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Abstract: The main blind source separation networks proposed in this paper apply to
convolutive mixtures (including instantaneous ones). They have a recurrent or direct
structure and they may use channel-specific separating functions. They are based on a
self-normalized weight adaptation rule, which adaptively estimates the average powers
of nonlinear functions of the network outputs. This allows us to control several aspects
of the operation of these networks, esp. their convergence speed/accuracy trade-off. It
also makes them more robust with respect to non-stationary situations. We analyze
their convergence properties. We validate all these results by means of experimental
tests performed with these networks, classical ones, and additional proposed linear
instantaneous direct networks based on a normalization of their outputs. These tests esp.
show that the proposed networks improve the convergence trade-off and that only these
networks apply to highly mixed non-stationary sources.

Keywords: blind source separation, convergence analysis, convolutive mixtures, self-
normalized algorithms.



1 Introduction

Blind source separation (BSS) methods aim at estimating a set of source signals from a
set of mixtures of these signalsl!l. We here especially consider neural BSS approaches.
The first such neural network, intended for linear instantaneous mixtures and based on a
recurrent structure, was proposed by Hérault and Jutten!? (HJ). Moreau and Macchil®!
(MM) then adapted this approach to a direct structure. Cichocki, Kasprzak and Amaril*!
(CKA) also defined related single- or multi-layer neural networks, which contain additional
self-adaptive weights updated so as to normalize the ”scales” of the network outputs.

We here introduce new BSS networks which share some features with the above ones
and we extend them to convolutive mixtures. Their principles are defined in Section 2.
Their convergence properties are then analyzed in Section 3. Section 4 describes the
experimental performance of the classical networks, our above-mentioned extensions, and
the networks with self-normalized outputs that we also introduce. Eventually, Section 5
presents the major conclusions drawn from this investigation.

2 Proposed networks with self-normalized weight updating

2.1 Networks for linear instantaneous mixtures

We here propose BSS neural networks for processing N linear instantaneous mixtures of
N sources. They have the same direct or recurrent N-input N-output structures as the
HJ and MM approaches and they may also be extended to several layers. Their original
feature is the self-normalized algorithm used to update their weights c;;. The ”theoretical”
discrete-time version of this algorithm reads:
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and is to be contrasted with the classical rule used in the HJ and MM networks, i.e:

cij(n +1) = cij(n) — aflsi(n)lgls;(n)] @ #je{l...N}. (2)

In both rules, a is a positive adaptation gain, s;(t) and s;(t) are the (estimated) centered
versions of the network outputs S;(¢) and Sj(t), E[.] denotes mathematical expectation, f
and g are the so-called ”separating functions”. Two couples of such functions have been
shown to be attractive in the classical networks, i.e:

f=(07° and g=(), (3)
f=() and g=(), (4)

because they are simple and resp. allow one to separate globally sub-Gaussian and super-
Gaussian couples of sources. Comparing (1) and (2) shows that the proposed approach
consists in normalizing the formely used signals f[s;(n)] and g[s;(n)] by their average
powers. This yields several attractive features, mainly because the resulting algorithm is
self-normalized from various points of view, as explained in Subsection 2.3.

In practice, the values of the above average powers used as normalizing terms are most
often unknown, as the sources are unknown. They are therefore estimated, e.g. by first-
order low-pass filtering. In this case, at each time step n, the terms E[f?(s;)] and E[g?(s;)]

4



in (1) are resp. replaced by their adaptive estimates Ny ;(n + 1) and Ny ;(n + 1), which
are updated according to the rules:

Npi(n+1) = Ngi(n) +n(f*[si(n)] = Nyi(n)) i€ {l...N} (5)
Ngj(n+1) = Ng;j(n) +n(g*[sj(n)] = Ngj(n)) je{l...N} (6)

where 7 is a positive adaptation gain. The two single-layer practical networks thus ob-
tained, resp. based on a Direct and a Recurrent structures, and both operating with
Normalized Weight Updating terms, are called D-NWU and R-NWU hereafter.

2.2 Extension to convolutive mixtures

We now consider more general, i.e. convolutive, mixtures. We focus on a classical config-
uration (see Reference 5 and references therein), expresssed in the Z domain as:

