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Abstract 

Hypersharpening aims at combining an observable low spatial resolution hyperspectral 

image with a high spatial resolution remote sensing image, in particular a multispectral 

one, to generate an unobservable image with the high spectral resolution of the former 

and the high spatial resolution of the latter. In this paper, two such new fusion methods 

are proposed. These methods, related to linear spectral unmixing (LSU) techniques, and 

based on nonnegative matrix factorization (NMF), optimize a new joint criterion and 

extend the recently proposed joint nonnegative matrix factorization (JNMF) method. 

The first approach, called Grd-JCNMF, is a gradient-based method. The second one, 

called Mult-JCNMF, uses new designed multiplicative update rules. These two joint-

criterion nonnegative matrix factorization (JCNMF) approaches are applied to synthetic 

and semi-real data, and their effectiveness, in spatial and spectral domains, is evaluated 

with commonly used performance criteria. Experimental results show that the proposed 

JCNMF methods yield sharpened hyperspectral data with good spectral and spatial 

fidelities. The obtained results are compared to the performance of two NMF-based 

methods and one approach based on a sparse representation. These results show that the 

proposed methods significantly outperform the well-known coupled nonnegative matrix 

factorization (CNMF) sharpening method for most performance figures. Also, the 

proposed Mult-JCNMF method provides results that are similar to those obtained by 

JNMF, with a lower computational cost. Compared with the tested sparse-

representation-based approach, the proposed methods give better results. Moreover, the 

proposed Grd-JCNMF method considerably surpasses all other tested methods.  
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I. INTRODUCTION 

In optical remote sensing hyperspectral imaging, the sensors collect hundreds or 

thousands of spectral channels in the visible and infrared wavelength regions (0.4-2.5 

µm). Hyperspectral sensors have a high spectral resolution which allows accurate 

detection and identification of materials present in the observed scene, but their spatial 

resolution is often lower than that of multispectral sensors with a low spectral 

resolution. 

Several sharpening methods were designed to merge multispectral or hyperspectral data 

with a high spatial resolution panchromatic image [1]-[10]. These processes are referred 

to as pansharpening, and can be grouped in four classes: Component Projection-

Substitution (CPS), MultiResolution Analysis (MRA), Bayesian and variational 

methods. It should here be noted that hybridization between methods of these four 

classes is possible. Also, it is natural to expect that performing pansharpening with 

hyperspectral data is more complex than performing it with multispectral data [1]. The 

pansharpening approaches were extended, in the last decades, in order to fuse 

hyperspectral and multispectral remote sensing images. The fusion of the latter two 

types of images differs from the traditional pansharpening process since high-resolution 

spatial information is not contained only in one spectral band (i.e., panchromatic 

image), but in multiple spectral bands (i.e., multispectral image). Therefore, a lot of 

pansharpening methods are inapplicable to fuse hyperspectral and multispectral remote 

sensing images. 

The methods for fusing hyperspectral and multispectral data, referred to as 

hypersharpening in [2], are a new way to enhance the spatial resolution of hyperspectral 

data. These methods aim at merging the spectral information from hyperspectral data 

with spatial information obtained from high spatial resolution 
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multispectral/hyperspectral data. The resulting estimated unobservable sharpened 

hyperspectral data allow one performing accurate identification and classification of an 

observed area at a finer spatial resolution. 

Recently, a few methods have been proposed to achieve the hypersharpening process of 

hyperspectral data [2], [11]-[16]. Other methods [17]-[21], using Linear Spectral 

Unmixing (LSU) techniques [22], and based on Nonnegative Matrix Factorization 

(NMF) [23]-[25], were proposed in order to enhance the spatial resolution of 

hyperspectral data by using a multispectral image. LSU techniques, which correspond to 

the typical Blind Source Separation (BSS) problem [26], [27], consist in linearly 

unmixing remote sensing data into a collection of endmember spectra and their 

corresponding abundance fractions. NMF aims at decomposing a nonnegative matrix 

into a product of two nonnegative matrices. In [19], [20], the NMF-based 

hypersharpening method called Coupled Nonnegative Matrix Factorization (CNMF) 

yields hyperspectral endmember spectra and high spatial resolution abundance fraction 

maps, by alternately unmixing high-spectral/low-spatial resolution hyperspectral and 

low-spectral/high-spatial resolution multispectral data by means of NMF. The CNMF 

method is time-consuming for it uses an alternate NMF-unmixing process involving a 

whole series of NMF steps every time it switches between the adaptation of the 

multispectral and hyperspectral variables. In [18], the proposed Joint NMF (JNMF) 

method simultaneously unmixes hyperspectral and multispectral data by using an NMF 

technique. The JNMF method is faster than CNMF and yields similar accuracies. This 

method includes, in addition to the traditional multiplicative update rules of Lee and 

Seung’s method [24], [25], two supplementary update rules involving down/upsampled 

versions (by using the k-nearest-neighbors interpolation) of high and low spatial 

resolution abundance fraction maps. These additional rules, which do not stem directly 
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from the used criterion, force the high and low spatial resolution abundance fraction 

maps to be updated in a consistent manner. However, these rules do not necessarily 

guarantee that the optimized criterion decreases from an iteration to another. 

