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Abstract

Hyperspectral remote sensing is now an established tool to determine shallow water prop-

erties over large areas, usually by inverting a semi-analytical model of water reflectance. How-

ever, various sources of error may make the observed subsurface remote-sensing reflectance

deviate from the model, resulting in an increased retrieval error when inverting the model

based on classical least-squares fitting. In this paper, we propose a probabilistic forward

model of shallow water reflectance variability that describes two of the main sources of er-

ror, namely, (1) the environmental noise that includes every source of above-water variability

(e.g., sensor noise and rough water surface), and (2) the potentially complex inherent spectral

variability of each benthic class through their associated spectral covariance matrix. Based

on this probabilistic model, we derive two inversion approaches, namely, MILE (MaxImum

Likelihood estimation including Environmental noise) and MILEBI (MaxImum Likelihood

estimation including Environmental noise and Bottom Intra-class variability) that utilize the

information contained in the proposed covariance matrices to further constrain the inversion

while allowing the observation to differ from the model in the less reliable wavebands. In this

paper, MILE and MILEBI are compared with the widely used least-squares (LS) criterion

in terms of depth, water clarity and benthic cover retrievals. For these three approaches,

we also assess the influence of constraining bottom mixture coefficients to sum to one on
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estimation results.

The results show that the proposed probabilistic model is a valuable tool to investigate the in-

fluence of bottom intra-class variability on subsurface reflectance, e.g., as a function of optical

depth or environmental noise. As expected, this influence is critical in very optically shallow

waters, and decreases with increasing optical depth. The inversion results obtained from

synthetic and airborne data of Quiberon Peninsula, France, show that MILE and MILEBI

generally provide better performances than LS. For example, in the case of airborne data

with depth ranging from 0.44 to 12.00 m, the bathymetry estimation error decreases by

about 32% when using MILE and MILEBI instead of LS. Estimated maps of bottom cover

are also more consistent when derived using sum-to-one constrained versions of MILE and

MILEBI. MILE is shown to be a simple but powerful method to map simple benthic habitats

with negligible influence of intra-class variability. Alternatively, MILEBI is to be preferred

if this variability cannot be neglected, since taking bottom covariance matrices into account

concurrently with mean reflectance spectra may help the bottom discrimination, e.g., in the

presence of overlapping classes. This study thus shows that taking potential sources of error

into account through appropriate paramerizations of spectral covariance may be critical to

improve the remote sensing of shallow waters, hence making MILE and MILEBI interesting

alternatives to LS.

Keywords: Bottom intra-class variability, Environmental noise, Maximum likelihood

estimation, Radiative transfer model inversion, Shallow water hyperspectral remote sensing,

Spectral covariance

1. Introduction1

Optical remote sensing provides an outstanding opportunity to monitor aquatic environ-2

ments from local to global scales, potentially offering high temporal and spatial resolutions,3

e.g., as allowed by recent advances in unmanned aerial vehicles or by the Sentinel-2 mission4

developed by the European Space Agency within the “Copernicus” program (Aschbacher &5

Milagro-Pérez, 2012; Drusch et al., 2012). The use of such high spatial resolution data (i.e.,6

less than a few dozen meters) is particularly critical for coastal and inland waters, e.g., to7

map heterogeneous benthic habitats (Mishra et al., 2006; Hedley et al., 2012b), to detect8

coral bleaching (Andréfouët et al., 2002; Hedley et al., 2012a) or to monitor small lakes and9

rivers (Joshi & D’Sa, 2015). As compared with the open ocean, coastal and inland waters10
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are generally more complex environments, whose remotely-sensed reflectance may be highly11

variable due to simultaneous changes in bathymetry, water quality, bottom type, water sur-12

face and atmospheric conditions. In shallow waters, the decoupling of these effects has been13

shown to be more accurate when using hyperspectral data instead of multispectral data (Lee14

& Carder, 2002; Lee et al., 2013). Indeed, a higher number of spectral bands as well as15

an increased spectral resolution allow reducing confounding effects between optically-active16

parameters, e.g., by detecting the subtle changes in reflectance that originate from narrow17

absorption regions potentially present in bottom albedo (Kutser et al., 2003; Hochberg &18