Yi(z) = Xi(z) + A12(2)Xa2(2) (7)
Ya(2) = A2(2)X1(2) + Xa(2), (8)

where Y;(z) and Y5(z) are two observed mixed signals, X;(z) and X5(z) are two unknown
statistically independent source signals and A12(z) and A1 (z) are the transfer functions of
two unknown causal Mth-order moving average (MA) filters. We consider two structures
for processing these mixed signals, i.e. the recurrent structure in Fig. 1 and the direct
structure with post-processing (shaping) filters in Fig. 2, where Ci2(z) and C2;(z) are
causal Mth-order MA separating filters. Several non-normalized rules have been reported
for updating the weights c;j(n, k)iejo,ar) of these filters (see Reference 5 and references
therein). We here introduce a self-normalized rule, defined as the convolutive extension of
the normalization scheme that we proposed above for linear instantaneous mixtures. We
also extend this rule by introducing separating functions f; and g; which may be specific
to each channel i of the separating system!. This aims at keeping the required flexibility
for subsequently optimizing these functions with respect to the sources extracted on each
channel, as explained in Reference 5. The resulting theoretical rule reads 2

filsi(n)] gi[sj(n - k)]
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In practical situations, the normalizing terms E[f?(s;)] and E[g?(s;)] of (9) are again resp.
replaced by Ny ;(n + 1) and Ng j(n + 1), which are updated by means of (5)-(6).

cij(n +1,k) = cij(n, k) — ci#je{L2hkelo, M. (9)

2.3 Properties of the proposed networks

We here briefly review the major properties which result from the proposed self-
normalization of the adaptation rule (more details are available in Reference 6), refer-
ring to the proposed rule (1) for simplicity. The expectation of each correcting term
flsi(n)]  gls;j(n)]
2( g
VEI(s] | [Elg(s)]

flsi(n)] and g[s;(n)] (assuming they are centered). The expectation of the weight update

of this rule is the correlation coefficient of the random variables

1This extension also applies to the linear instantaneous networks that we introduced above.
?More precisely, when the direct structure is used, the signals s;(.) and s;(.) in (9) are typically replaced
by the signals available before the post-processing stage of Fig. 2.



Ac;j(n) = ¢ij(n + 1) — ¢;5(n) thus ranges between —a and a. The maximum magnitude of
the average weight update is therefore freely chosen by the user of the proposed approach,
by selecting the desired gain value a. It does not depend on the source scales and statistics
nor on the mixture coefficients, which is an attractive feature as these parameters are un-
known (note that it is also independent from f and g). The magnitude of the fluctuations
of the weights around an equilibrium point achieving BSS has similar properties, because
the variance of the above correcting term is equal to one at such a point.

The convergence speed and accuracy of the proposed approach also have some in-
dependence properties with respect to the separating functions and source and mixture
parameters, whereas they are controlled by the adaptation gain a. Especially, a common
positive scale factor applied to both source signals has no influence on convergence speed
and accuracy when using

f(x) =Xz™ and g(z) = pa", (10)

where A\ and p are arbitrary positive scale factors (note that this includes the classical
couples of functions defined in (3)-(4)).

The proposed networks are also robust with respect to non-stationary situations, which
may result from time-varying mixtures or non-stationary sources, such as speech signals, in
which large-magnitude periods alternate with low-magnitude ones. More precisely, by us-
ing short-term estimates of the mean powers E[f?(s;)] and E[g?(s;)] in the adaptation rule
(1), these networks automatically keep their above-defined features despite (slow enough)
modifications of the mixture coefficients and/or source parameters. On the contrary, the
HJ and MM networks may only be used with care and yield degraded performance in such
situations: their adaptation gain a should be set to a low value, to avoid low convergence
accurary and even divergence during the periods when the signals have large (unknown)
magnitudes, but for such a fixed adaptation gain convergence is very slow during the pe-
riods corresponding to low signal magnitudes. The output scale self-normalization used
in the CKA network then yields even more fundamental limitations: the low- and large-
magnitude periods of the sources result in the same output level, i.e. the restored sources
are ”compressed”, which is not acceptable for the considered signals, such as speech.

3 Convergence of the practical networks

The locations and stability of the equilibrium points of the proposed networks define
the types of sources that these networks can separate. These properties are derived by
analyzing the local asymptotic behavior of the adaptation rules of these networks, by means
of the Ordinary Differential Equation (ODE) method!”l. This analysis is here carried out
for stationary centered sources, mixed in a convolutive way. Some steps are skipped due
to space limitations, but they may be adapted e.g. from References 5 and 8. Especially,
by using the same type of first-order approximation as in Reference 8, we here express the
overall convolutive practical algorithm to be analyzed in vector form as:

9n—|—1 =0n + H(Ona £n+1)a (11)
where 0, &,4+1 and H(0,,&,+1) are column vectors defined as:

Hn = [012(n,0),...,Clg(n,M),cm(n,O),...,021(n,M),
Nf,l(n)’Nf,Q(n)aNg,l(n)aNg,2(n) Ta (12)



byl = [i(n),y2(n),s1(n—1),...,s1(n — M), so(n —1),...,s5(n — M),]T, (13)
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n(ft1s1(n)] = Ng1(n), n(f3[s2(n)] — Nya(n)),

n(g5[s1(n)] = Ng,1(n)),n(gi[s2(n)] — Nga(n))]". (14)

The equilibrium points of (11) are all the constant state vectors 8* for which

H(ena§n+1) = -

?