In this paper, two Joint-Criterion NMF (JCNMF) methods are proposed for 

hyperspectral and multispectral data fusion. These methods, related to LSU techniques, 

are based on NMF. In these proposed methods, the joint update (already used in the 

JNMF method) of the high and low spatial resolution abundance fraction maps is 

included in a new extended criterion, and new update rules are proposed. The first 

proposed method, called Gradient-based JCNMF (Grd-JCNMF), uses a projected 

gradient descent algorithm with adaptive learning rates, as defined in Algorithm 4 of 

[28]. In the second proposed method, called Multiplicative JCNMF (Mult-JCNMF), a 

multiplicative gradient-based algorithm is proposed. This second algorithm uses new 

designed multiplicative update rules, which are derived from the first proposed 

algorithm by expressing the learning rates as functions of the manipulated hyperspectral 

and multispectral variables. The update rules of the proposed gradient-based method 

ensure the decrease of the new considered criterion from an iteration to another.  

The remainder of this paper is structured as follows. Section 2 describes the 

mathematical linear mixing model generally used in the LSU techniques and the 

associated constraints. In Section 3, the proposed methods are presented. Section 4 

consists of test results with synthetic and semi-real data. In that section, results obtained 

by the proposed methods are compared with those obtained by the CNMF and JNMF 

methods. These results are also compared with those obtained by the tested sparse-

representation approach (denoted SR in the following) [13]. Finally, Section 5 

concludes this paper. 
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II. MATHEMATICAL DATA MODEL 

The aim of hyperspectral data sharpening is to generate unobservable high-spatial/high-

spectral resolution hyperspectral data ෨ܺ ∈ ܴା
ே୶	from observable low-spatial/high-

spectral resolution hyperspectral data ܺ ∈ ܴା
ே୶	and high-spatial/low-spectral 

resolution multispectral data ܺ ∈ ܴା
ே୶. Nh and Nm are, respectively, the numbers of 

spectral bands of the hyperspectral and multispectral images. Kh and Km are, 

respectively, the numbers of pixels of the hyperspectral and multispectral images. Each 

row vector of the above matrices contains one spectral band. The observable 

hyper/multispectral images are assumed to be geometrically coregistered and 

radiometrically corrected. 

The observed low-spatial/high-spectral resolution hyperspectral data can be viewed as a 

linearly-spatially degraded version of unobservable high-spatial/high-spectral resolution 

hyperspectral data. Therefore, Xh is such that 

ܺ ൎ ෨ܺ(1) ,ܦ

where ܦ ∈ ܴା
୶	 is a linear operator performing the spatial degradation [29], which 

is largely used in the image super-resolution field. Ideally, this operator represents the 

point spread function (also known as the spatial response) of the hyperspectral sensor. 

This operator can be viewed as a blurring-decimation matrix, which is a block-diagonal 

sparse matrix having Gaussian filter values [4], [30], [31], or values equal to Kh/Km in 

the simplest case (i.e., when considering a box filter). This matrix is used in a compact 

form due to its large size. Also, this matrix is used with Gaussian filter values in the 

conducted experiments. 

As explained in Section 1, the methods proposed hereafter are related to LSU 

techniques, in which each spectral vector associated with a pixel in a remote sensing 

image is assumed to be a linear mixture of the endmember spectra within the pixel [22]. 
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The above observable matrices are then modeled as [32] 

ܺ ൎ ሚܣ ሚܵ, (2)

ܺ ൎ ሚܣ ሚܵ. (3)

Here, the column vectors of the nonnegative estimated matrices ܣሚ 	∈ 	ܴା
ே୶ and 

ሚܣ 	∈ 	ܴା
ே୶ respectively represent estimated hyperspectral and multispectral 

endmember spectra, and L is the number of endmembers. The row vectors of the 

nonnegative estimated matrices ሚܵ 	 ∈ 	ܴା
୶ and ሚܵ 	∈ 	ܴା

୶ respectively represent 

low spatial-resolution and high spatial-resolution abundance fraction maps. These 

abundance fractions are subject to the well-known abundance sum-to-one constraint: the 

sum of all entries of any column vector of the estimated matrices ሚܵ and ሚܵ is equal to 

one. 

 

III. PROPOSED METHODS 

The proposed JCNMF methods first jointly unmix Xh and Xm by using extended NMF to 

estimate the set ܣሚ of hyperspectral endmember spectra and the set ሚܵ of high-spatial 

resolution abundance fraction maps. The unobservable sharpened high-spatial resolution 

hyperspectral image ෨ܺ is then derived by multiplying these two matrices 

෨ܺ ൌ ሚܣ ሚܵ. (4)

The proposed iterative JCNMF algorithms are inspired from the standard NMF 

methods, which use multiplicative [24], [25] or projected gradient [28] update rules to 

achieve the NMF-unmixing process. These proposed iterative algorithms consist in 

optimizing the following extended criterion 

ܬ ൌ 	 ఈ
ଶ
ฮܺ െ ሚܣ ሚܵฮி

ଶ
	ఉ

ଶ
ฮܺ െ ሚܣ ሚܵฮி

ଶ
 ఊ

ଶ
ฮ ሚܵ െ ሚܵௗฮி

ଶ
, (5)

where ‖.‖F denotes the Frobenius norm, α, β and γ are balancing coefficients, equal to the 
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inverse of the number of elements of ܺ, ܺ or ሚܵ in each Frobenius norm. Since each 

norm contains a different number of elements, these coefficients are considered in order 

to avoid optimizing a term with more emphasis than for the others. The matrix ሚܵௗ 

represents the linearly-spatially degraded version of the matrix ሚܵ as in (1). This 

degraded matrix can be expressed as 

ሚܵௗ ൌ ሚܵ (6) .ܦ

Therefore, the considered criterion to be optimized becomes 

ܬ ൌ 	 ఈ
ଶ
ฮܺ െ ሚܣ ሚܵฮி

ଶ
	ఉ

ଶ
ฮܺ െ ሚܣ ሚܵฮி

ଶ
 ఊ

ଶ
ฮ ሚܵ െ ሚܵܦฮி

ଶ
. (7)

Note here that in the expression (5) of J, the optimized variables are:	ܣሚ, ሚܵ, ܣሚ, ሚܵ 

and	 ሚܵௗ, while in the final expression (7) of J, the variables are:	ܣሚ, ሚܵ, ܣሚ, and ሚܵ. 

