers in these windows,
as these successive powers are the parameters used to control real products.
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