Atkinson, 2003; Hedley et al., 2012a; Botha et al., 2013).19

20

In coastal environments, hyperspectral remote sensing methods that allow the simultane-21

ous retrieval of bathymetry, water quality and benthic cover are usually based on a radiative22

transfer model that describes how light propagates in water (Mobley, 1994). This inverse23

problem is generally solved using either look-up tables (LUTs) or iterative optimization24

(Dekker et al., 2011). In the first case, a spectral library corresponding to different combi-25

nations of depth, water quality and benthic cover is pre-computed using an exact (Mobley,26

1994) or approximated (Lee et al., 1998) radiative transfer model. For each image pixel,27

the measured reflectance is then matched with the closest simulated spectrum in the LUT.28

CRISTAL (Comprehensive Reflectance Inversion based on Spectrum matching and TAble29

Lookup) (Mobley et al., 2005) and ALLUT (Adaptive Linearized Look-Up Trees) (Hedley30

et al., 2009) as denoted by Dekker et al. (2011) are examples of such approaches. The inverse31

problem can also be solved by numerically optimizing a cost function that relates measured32

and simulated reflectance spectra. In this case, the forward model used for simulation has33

to be sufficiently fast to permit multiple runs for each image pixel. To this end, a number of34

analytical and semi-analytical models have been developed under various assumptions and35

water types (Maritorena et al., 1994; Lee et al., 1998; Albert & Mobley, 2003). These models36

approximate the radiative transfer equation and generally simulate the reflectance of shal-37

low waters as a function of sun-sensor geometry, depth, bottom albedo and water-column38

inherent optical properties (i.e., absorption and scattering properties of the water column).39

Note that, whenever possible, the latter can further be related to specific inherent optical40
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properties and concentrations of optically-active water constituents (Brando et al., 2009).41

42

Due to its accurate performance and simplicity, the Euclidean distance has generally been43

used to assess the goodness-of-fit between the observation and the model, either when using44

LUTs (Mobley et al., 2005; Hedley et al., 2009, 2012a) or iterative optimization (Lee et al.,45

1999, 2001; Lee & Carder, 2002; Albert & Gege, 2006; Klonowski et al., 2007; Dekker et al.,46

2011; Jay et al., 2012; Giardino et al., 2012; Garcia et al., 2014a; McKinna et al., 2015; Jay47

& Guillaume, 2016). Note that in the case of iterative optimization, the use of Euclidean dis-48

tance for model inversion corresponds to nonlinear unweighted least-squares fitting. However,49

this cost function does not fully consider the information contained in the reflectance data.50

In particular, it does not utilize spectral covariance (i.e., covariance between wavebands), yet51

such knowledge of the data structure may be useful to improve the retrieval accuracy due to52

the non-negligible correlation between hyperspectral bands (Gillis et al., 2013).53

54

Importantly, as the least-squares method tries to find the best possible fit between the55

observation and the model, it is not designed to handle possible deviations between them.56

For example, the “environmental noise equivalent reflectance difference” (Brando & Dekker,57

2003) (hereafter called environmental noise and denoted NE∆rE) may lead the measured58

subsurface reflectance to strongly differ from the modeled one. For a given spectral band,59

NE∆rE corresponds to the reflectance standard deviation as estimated over an “as homoge-60

neous as possible” water area. As a result, it not only takes into account the sensor noise, but61

also scene-specific above-water variability, including atmospheric variability, effects related62

to the rough water surface, refractions of diffuse and direct sunlight, and residuals from im-63

perfect atmospheric, air-water interface and sun glint corrections (Brando & Dekker, 2003;64

Brando et al., 2009; Botha et al., 2013). To consider such errors within model inversion,65

Brando et al. (2009) and Botha et al. (2013) have weighted the contribution of each wave-66

band according to the inverse of NE∆rE . In doing so, the influence of the noisiest and least67

accurate spectral bands is reduced, which lowers the estimation variance.68

69

Another important source of error between the measured and simulated spectra is the70
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inherent spectral variability of each considered benthic class. Based on PlanarRad simu-71

lations and a comprehensive bottom spectral library, Hedley et al. (2012b) have actually72

demonstrated that this is one of the primary limiting factors for benthic mapping purposes73

(whereas sensor noise is only a minor factor). Indeed, while a single mean reflectance spec-74

trum is generally used to characterize the spectral response of each benthic class, many75

authors show that such intrinsic variability may sometimes be greater than the mean re-76

flectance itself, either at the local or global scales (Hochberg et al., 2003; Mobley et al., 2005;77