Also, the third term of the considered criterion (5) or (7) can be regarded as a spatial 

regularization term. This spatial regularization is appropriate since the scale factor 

between the spatial resolutions of the two images is limited (usually between 2 and 4), 

while the scale factor between the two spectral resolutions is much higher. Due to the 

latter factor, the proposed criterion (5) or (7) does not contain a spectral regularization 

term. Using such a spectral regularization is ideally preferable [5], [33].  

The proposed methods are gradient-based methods. Therefore, the criterion (7) is 

written as follows 

ܬ ൌ 	
ߙ
2
Tr൫ܺܺ

் െ ܺ ሚܵ
ሚܣ்

் െ ሚܣ ሚܵܺ
்  ሚܣ ሚܵ ሚܵ

ሚܣ்
்൯ 

	
ߚ
2
Tr൫்ܺܺ െ ܺ ሚ்ܵ ሚ்ܣ െ ሚܣ ሚ்ܵܺ  ሚܣ ሚܵ ሚ்ܵ ሚ்ܣ ൯ 

	ఊ
ଶ
Tr൫ ሚܵ ሚܵ

் െ ሚ்ܵܦ ሚ்ܵ െ ሚܵܦ ሚܵ
்  ሚ்ܵܦܦ ሚ்ܵ ൯, 

(8)

where Tr(.) and (.)T respectively denote the matrix trace and the matrix transpose. This 

formulation of the criterion easily permits one to derive the gradient expressions, using 

the properties in [34]: 
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డ

డ෨
ൌ ሚܣሺߙ	 ሚܵ ሚܵ

் െ ܺ ሚܵ
்ሻ, (9)

డ

డௌሚ
ൌ ሚܣ൫ߙ	

ሚܣ் ሚܵ െ ሚܣ
்ܺ൯  ሺߛ ሚܵ െ ሚܵܦሻ, (10)

డ

డ෨
ൌ ሚܣሺߚ	 ሚܵ ሚ்ܵ െ ܺ ሚ்ܵ ሻ, (11)

డ

డௌሚ
	ൌ ሚ்ܣ൫ߚ ሚܣ ሚܵ െ ሚ்ܣ ܺ൯  ሺߛ ሚ்ܵܦܦ െ ሚ்ܵܦሻ. (12)

For the first proposed method (Grd-JCNMF), and applying the gradient descent 

algorithm, the following update rules are obtained: 

ሚܣ  	← ሚܣ െ ߮෨
డ

డ෨
, (13)

ሚܵ 	← ሚܵ െ ߮ௌሚ
డ

డௌሚ
, (14)

ሚܣ 	← ሚܣ െ ߮෨
డ

డ෨
, (15)

ሚܵ 	← ሚܵ െ ߮ௌሚ
డ

డௌሚ
, (16)

where ߮෨, ߮ௌሚ, ߮෨ and ߮ௌሚ are small positive and adaptive learning rates, calculated 

by using the “Armijo rule along the projection arc” as defined in Algorithm 4 of [28]. 

Applying these update rules is not sufficient because they do not guarantee 

nonnegativity. To ensure the nonnegativity constraint, each element of the updated 

matrix is compared with a very small positive value ε (generally set to the default 

MATLAB epsilon value), and the maximum between them is kept [23]. Therefore, the 

final iterative update rules for the first proposed method are 

ሚܣ 	← 	max ሼܣሚ െ ߮෨
డ

డ෨
, ሽ, (17)ߝ

ሚܵ 	← 	max ሼ ሚܵ െ ߮ௌሚ
డ

డௌሚ
, ሽ, (18)ߝ

ሚܣ 	← 	max ሼܣሚ െ ߮෨
డ

డ෨
, ሽ, (19)ߝ

ሚܵ 	← 	max ሼ ሚܵ െ ߮ௌሚ
డ

డௌሚ
, ሽ. (20)ߝ
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For the second proposed method (Mult-JCNMF), multiplicative update rules are derived 

from the above gradient-based update rules. These multiplicative update rules are 

obtained by expressing the learning rates φ. as functions of the considered matrices. 

Each expression of a learning rate is chosen so as to yield a multiplicative update and to 

preserve the nonnegativity. The first point (i.e., the multiplicativity) is guaranteed if the 

learning rate contains the term of the considered updated matrix in its numerator, to 

permit an element-wise factorization of this updated matrix. To fulfill the second point 

(i.e., the nonnegativity), all terms, in the gradient expressions (9)-(12), preceded by a 

plus sign must be removed from (13)-(16) to obtain a sum of positive terms in (13)-(16). 