Jim By [H(0", u1)) =0, (15)

where Ej-[.] denotes the mathematical expectation with respect to the probability law of
the vector &,41 for a given vector 6*. When applying the condition (15) to the specific
function H (6, &n+1) defined in (14), the first 2(M + 1) components of this function yield
equations which implicitly define the separating filter weights corresponding to equilibrium
points. These equations read as follows>:

. filsi(n)] gilsj(n — k)
Nzi(n) /Ny ()

The expectation in (16) is taken for a fixed vector 6,, = 6*, and therefore for fixed Ny ;(n)
and Ng j(n). The equilibrium condition (16) is therefore equivalent to:

=0, i#je{l,Q},kE[O,M]. (16)

Eg-([filsi(n)] gi[sj(n —k)]] = 0, i#je{l,2},ke[0,M]. (17)

(17) is exactly the same as the equilibrium condition previously derived for the classical
non-normalized networks. As the proposed networks also have the same input/output
relationship as the classical ones, it may be shown easily that their filter weights at equi-
librium points have the same expressions as in the classical networks. These expressions
may therefore be found in the above-cited papers which describe the classical networks.
The analysis of the stability of these equilibrium points 6* is based on the Jacobian
matrix J(6*) of the system, as detailed e.g. in the above-cited papers. The corresponding
calculations are outlined hereafter. J(6*) may first be split into sub-matrices, i.e:

J(6%) = ( i ) , (18)

where the sub-matrices A, B, C, D resp. have the following dimensions: 2(M +1)x2(M+1),
2(M + 1)x4, 4x2(M + 1), 4x4. It may be shown that only sub-matrix A has an influence
on stability. This matrix A itself may be split into four (M + 1)x(M + 1) sub-matrices
A;;. The top left sub-matrix of A, i.e. Ay1, may be expressed as:

A = a12611, (19)

3For readability, the limit lim, oo is often omitted in the mathematical expectations Eg+[.] below.




where :
1

i = ———— (20)
V1 fiTg,j

npi = Bo[ff(si(n)] i€{1,2} (21)

ngj = Eglg;(si(n)] i#je{1,2} (22)

and f11 is the matrix whose element (k,!), with 0 <k < M and 0 <[ < M, reads:

im_By- [-o20100n 0 ), 3
n—+00 Ocia(n,l)
The same approach applies to the other matrices A;; and leads to:
A [ @b afi ) 94
< g P a2 (24)

The matrices (3;; are the components of the Jacobian matrix of the non-normalized coun-
terpart of the approach considered in this paper. Their explicit expressions are therefore
available from our previous investigation!®). This relationship between the non-normalized
and normalized approaches may also be interpreted as follows. Combining (19)-(23) shows
that each element (k,l) of A;; has the same expression (23) as the corresponding element
of B11, except that the original separating functions f; and g; are resp. replaced by the
corresponding normalized functions F; and G;, according to the transform:

_I@ i g o Gy = (g
Ep-[f2(z)] Ep-[g} ()]

The same principle applies to all other sub-matrices A;;. Therefore, the overall matrix A
for the proposed normalized algorithm operating with f; and g; is identical to the already
known matrix for the non-normalized algorithm, but here operating with the functions
F; and G; defined in (25). The resulting stability condition for the normalized algorithm
is therefore directly derived from the one that we established in Reference 5 for the non-
normalized algorithm, by using the transform (25).

More explicit results may then be derived by considering specific separating functions.
For linear instantaneous mixtures, one thus e.g. shows that the R-NWU network operating
with the separating functions (3) has exactly the same equilibrium points (in terms of
weight values) as the corresponding HJ network, and exactly the same stability condition
at each such point. It is therefore able to separate the same sources as the latter network,
i.e. the globally sub-Gaussian couples of signals.

filz) = Fi(z) =

4 Experimental results

The experiments described below were performed with the following seven networks:
e The classical HJ, MM and CKA networks.
e The R-NWU and D-NWU instantaneous networks that we proposed above.

e The instantaneous version of the structure shown in Fig. 2, adapted with the classical
rule (2). This modified version of the MM network yields self-Normalized Outputs,
as explained below, and is therefore denoted MM-NO.



e An original network, based on the same structure as the MM-NO one, but adapted
with our Normalized Weight Updating rule (1) and therefore denoted D-NWU-NO.

We here introduce the MM-NO and D-NWU-NO networks because, unlike the MM and
D-NWU networks, they extract the sources with the same scale factor as the HJ and R-
NWU networks. They therefore provide a more relevant way to compare the performance
of direct and recurrent structures. Their outputs have ”self-normalized scales”, i.e. these
signals are equal to the components of the sources contained by the observed signals.