Hedley et al., 2012b; Petit et al., 2017). Therefore, this variability may strongly affect the re-78

trieval accuracy if it is not (or not properly) taken into account during the inversion process.79

To this end, assuming that the bottom reflectance spectrum only varies according to a single80

multiplicative factor across all the wavebands, several authors have proposed to estimate this81

factor for each possible substrate (Lee et al., 1999; Fearns et al., 2011; Garcia et al., 2014b;82

Petit et al., 2017). Under the same assumption, using the Spectral Angle Mapper (SAM) as83

a cost function may also decrease the detrimental influence of bottom intra-class variability,84

since the SAM is insensitive to variations in the global reflectance magnitude (Brando et al.,85

2009; Botha et al., 2013; Petit et al., 2017). However, this spectral variability cannot always86

be reliably represented using a single multiplicative factor (Hochberg et al., 2003; Hedley87

et al., 2012b), thus making the development of alternative inversion methods highly desirable.88

89

In this study, we first propose a realistic probabilistic model of shallow water reflectance90

variability based on the semi-analytical model of Lee et al. (1998) and that fully describes91

the influences of environmental noise and bottom intra-class variability. Both sources of92

error are considered to be Gaussian and characterized by a mean vector and a spectral93

covariance matrix. Then, using this modeling, we develop two new inversion approaches94

based on maximum likelihood estimation that enable a pixelwise retrieval of all optically-95

active parameters, i.e., bathymetry, water clarity parameters and benthic cover. These two96

approaches are compared with the classical least-squares method using both simulated and97

airborne data.98
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Figure 1: Location of the three study sites S1, S2 and S3.

2. Data99

2.1. Study area100

As shown in Fig. 1, the overall study area is located in the Quiberon Bay on the French101

west coast (around 47◦31’N, 3◦05’W). Three sites (hereafter denoted S1, S2 and S3) were102

chosen in order to include a large bathymetric range and various bottom covers. Site S1 and103

Site S2 are located near the shore in the Bay of Plouharnel (47◦34’46”N, 3◦06’24”W), and104

are characterized by relatively shallow waters (less than 5 m at the time of acquisitions) and105

heterogeneous bottom covers including sand, brown and green algae, seagrasses and oyster106

farming structures. Site S3 is located a few kilometers away from the Quiberon peninsula107

(47◦28’11”N, 3◦02’18”W) and is characterized by a large bathymetric range (from 4 to 12 m108

at the time of acquisitions) and a nearly uniform sandy bottom.109

2.2. Image acquisition and preprocessing110

Eight hyperspectral images were acquired on September 14-18, 2010 around solar noon111

(the solar zenith angle being close to 50o) using an airborne Hyspex VNIR-1600 push-broom112

camera (Norsk Elektro Optikk, Norway). The flight altitude was 650 m, resulting in a 0.5 m113

spatial resolution. The camera acquired successive lines of 1600 pixels and 160 spectral bands114
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Figure 2: Environmental noise as measured on September 18, 2010.

ranging from 410 to 987 nm. The spectral sampling interval and full width at half maxi-115

mum were 3.7 nm and 4.5 nm respectively. Only 105 bands in the 410-800 nm domain were116

kept when removing the strong water and oxygen absorption regions. Further, a three-band117

aggregate was performed similarly to the PRISM instrument developed by the Jet Propul-118

sion Laboratory (Mouroulis et al., 2014), therefore leading to a 11 nm sampling interval (35119

bands). This allows us to enhance the signal-to-noise ratio while keeping similar estimation120

results (Hochberg & Atkinson, 2003; Garcia et al., 2015).121

122

The at-sensor radiance images were geometrically corrected, geolocated, and converted123

into above-surface reflectance using the ATCOR atmospheric correction (Richter, 2012) (for124

further details about these corrections, please see Jay & Guillaume (2016)). Sun glint (Hedley125

et al., 2005) and the air/water interface (Lee et al., 1999) were corrected in order to finally126

obtain the subsurface remote-sensing reflectance r(λ) (in sr−1). For each day of acquisition,127

the environmental noise NE∆rE (in sr−1) (Brando & Dekker, 2003) was estimated over128

optically deep waters according to the methodology proposed by Wettle et al. (2004). As129

shown in Fig. 2, its spectral shape is similar to those obtained in previous studies (Brando130

et al., 2009; Wettle et al., 2004), i.e., NE∆rE is nearly constant across all wavebands and131

mainly increases in the blue domain, where the sensitivity of the CCD sensor is the lowest132

and spectral variations in incident light are the strongest.133
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2.3. Data used for depth and phytoplankton concentration estimations134