This is achieved by placing those terms in the denominator of the considered learning 

rate, which will permit the elimination of these terms when reducing the whole 

expression in the right-hand side of (13)-(16) to the same denominator [35]. Based on 

this principle, the learning rates become the following matrices 

߮෨	 ൌ ሚܣ ⊘ ሺܣߙሚ ሚܵ ሚܵ
்ሻ, (21)

߮ௌሚ	 ൌ 	 ሚܵ ⊘ ሺܣߙሚ
ሚܣ் ሚܵ  ߛ ሚܵሻ , (22)

߮෨	 ൌ ሚܣ	 ⊘ ሺܣߚሚ ሚܵ ሚ்ܵ ), (23)

߮ௌሚ	 ൌ 	 ሚܵ 	⊘ ሺܣߚሚ் ሚܣ ሚܵ  ߛ ሚ்ܵܦܦሻ, (24)

where ⊘ corresponds to element-wise division. Therefore, the final iterative 

multiplicative update rules for the second proposed method are 

ሚܣ 	← ሚܣ	 ⊙ ሺሺܺܵ
்ሻ ⊘ ሺܣሚ ሚܵ ሚܵ

்  ߳ሻሻ, (25)

ሚܵ 	← 	 ሚܵ ⊙ ሺሺܣߙሚ
்ܺ  ߛ ሚܵܦሻ⊘ ሺܣߙሚ

ሚܣ் ሚܵ  ߛ ሚܵ  ߳ሻሻ, (26)

ሚܣ 	← ሚܣ	 ⊙ ሺሺ்ܺܵ ሻ ⊘ ሺܣሚ ሚܵ ሚ்ܵ  ߳ሻሻ, (27)

ሚܵ 	← 	 ሚܵ ⊙ ሺሺܣߚሚ் ܺ  ߛ ሚ்ܵܦሻ ⊘ ሺܣߚሚ் ሚܣ ሚܵ  ߛ ሚ்ܵܦܦ  ߳ሻሻ, (28)

where ⊙ corresponds to element-wise multiplication, and ߳ (very small and positive 

value: again generally set to the default MATLAB epsilon value) is added to the 
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denominator of each multiplicative update rule to avoid possible division by zero.  

The proposed JCNMF methods, as standard NMF methods, have limitations, i.e. they 

are not guaranteed to provide a unique solution and their convergence point may depend 

on their initialization. Indeed, a key issue of these algorithms is how to initialize them. 

To solve this problem, and to avoid random initialization from the point of view of the 

proposed JCNMF algorithms, and as the initialization phase, the initial estimated 

hyperspectral endmember spectra ܣሚ
ሺሻ are calculated by the Vertex Component 

Analysis (VCA) method [36], which is one of the famous used methods in LSU 

techniques. The VCA method requires the number L of endmembers to be known. This 

number is automatically detected in our approaches by using the Hyperspectral Signal 

Subspace Identification by Minimum Error (HySime) method [37]. The initial estimated 

low-spatial resolution abundance fraction maps ሚܵ

ሺሻ are derived from the low-

spatial/high-spectral resolution observed hyperspectral image ܺ and the initial 

estimated matrix ܣሚ
ሺሻ, by means of the Fully Constrained Least Squares (FCLS) method 

[38], separately applied to each pixel of the hyperspectral image. The initial estimated 

multispectral endmember spectra ܣሚ
ሺሻ are derived from the initial estimated 

hyperspectral spectra ܣሚ
ሺሻ by simply averaging the samples of the latter spectra over the 

wavelength regions used in the multispectral image. The initial estimated high-spatial 

resolution abundance fraction maps ሚܵ
ሺሻ are derived from the high-spatial/low-spectral 

resolution observed multispectral image ܺ and the initial estimated matrix ܣሚ
ሺሻ, by 

means of the FCLS method, again separately applied to each pixel of the multispectral 

image. Note here that this dependent initialization of hyperspectral and multispectral 

variables allows avoiding a possible permutation of the endmembers between the results 

of the two used hyper/multispectral images unmixing processes. Such a permutation 
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would be problem when using fusion equation (4). Also, the known problem related to 

the scale factor that can appear in the results of the two unmixing processes, and that is 

also a problem when using fusion equation (4), is avoided by the sum-to-one constraint 

imposed on high/low spatial resolution abundance fraction maps.  

After initializing all the considered hyper/multispectral matrices as described above, the 

optimization phase consists in jointly and repeatedly updating these matrices, until 

convergence (defined hereafter), according to (17)-(20) for the Grd-JCNMF method or 

(25)-(28) for the Mult-JCNMF method. It should here be noted that the designed update 

rules (17)-(20) or (25)-(28) yield a decreasing criterion J during this optimization stage, 

in practice. Also and to satisfy the abundance sum-to-one constraint throughout this 

stage, the method described in [38] is adopted. The convergence criterion is defined by 

checking if the relative modification of criterion J takes a value below a given threshold 

tresh, i.e. 

ቚ
ሺሻିሺశభሻ

ሺሻ
ቚ  (29) .݄ݏ݁ݎݐ

Also, and to avoid a high number of iterations, an additional stopping criterion is 

obtained by also checking if this number of iterations exceeds a predefined maximum. 

 

The whole algorithms derived from the proposed methods are described below. 
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Algorithm 1: Grd-JCNMF unmixing for sharpening hyperspectral data. 

Input: low-spatial/high-spectral resolution hyperspectral image Xh  and high-

spatial/low-spectral resolution multispectral image Xm. 

1- Calculate the blurring-decimation matrix D with Gaussian filter values 

[29].  

2- Estimate the number L of endmembers by using the HySime Method. 

3- Initialization stage 

3.1- Initialize ܣሚ from Xh by using the VCA method. 

3.2- Initialize ሚܵ from Xh and initial ܣሚ by using the FCLS method. 

3.3- Initialize ܣሚ from initial ܣሚ. 

3.4- Initialize ሚܵ from Xm and initial ܣሚ by using the FCLS method. 

4- Optimization stage (for each iteration and until convergence) 

4.1- Optimize ܣሚ by using (17). 

4.2- Optimize ሚܵ by using (18). 

4.3- Optimize ܣሚ by using (19). 