All these networks are here operated with the separating functions defined by (4)
because the considered sources are real speech source signals, and are therefore super-
Gaussian. Performance is defined by the trade-off achieved by each considered network
between convergence time and accuracy. The convergence time 7, is the number of samples
required for all network weights to have converged to their equilibrium values. The con-
vergence accuracy is assessed by means of the Signal-to-Noise Ratio Improvement SN RI
(defined in Part IT of Reference 5), measured as follows. The source signals are sampled
at 8 kHz over a period of 25 s, yielding 200000 samples. The network weights are per-
manently adapted, but the SN RI is only measured over the last 10 seconds, i.e. 80000
samples, thus allowing the networks to previously converge in up to about 100000 samples.

We here only detail a single set of experiments, aiming at ”easy conditions” so that all
considered approaches apply and can be compared. More precisely, the two sources are
here first rescaled to the range [—1,1], and only moderately mixed, i.e. the coefficients of
the artificial mixing matrix are set to: a11 = ag2 = 1, a19 = 0.3 and as; = 0.4. The con-
vergence speed/accuracy trade-off of the considered networks is illustrated in Fig. 3*. We
here focus on its part of higher practical interest, i.e. on its left part, which corresponds to
lower T,. This figure then shows that, for convergence times lower than 20000 samples, our
normalized networks (i.e. R-NWU, D-NWU and D-NWU-NO) yield a better convergence
trade-off than their non-normalized counterparts (i.e. resp. HJ, MM, MM-NO). Moreover,
the convergence times of the HJ, MM and MM-NO networks cannot be made lower than
about 7000 samples, as these networks diverge when further increasing their adaptation
gain. On the contrary, the R-NWU, D-NWU and D-NWU-NO networks can combine
a T, of only a few hundred samples with an acceptable SNRI. These results confirm
the discussion of the properties of these networks provided in Subsection 2.3: whereas the
non-normalized networks yield a dilemma between slow convergence and reduced accuracy
for non-stationary signals, their normalized counterparts avoid this problem. Therefore,
only the latter networks make it possible to achieve the low convergence time which is
required in practical applications (not only to provide separated signals quickly enough to
the end-user in the case of constant mixtures, but also to be able to track fast-time-varying
mixtures which occur in practice). As expected, the other self-normalized approach, i.e.
the CKA network, yields very poor performance for non-stationary sources: its SNRI is
lower than 0 dB, i.e. applying the mixed signals to this network in fact further decreases
their quality.

Many more test results are detailed in Reference 6. They esp. show that for higher
mixture ratios than above only the R-NWU, D-NWU and D-NWU-NO networks operate
correctly, and that only these networks are insensitive to a common source scale factor.

“The MM and D-NWU networks are omitted in this figure, as they resp. yield almost the same
performance as the MM-NO and D-NWU-NO networks.



5 Conclusions

We introduced several BSS networks in this paper. While some of them mainly aim
at comparing relevant approaches in our tests and are restricted to direct instantaneous
structures, our main contribution concerns direct and recurrent networks for instantaneous
and convolutive mixtures. These networks are mainly based on a self-normalized weight
adaptation rule, which yields various advantages over classical approaches. Especially,
their convergence speed/accuracy trade-off is controlled by means of their adaptation
gain. Moreover, these networks are thus robust with respect to non-stationary situations,
whereas the classical networks yield degraded performance in this case. Our experimental
tests proved that the proposed networks yield a better convergence trade-off than the clas-
sical ones and even showed that, for highly mixed non-stationary sources, these networks
are not only attractive but required, as only they apply while the classical ones fail.

We also analyzed the convergence properties of the proposed networks. This in-
vestigation is based on the ODE approach, which here takes a more complex form
than in the case of the classical networks, due to the additional adaptive parameters
that we introduced. This analysis first proved that these networks resp. have the same
equilibrium points as their classical counterparts. It also showed the effect of the proposed
normalization on their stability conditions: the original separating functions are replaced
by their normalized versions in these conditions. Specifically, we showed that these
conditions, and therefore the separable sources, are the same as for classical networks in
standard situations. This investigation opens the way to the subsequent optimization of
the channel-specific separating functions of the proposed self-normalized networks, using
the approach that we developed in Reference 5 for non-normalized networks.
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Figure 1: Recurrent BSS network for convolutive mixtures.
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Figure 2: Direct BSS network for convolutive mixtures.
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Figure 3: SNRI vs convergence time T,. The gain a is increased until: i) SNRI < 5 dB (R-NWU and
D-NWU-NO networks; the CKA network yields SNRI < 0 dB whatever a and is therefore not shown) or
ii) divergence occurs (HJ and MM-NO networks).
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