The eight hyperspectral images were used to evaluate the accuracy of bathymetry re-135

trieval. For each image, the depth was only known in a few 6×6 m2 flat sandy-bottom areas136

thanks to sonar measurements and a tide model. A total of 14 validation points (depth137

ranging from 0.44 to 12 m) were therefore available to assess the accuracy of bathymetry138

estimation.139

In addition, phytoplankton concentration was also measured concurrently with most airborne140

acquisitions in Site S3. To do so, water samples were collected at the surface and bottom141

(whose depth ranged from 4.70 to 12 m) levels to better account for a possible vertical gra-142

dient in phytoplankton concentration. Chlorophyll-a and pheopigment concentrations were143

measured according to the French standard NF T 90117 (AFNOR, December 1999). Surface144

and bottom phytoplankton concentrations were then given by the sum of chlorophyll-a and145

pheopigment concentrations, and averaged so as to obtain a single measurement for each146

sampled area. These mean values were finally used to derive the absorption coefficient of147

phytoplankton at 440 nm (denoted P , in m−1) similarly to Lee et al. (1999). In total, 8 vali-148

dation points (phytoplankton concentration ranging from 1.25 to 1.95 µg.L−1, corresponding149

to P ranging from 0.069 to 0.093 m−1) were available (still over 6×6 m2 flat sandy-bottom150

areas within which P was assumed to be homogeneous).151

Note that no data were available to assess the retrievals of the other optically-active wa-152

ter constituents, namely, colored dissolved organic and detrital matter as well as suspended153

matter (see Section 3.1.1).154

2.4. Data used for bottom cover estimation155

The above eight images were also used to assess bottom cover estimation over the 14156

6×6 m2 flat sandy-bottom areas of known depth. In addition, one of these images was157

used to assess the tested methods over more complex bottom covers (Fig. 3). This image158

was acquired over a 0.22 km2 area located in site S2. This shallow area was part of a large159

oyster farming area and was thus relatively heterogeneous, both in terms of bottom cover and160

bathymetry (the depth ranged from about 1 m in the left-hand part to 5 m in the top-right161

part, with locally sharp changes in bathymetry due to the presence of oyster racks). Various162
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Figure 3: True color composite image derived from the deglinted subsurface remote-sensing reflectance image
that was used to assess the bottom cover estimation (note that the dynamic range of the image was enhanced
by multiplying every pixel by a factor of 10).

bottom types were identified in this area. Numerous oyster racks were present on a mostly163

sandy bottom. Some of these wooden structures were empty (e.g., in the upper left part of164

the image), but most of them were full of oyster bags at the time of acquisition. Depending165

on when these bags had been put on racks, they could partly or completely be covered with166

green algae and/or brown algae. Lastly, there was a large seagrass meadow in the upper right167

part of the image, as well as small patches of brown algae irregularly distributed within the168

image (e.g., between oyster racks in the lower left part). Note that the colored tarpaulins169

present on the left-hand side (in the middle of which depth was 2.83 m) were ignored in this170

study.171

For each bottom class and based on expert knowledge, numerous endmember spectra were172

extracted from supplementary hyperspectral images acquired over the neighboring zones in173

Site S2 during low tide (Fig. 4). It is worth mentioning that, due to intra-class variability174

and because these zones are a few hundred meters to a dozen kilometers from the zones used175

to assess the inversion methods (Fig. 1), the extracted endmember spectra may not perfectly176
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Figure 4: Reflectance distributions of sand, oyster bag, seagrass/green alga and brown alga classes as esti-
mated from the areas emphasized in the airborne hyperspectral image shown in the middle. For each plot,
the darkest and brightest shades correspond to the 25-75% and 5-95% quantiles resp., whereas the median
and mean spectra are indicated by dashed and dash-dot lines resp..