4.4- Optimize ሚܵ by using (20). 

5- Fusion stage 

5.1- Fuse ܣሚ and ሚܵ by using (4) to get ෨ܺ. 

Output: high-spatial/high-spectral resolution sharpened hyperspectral data ෨ܺ. 
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Algorithm 2: Mult-JCNMF unmixing for sharpening hyperspectral data. 

Input: low-spatial/high-spectral resolution hyperspectral image Xh  and high-

spatial/low-spectral resolution multispectral image Xm. 

1- Calculate the blurring-decimation matrix D with Gaussian filter values 

[29].  

2- Estimate the number L of endmembers by using the HySime Method. 

3- Initialization stage 

3.1- Initialize ܣሚ from Xh by using the VCA method. 

3.2- Initialize ሚܵ from Xh and initial ܣሚ by using the FCLS method. 

3.3- Initialize ܣሚ from initial ܣሚ. 

3.4- Initialize ሚܵ from Xm and initial ܣሚ by using the FCLS method. 

4- Optimization stage (for each iteration and until convergence) 

4.1- Optimize ܣሚ by using (25). 

4.2- Optimize ሚܵ by using (26). 

4.3- Optimize ܣሚ by using (27). 

4.4- Optimize ሚܵ by using (28). 

5- Fusion stage 

5.1- Fuse ܣሚ and ሚܵ by using (4) to get ෨ܺ. 

Output: high-spatial/high-spectral resolution sharpened hyperspectral data ෨ܺ. 
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IV. TEST RESULTS 

A. Tested data 

A.1. Synthetic data 

The tested synthetic data are generated from a real airborne high-spatial/high-spectral 

resolution hyperspectral image, with 224 spectral bands in the 0.40-2.50 μm region and 

3.5 m spatial resolution. This 400x400 pixel real hyperspectral image, acquired by the 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor, is spatially and 

spectrally degraded to generate synthetic low-spatial/high-spectral resolution 

hyperspectral and high-spatial/low-spectral resolution multispectral images. These 

spatial and spectral degradations yield synthetic data with reduced spatial and spectral 

resolutions for validation exploiting a protocol that may be related to the Wald’s one, 

which was initially developed for the pansharpening processes [3], [6], [39]. The 

synthetic low-spatial/high-spectral resolution hyperspectral image is obtained, from the 

real hyperspectral image (used as a reference image), by using a 2x2 pixel Gaussian 

filter [30], [31] in a 1st experiment, and a 4x4 pixel Gaussian filter in a 2nd one, which 

results in a 200x200 pixel image (corresponding to 7 m spatial resolution) in the 1st 

experiment, and a 100x100 pixel image (corresponding to 14 m spatial resolution) in the 

2nd experiment. The synthetic high-spatial/low-spectral resolution multispectral image is 

derived from the real hyperspectral image by averaging the spectral band values which 

cover different wavelength domains. Five scenarios, described in Table I, are 

considered. Scenarios 1 and 2 use a limited number of multispectral spectral bands, with 

adjacent bands (scenario 1) or distant bands (scenario 2). The number of multispectral 

spectral bands increases each time in the following scenarios (i.e. scenarios 3-5). Thus, 

synthetic multispectral 400x400 pixel images are obtained, with 3.5 m spatial resolution 

and with 3, 3, 4, 5 and 6 spectral bands respectively in the 1st to 5th scenarios.  
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Table I. Description of the different scenarios: (a) index of scenario, (b) number of 

wavelength domains.  

(a) (b) Wavelength domains (µm) 

1 3 0.45-0.52, 0.52-0.60, and 0.63-0.69 

2 3 0.45-0.52, 0.52-0.60, and 2.08-2.35 

3 4 0.45-0.52, 0.52-0.60, 0.63-0.69, and 0.76-0.90 

4 5 0.45-0.52, 0.52-0.60, 0.63-0.69, 0.76-0.90, and 1.55-1.75 

5 6 0.45-0.52, 0.52-0.60, 0.63-0.69, 0.76-0.90, 1.55-1.75, and 2.08-2.35 

 

A.2. Semi-real data 

In these investigations, unlike in [11]-[14], [17], [19], semi-real data are used. These 

semi-real data (geometrically coregistered and radiometrically corrected), acquired on 

the same day (March 3, 2003) and at the same time, cover a part of Oran urban area, 

Algeria. The residual spatial misalignments, between these semi-real data, are lower 

than a pixel (maximum absolute value), which can be acceptable due to the different 

acquisition geometries of the considered sensors [40]. The hyperspectral image is from 

the Earth Observing-1 (EO-1) Hyperion sensor. This image, with 30 m spatial 

resolution, contains 125 spectral bands after removing, from the original 242 spectral 

band data cube, the low signal to noise ratio spectral bands as well as the non-calibrated 

and overlapping spectral bands. Two pansharpened versions (by using the Gram-

Schmidt (GS) method [3]) of multispectral images are used. The first one, acquired by 

the Landsat Enhanced Thematic Mapper plus (ETM+) sensor, is characterized by 6 

spectral bands and 15 m spatial resolution. The second one, acquired by the EO-1 

Advanced Land Imager (ALI) sensor, with 10 m spatial resolution, contains 9 spectral 

bands. 
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B. Performance evaluation criteria 

Many quality metrics/protocols were developed for assessing the hypersharpening 

processes with or without reference [3], [6], [8], [37]-[39], [41]-[43]. 