match those encountered in the whole study area. Selecting reflectance spectra of emerged177

substrates directly from the remote-sensing images allowed us to avoid potential issues of178

intercalibration between airborne and ground-based sensors. However, note that, since empty179

wooden structures were too thin to fill entirely the 0.5×0.5 m2 pixels of hyperspectral images,180

they were not included as a possible endmember. Further, green algae and seagrasses were181

grouped into a single class corresponding to green vegetation elements. Four bottom classes182

were thus used, namely sand, oyster bags, brown algae and seagrasses/green algae (note that183

these surfaces were assumed to be Lambertian). The corresponding reflectance distributions184

were estimated based on 150 to 3,000 image spectra, and all show some intra-class variability185

around the mean reflectance spectra (Fig. 4). Such variability may be due, e.g., to the bottom186

chemistry itself (e.g., variations in chlorophyll content in seagrasses/green algae) or to the187

bottom 3-D arrangement that may make the illumination conditions within the surface highly188
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variable (Manolakis et al., 2003). Given the similar magnitudes of brown alga, seagrass/green189

alga and, to a lesser extent, oyster bag mean reflectance spectra, such variability potentially190

makes the identification of these three partially overlapping classes quite difficult.191

3. Methodology192

3.1. Forward modeling of subsurface remote-sensing reflectance193

3.1.1. Bio-optical modeling194

In this study, we use the semi-analytical model r̃(λ) developed by Lee et al. (1998, 1999)195

to express the subsurface remote-sensing reflectance as measured from nadir as a function196

of depth H (in m), bottom albedo ρb(λ) (unitless), total absorption and backscattering197

properties of the water column a(λ) and bb(λ) resp. (in m−1), and subsurface solar zenith198

angle θs (in
o):199

r̃(λ) = r∞(λ)
(
1− e−(kd(λ)+kcu(λ))H

)
+

ρb(λ)

π
e−(kd(λ)+kbu(λ))H (1)200

where the subsurface remote-sensing reflectance of optically-deep water r∞(λ) (in sr−1) and201

attenuation coefficients kd(λ), k
c
u(λ) and kb

u(λ) (in m−1) are related to a(λ), bb(λ) and θs by:202

r∞(λ) =

(
0.084 + 0.17

bb(λ)

a(λ) + bb(λ)

)
bb(λ)

a(λ) + bb(λ)
(2)203

kd(λ) =
a(λ) + bb(λ)

cos θs
(3)204

kb
u(λ) = 1.04(a(λ) + bb(λ))

(
1 + 5.4

bb(λ)

a(λ) + bb(λ)

)0.5

(4)205

kc
u(λ) = 1.03(a(λ) + bb(λ))

(
1 + 2.4

bb(λ)

a(λ) + bb(λ)

)0.5

. (5)206

Eq. (1) to Eq. (5) have been used and validated in numerous studies dealing with shallow207

water remote sensing over a wide range of coastal waters (Lee et al., 1999, 2001; Klonowski208

et al., 2007; Goodman et al., 2008; Brando et al., 2009; Hedley et al., 2009; Dekker et al.,209

2011; Fearns et al., 2011; Garcia et al., 2014a; Jay & Guillaume, 2014; McKinna et al.,210

2015; Jay & Guillaume, 2016; Petit et al., 2017). In the absence of in-situ measurements of211

inherent optical properties to develop a site-specific bio-optical model, the total absorption212
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and backscattering coefficients are given by the sum of the contributions of optically-active213

water constituents and parameterized according to the generic expressions of Lee et al. (1998)214

and Dekker et al. (2011):215

a(λ) = aw(λ) + [a0(λ) + a1(λ) lnP ]P +Ge−0.015(λ−440) (6)216

bb(λ) = bb,w(λ) +X

(
550

λ

)0.5

(7)217

where aw(λ) and bb,w(λ) (in m−1) are the pure water absorption and backscattering coeffi-218

cients (Buiteveld et al., 1994; Morel, 1974), a0(λ) and a1(λ) (unitless) are empirical spectra219

tabulated by Lee et al. (1998), P (in m−1) is the absorption coefficient of phytoplankton at220