For the tested synthetic data, the spectral and spatial qualities of the estimated 

sharpened hyperspectral image are evaluated by comparing it with the reference 

hyperspectral image. To evaluate the spectral reconstruction quality, the Spectral Angle 

Mapper (SAM) [19] criterion is used. This criterion is calculated between each pixel 

spectrum in the reference image and its analogue in the estimated image. A smaller 

angle indicates a better spectral reconstruction. In the spatial domain, the used criteria 

are: the Peak Signal to Noise Ratio (PSNR) [19], the Universal Image Quality Index 

(UIQI), with values between -1 and 1 [44], and the Relative Dimensionless Global Error 

in Synthesis (ERGAS: French acronym for “Erreur Relative Globale Adimensionnelle 

de Synthèse”) [8]. These spatial criteria are calculated between each spectral band in the 

reference image and its analogue in the estimated one. The highest PSNR, UIQI values 

correspond to the best spatial reconstruction quality. The ideal ERGAS value is 0.  

For the tested semi-real data, a modified Quality with No Reference (mQNR) criterion 

is proposed and used as a spatial-spectral reconstruction quality index. The standard 

QNR [42] has been modified to be used in the considered hypersharpening processes. 

This modified criterion reads  

mQNR ൌ ሺ1 െ Dሻఘሺ1 െ Dୱሻఙ, (30)

where ρ and σ are real-valued exponents (set to 1 in the conducted experiments). Dλ and 

Ds are spectral and spatial distortion indices. The spectral distortion index reads 

D ൌ 	 ට
ଵ

ேሺேିଵሻ
∑ ∑ ቚUIQI ቀ ܺೕ, ܺೝቁ െ UIQIሺܺೕ, ܺೝሻቚ

ே
ୀଵ,ஷ

ே
ୀଵ


, (31)

where q is a positive integer exponent (set to 1 in the conducted experiments). ܺ. is one 
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spectral band of the sharpened hyperspectral image. ܺ. is one spectral band of the 

hyperspectral image. The spatial distortion index Ds is calculated as follows. For each 

spectral band of the multispectral image, a spatial distortion sub-index is estimated. This 

sub-index is calculated, by using the standard index defined in [42], between each 

multispectral spectral band and hyperspectral bands covered by the same multispectral 

band. The hyperspectral bands outside the spectral range of the multispectral band are 

not considered. The final spatial distortion index Ds represents the mean of the 

calculated sub-indices. Note here that each sub-index uses a spatial downsampling 

operation. This operation is performed by using the above defined blurring-decimation 

matrix D with Gaussian filter values.           

The range of mQNR, Dλ, and Ds is [0, 1]. A higher mQNR value indicates a higher 

spatial-spectral reconstruction quality. A smaller spectral (respectively spatial) 

distortion value indicates a better spectral (respectively spatial) reconstruction.        

C. Results and discussion 

The proposed Grd-JCNMF and Mult-JCNMF methods are applied to the above data 

sets. The maximum number of iterations used in these proposed methods is set to 10. 

This number is also considered in the learning rate adaptation loop in the Grd-JCNMF 

method. The JNMF and CNMF methods are also considered in the performed 

experiments for comparison purposes. The JNMF method uses a small positive 

parameter to jointly update (downsampled)-high/(upsampled)-low spatial resolution 

abundance fraction maps [18]. This parameter is set to 0.1 in the considered 

experiments. The maximum number of iterations considered in the JNMF method is set 

to 10. The CNMF method contains two loops: inner and outer loops [19]. In the 

conducted experiments, the maximum number of iterations of the inner (respectively 

outer) loop is set to 10 (respectively 3). The threshold value of the convergence criterion 
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(29) is set to 10-6 for all the used methods. The SR-based method [13] is also considered 

in the conducted experiments.  

The CPU used in the conducted experiments is an Intel(R) Core(TM) i5 processor 

running at 2.50 GHz, with a memory capacity of 4 GB. 

In the following tables, the computational costs, the means of the SAM, PSNR, and 

UIQI criteria, and the ERGAS values, are given for the tested synthetic data in all the 

considered scenarios for both experiments 1 and 2. 

Globally, these tables show that the proposed Grd-JCNMF and Mult-JCNMF 

approaches yield satisfactory spatial and spectral fidelities for the sharpened 

hyperspectral images. For both experiments 1 and 2, these tests confirm the overall 

superiority of the proposed methods as compared with the literature NMF-based 

approaches. Indeed, Grd-JCNMF provides the overall best fusion accuracies, but its 

computational costs are its drawback. Mult-JCNMF overcomes this weak point, by 

yielding the lowest computational costs and overall fusion results that are similar to 

those obtained by the JNMF method and better than those of CNMF, especially in the 

first scenario. Moreover, the Grd-JCNMF method considerably surpasses all other 

tested methods. These tables also show that the proposed methods yield satisfactory 

results even with a limited number of multispectral spectral bands, with adjacent bands 

(scenario 1) or distant bands (scenario 2), while the CNMF method gives poor results 

with few adjacent multispectral spectral bands (scenario 1). Also, these tables show, as 

expected, that the results generally improve as the number of multispectral spectral 

bands increases (ignoring the effect of non-adjacent bands in scenario 2). 
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Table II. Computational costs, means of SAM, PSNR, and UIQI criteria, and the 

ERGAS criterion - Synthetic data (scenario 1). 

 
Mult-

JCNMF 
Grd-

JCNMF 
JNMF CNMF SR 

Experiment 1 

Time (sec) 19.13 244.89 20.28 163.39 6944.08 
SAM (°) 11.43 9.01 13.59 12.62 10.82 
PSNR (dB) 21.61 25.03 23.59 18.87 22.00 

UIQI 0.74 0.84 0.70 0.54 0.63 

ERGAS 21.00 11.43 14.12 27.01 23.16 

Experiment 2 

Time (sec) 11.08 221.06 13.33 134.23 5704.78 
SAM (°) 8.28 7.83 11.45 12.21 10.47 
PSNR (dB) 23.66 26.43 18.48 23.54 27.45  
UIQI 0.75 0.85 0.49 0.59 0.69 
ERGAS 27.42 24.33 62.01 38.52 33.04 

 

Table III. Computational costs, means of SAM, PSNR, and UIQI criteria, and the 

ERGAS criterion - Synthetic data (scenario 2). 

 
Mult-

JCNMF 
Grd-

JCNMF 
JNMF CNMF SR 

Experiment 1 

Time (sec) 18.94 249.98 20.58 164.34 6984.45 
SAM (°) 9.89 6.32 10.99 11.49 9.85 
PSNR (dB) 23.31 29.87 27.23 23.97 27.95 

UIQI 0.85 0.93 0.86 0.70 0.82 

ERGAS 15.90 9.50 11.73 17.93 15.38 

Experiment 2 

Time (sec) 11.06 221.05 12.89 136.36 5795.30 
SAM (°) 7.07 7.69 8.74 10.57 9.07 
PSNR (dB) 26.49 30.10 20.62 27.61 32.19 
UIQI 0.89 0.89 0.72 0.86 0.87 
ERGAS 20.23 19.29 44.62 21.42 20.37 
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Table IV. Computational costs, means of SAM, PSNR, and UIQI criteria, and the 

ERGAS criterion - Synthetic data (scenario 3). 

 
Mult-

JCNMF 
Grd-

JCNMF 
JNMF CNMF SR 

Experiment 1 

Time (sec) 20.42 243.00 22.36 445.13 18918.03 
SAM (°) 15.31 5.18 9.46 19.85 17.02 
PSNR (dB) 20.37 31.44 24.79 24.89 29.02 

UIQI 0.64 0.93 0.85 0.69 0.80 

ERGAS 29.47 10.44 17.19 27.74 23.79 

Experiment 2 

Time (sec) 14.06 218.77 14.67 139.06 5910.05 
SAM (°) 5.90 5.26 8.65 8.93 7.66 
PSNR (dB) 29.28 31.31 24.97 30.62 30.70 
UIQI 0.94 0.93 0.88 0.90 0.93 
ERGAS 21.55 20.97 32.08 25.96 22.26 

 

Table V. Computational costs, means of SAM, PSNR, and UIQI criteria, and the 

ERGAS criterion - Synthetic data (scenario 4). 

 
Mult-

JCNMF 
Grd-

JCNMF 
JNMF CNMF SR 

Experiment 1 

Time (sec) 23.16 270.30 26.17 479.55 20380.88 
SAM (°) 4.09 3.18 2.92 4.96 4.25 
PSNR (dB) 31.21 37.41 34.77 35.21 41.05 

UIQI 0.96 0.98 0.98 0.97 0.98 

ERGAS 11.27 7.64 7.98 8.88 7.62 

Experiment 2 

Time (sec) 13.81 221.39 14.03 139.98 5949.15 
SAM (°) 3.54 3.06 3.78 3.21 3.15 
PSNR (dB) 32.50 37.67 32.12 35.83 36.78 
UIQI 0.98 0.99 0.98 0.98 0.98 
ERGAS 17.85 15.02 17.55 16.37 16.01 
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Table VI. Computational costs, means of SAM, PSNR, and UIQI criteria, and the 

ERGAS criterion - Synthetic data (scenario 5). 

 
Mult-

JCNMF 
Grd-

JCNMF 
JNMF CNMF SR 

Experiment 1 

Time (sec) 21.30 243.39 23.89 458.45 19484.13
SAM (°) 2.51 2.06 2.79 2.27 2.15 
PSNR 
(dB) 

34.05 40.59 37.43 36.24 40.26 

UIQI 0.99 0.99 0.99 0.99 0.99 

ERGAS 7.74 5.72 6.70 6.87 5.89 

Experiment 2 

Time (sec) 12.77 219.02 15.08 137.86 5859.05 
SAM (°) 3.17 2.10 2.24 3.35 2.87 
PSNR 
(dB) 

33.64 40.08 38.91 33.42 33.97 

UIQI 0.99 0.99 0.99 0.98 0.99 
ERGAS 15.14 11.85 12.37 15.70 13.46 

 

Also for the synthetic data, and considering the 2nd experiment, scenario 5, Fig. 1 to 3 

are given as an example. These figures show the spectral bands, respectively, in the 

0.815, 1.65 and 2.218 μm regions [17], [19], of the original high spatial resolution 

hyperspectral image, the low spatial resolution hyperspectral image, and the high spatial 

resolution hyperspectral images estimated by the proposed Grd-JCNMF and CNMF 

methods, and the absolute differences between the original and estimated spectral 

bands. As expected, it is difficult to determine the differences between the original 

image and both estimated images with visual inspection. Table VII illustrates the basic 

statistics of the absolute differences between the original and estimated spectral bands. 

This table shows that the estimated spectral bands, obtained using the proposed method, 

are significantly closer to the original spectral bands than the spectral bands estimated 

by the CNMF approach. 
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Table VII. Basic parameters (minimum: min, maximum: max, mean, and standard 

deviation: std) of the absolute differences between the original and estimated spectral 

bands - Synthetic data (2nd experiment, scenario 5). 