440 nm, G (in m−1) is the absorption coefficient of colored dissolved organic and detrital221

matter at 440 nm, and X (in m−1) is the particle backscattering coefficient at 550 nm. The222

above parameterizations of absorption coefficients of phytoplankton and colored dissolved223

organic and detrital matter have been shown to be sufficiently accurate over a wide range224

of coastal waters (Lee et al., 1999, 2001; Lee & Carder, 2002; Goodman et al., 2008; Hedley225

et al., 2009; Dekker et al., 2011; Hedley et al., 2012a; Jay & Guillaume, 2014, 2016). Note226

also that the power law exponent used to model particle backscattering was set to -0.5, which227

is adequate for normal to more turbid coastal waters (Lee et al., 2001).228

In order to accurately model the response of oyster racks (which are relatively thin com-229

pared to the 0.5 × 0.5 m2 pixel size) while appropriately limiting the number of unknowns230

and, therefore, the estimation uncertainty, the bottom albedo is parameterized using a linear231

combination of two pure substrates similarly to Brando et al. (2009) and Hedley et al. (2009):232

ρb(λ) = B1ρb,1(λ) +B2ρb,2(λ) (8)233

where ρb,1(λ) and ρb,2(λ) are two known substrate albedos (e.g., obtained from ground-based234

measurements or a generic spectral library). The scalars B1 and B2 (unitless) may represent235

the fractional covers of both substrates within the considered pixel, so in this case, only one236

bottom coefficient B is required, i.e., B1 = B, B2 = 1−B and 0 ≤ B ≤ 1 (Klonowski et al.,237

2007; Goodman & Ustin, 2007; Brando et al., 2009; Hedley et al., 2009, 2012a). Alterna-238
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tively, Fearns et al. (2011) and Garcia et al. (2014b) used a mixture of benthic reflectances239

normalized at 550 nm, and they estimated the relative brightness of each substrate without240

imposing any constraint on the mixture coefficients to be retrieved. In this case, a single241

multiplicative factor is used to model both the fractional cover and the brightness (or magni-242

tude) of each substrate. Although the sum-to-one constraint applies for the fractional cover,243

the brightness of substrate ρb,1 is independent from that of substrate ρb,2. As a result, the244

mixture coefficients B1 and B2 are independent and do not necessarily sum to one. It is worth245

noting that, even though such a modeling enables the magnitudes of ρb,1 and ρb,2 to vary,246

it also adds an extra degree of freedom during the inversion process. This may increase the247

estimation noise and require post-processing steps in order to smooth estimated maps, e.g.,248

using median filtering (Fearns et al., 2011). In the following, we test these two approaches249

in order to assess the impact of the sum-to-one constraint on estimation performance.250

3.1.2. Probabilistic modeling251

As widely accepted in the community (Jay & Guillaume, 2011; Hedley et al., 2012a;252

Jay et al., 2012; Gillis et al., 2013; Garcia et al., 2014b; Jay & Guillaume, 2014; Knudby253

et al., 2016), the measured subsurface remote-sensing reflectance, denoted in vector form254

r = [r(λ1), ..., r(λL)]
t (where L is the number of wavebands), is assumed to follow a mul-255

tivariate Gaussian distribution with mean µ = E [r ] and spectral covariance matrix Γ =256

E [(r − E(r ))(r − E(r ))t]. The mean vector is parameterized using the bio-optical model257

presented in Section 3.1.1, which may be written in matrix notation as258

µ(∆) = (I −K c)r∞ +K b

(
B1

ρb,1

π
+B2

ρb,2

π

)
(9)259

where ∆ = [H,P,G,X,B1, B2]
t, r∞ = [r∞(λ1), ..., r∞(λL)]

t, I is the L × L identity matrix,260

K c = diag
[
e−(kd(λi)+kcu(λi))H

]
i∈J1;LK

,K b = diag
[
e−(kd(λi)+kbu(λi))H

]
i∈J1;LK

, and ρb,i = [ρb,i(λ1), ..., ρb,i(λL)]
t.261

262

The different sources of deviations between the measured and simulated spectra can be263

modeled via an appropriate parameterization of Γ . In the probabilistic modeling subse-264

quently used within the proposed MILE (MaxImum Likelihood estimation including En-265
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vironmental noise) inversion method (Section 3.2), we assume that the random variability266

around mean µ(∆) can be described using the full spectral covariance matrix of the envi-267

ronmental noise, Γ surf , similarly to Hedley et al. (2012a), Garcia et al. (2014b) and Knudby268