Spectral 
region 

parameter | Original - Grd-JCNMF | | Original - CNMF | 

0.815 μm 

min 0.0000 0.0000 
max 0.0450 0.1551 
mean 0.0015 0.0155 

std 0.0019 0.0140 

1.65 μm 

min 0.0000 0.0000 
max 0.0558 0.1401 
mean 0.0021 0.0103 
std 0.0030 0.0094 

2.218 μm  
min 0.0000 0.0000 
max 0.0597 0.1313 
mean 0.0035 0.0093 
std 0.0033 0.0087 
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Original Low 

 
Grd-JCNMF CNMF 

 
|Original – Grd-JCNMF| |Original – CNMF | 

 

Fig. 1. Spectral bands, in the 0.815 μm region, of the original high spatial resolution 

hyperspectral image, the low spatial resolution hyperspectral image, and the estimated 

high spatial resolution hyperspectral images, and the absolute differences between the 

original and estimated spectral bands - Synthetic data, 2nd experiment, scenario 5. 
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Original Low 

 
Grd-JCNMF CNMF 

 
|Original – Grd-JCNMF| |Original – CNMF | 

 

Fig. 2. Spectral bands, in the 1.65 μm region, of the original high spatial resolution 

hyperspectral image, the low spatial resolution hyperspectral image, and the estimated 

high spatial resolution hyperspectral images, and the absolute differences between the 

original and estimated spectral bands - Synthetic data, 2nd experiment, scenario 5. 
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Original Low 

 
Grd-JCNMF CNMF 

 
|Original – Grd-JCNMF| |Original – CNMF | 

 

Fig. 3. Spectral bands, in the 2.218 μm region, of the original high spatial resolution 

hyperspectral image, the low spatial resolution hyperspectral image, and the estimated 

high spatial resolution hyperspectral images, and the absolute differences between the 

original and estimated spectral bands - Synthetic data, 2nd experiment, scenario 5. 
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For the semi-real data, the results (spatial and spectral distortions and mQNR criteria 

values) obtained with all tested methods are given in Table VIII. This table also 

confirms the superiority (in terms of spatial and spectral reconstructions) of the 

proposed methods as compared with the tested literature methods.  

Fig. 4 shows the spectral bands, in the 0.815 μm region, of the low spatial resolution 

hyperspectral image and the high spatial resolution hyperspectral images estimated by 

the Grd-JCNMF and CNMF methods. 

      

Table VIII. Computational costs, spatial and spectral distortions and mQNR criteria 

values - Semi-real data. 

 
Mult-

JCNMF 
Grd-

JCNMF 
JNMF CNMF SR 

EO-1 
Hyperion 

with 
Landsat 
ETM+ 

Time (sec) 10.53 153.66 12.55 79.48 3377.90 

Ds 0.10 0.10 0.10 0.11 0.10 

Dλ 0.04 0.02 0.06 0.11 0.09 

mQNR 0.86 0.88 0.84 0.79 0.82 

EO-1 
Hyperion 
with EO-1 

ALI  

Time (sec) 18.55 295.00 20.20 105.22 4471.85 
Ds 0.17 0.20 0.21 0.21 0.20 
Dλ 0.06 0.05 0.08 0.10 0.08 
mQNR 0.78 0.76 0.73 0.71 0.74 
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 Low Grd-JCNMF CNMF 

(a) 

 
 

 
 

 
 

(b) 

 
 

 
 

 
 

Fig. 4. Spectral bands, in the 0.815 μm region, of the low spatial resolution 

hyperspectral image and the high spatial resolution hyperspectral images estimated by 

the Grd-JCNMF and CNMF methods: (a) EO-1 Hyperion with Landsat ETM+, (b) EO-

1 Hyperion with EO-1 ALI. 

 

It should here be noted that the given computational costs (for all conducted 

experiments) are merely indicative, and are not used as comparison criteria. These 

computational costs are given only to allow the readers to have an idea about the 

execution time of each used method. Indeed, using the computational costs, it is 

difficult to compare differently constructed methods (with different criteria to be 

optimized and different numbers of used loops). In addition, the computational costs 
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provided above are obtained when the used methods stop after reaching the maximum 

number of iterations and not the satisfaction of the convergence criterion (29).  

Finally, the differences in the results obtained with the two proposed Mult-JCNMF and 

Grd-JCNMF methods can also be explained by the different numbers of used loops in 

each method.     

 

V. CONCLUSION 

In this paper, two methods, called Grd-JCNMF and Mult-JCNMF, were proposed for 

fusing low-spatial/high-spectral resolution hyperspectral and high-spatial/low-spectral 

resolution multispectral images. These methods, related to LSU techniques, are based 

on NMF. The proposed methods optimize a new criterion which permits joint update of 

hyper/multispectral variables. The first method uses a projected gradient descent 

algorithm with adaptive learning rates. In the second method, a multiplicative gradient-

based algorithm was proposed. 

The proposed approaches were applied to synthetic and semi-real data, and their 

effectiveness, in spatial and spectral domains, were evaluated with commonly used 

performance criteria. Experimental results show that the proposed methods yield 

sharpened hyperspectral data with good spectral and spatial fidelities. These new 

methods significantly outperform the CNMF method from the literature for most 

performance figures. Compared with the tested sparse representation approach, the 

proposed methods give better results. The proposed Grd-JCNMF approach provides the 

best fusion accuracies, but its computational costs are its drawback. The Mult-JCNMF 

method overcomes this weak point, by giving the lowest computational costs and fusion 

results that are similar to those obtained by the JNMF method. 
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The proposed methods are easy to implement, and the high qualities of the sharpened 

JCNMF data in both spatial and spectral domains can undoubtedly contribute to the 

accurate identification and classification of an observed area at a finer spatial resolution.
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