et al. (2016). The subsurface remote-sensing reflectance is then modeled as269

r =
[
(I −K c)r∞ +K b

(
B1

ρb,1

π
+B2

ρb,2

π

)]
+ nsurf (10)270

where the random vector nsurf follows a multivariate Gaussian distribution with zero mean271

and covariance matrix Γ surf . Note that, in real scenarios, Γ surf can be estimated over opti-272

cally deep waters similarly to NE∆rE .273

274

However, Eq. (10) only allows the bottom remote-sensing reflectances
(
ρb,1/π

)
and

(
ρb,2/π

)
275

to vary according to the multiplicative factors B1 and B2. As an alternative to this usual276

bottom modeling, the proposed MILEBI (MaxImum Likelihood estimation including Envi-277

ronmental noise and Bottom Intra-class variability) probabilistic modeling uses a multivariate278

Gaussian distribution to describe the reflectance inherent variability of each benthic class.279

Due to the compromise offered between accuracy and mathematical tractability, the Gaus-280

sian modeling has been widely used to develop hyperspectral remote-sensing algorithms that281

must take into account the spread of each class of materials (and therefore potential overlaps282

between these classes) to obtain good performances, e.g., classification and target detection283

algorithms (Manolakis et al., 2003; Melgani & Bruzzone, 2004; Palmason et al., 2005). Pre-284

liminary tests (not shown here for the sake of brevity) demonstrated that, except for a small285

minority of samples corresponding to extreme data points, the bottom intra-class variabil-286

ities presented in Fig. 4 could indeed be reliably represented using multivariate Gaussian287

distributions. In this case, the subsurface remote-sensing reflectance can be modeled as288

r =
{
(I −K c)r∞ +K b

[
B1(µb,1 + nb,1) +B2(µb,2 + nb,2)

]}
+ nsurf (11)289

where µb,i is the mean remote-sensing reflectance spectrum of bottom class i and nb,i follows290

a multivariate Gaussian distribution with zero mean and covariance matrix Γ b,i. Separating291
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deterministic terms from random terms in Eq. (11) leads to292

r =
[
(I −K c)r∞ +K b

(
B1µb,1 +B2µb,2

)]
+ [nsurf +K b(B1nb,1 +B2nb,2)] . (12)293

The corresponding total covariance matrix is obtained by applying Γ = E [(r − E(r))(r − E(r))t]294

to Eq. (12) and by assuming that nb,1, nb,2 and nsurf are independent:295

Γ (∆) = K b

[
B1

2Γ b,1 +B2
2Γ b,2

]
K b + Γ surf . (13)296

In Eq. (12), possible deviations between the observed subsurface remote-sensing reflectance297

r and the model (left-hand term of the sum) are not only due to the environmental noise,298

but also to the intrinsic spectral variability of each benthic class. As expected, for the ith299

class, the influence of this variability is proportional to Bi, and becomes negligible when300

depth and/or turbidity increase(s) (because of progressive attenuation by K b). Also, if Γ b,1301

and Γ b,2 perfectly describe the bottom intrinsic variabilities, the parameters B1 and B2 only302

represent fractional covers, so the sum-to-one constraint applies. In this case, the MILEBI303

probabilistic modeling disentangles the fractional cover (which is taken into account by a304

single multiplicative factor B = B1 = 1− B2) from intra-class variabilities (which are taken305

into account through the bottom covariance matrices Γ b,1 and Γ b,2), which is not possible306

when using Eq. (10). Alternatively, relaxing the sum-to-one constraint may allow potential307

deviations from the assumed Gaussian modeling.308

3.2. Inversion methods309

In this study, various inversion methods are derived based on the above two probabilis-310

tic models of shallow water reflectance variability. All these inversion methods consist in311

maximizing the likelihood of observing r given the set ∆ of water column parameters to be312

estimated. Under the Gaussian assumption, the likelihood is defined as313

P(r |∆) =
[
(2π)L|Γ (∆)|

]−1/2
e−

1

2
(r−µ(∆))tΓ (∆)−1(r−µ(∆)). (14)314
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The maximum likelihood estimate ∆̂ML(r) is the value of ∆ that maximizes the likelihood:315

∆̂ML(r) = argmax
∆

P(r|∆). (15)316

In Eq. (14), the mean vector µ(∆) is given by Eq. (9) for every tested inversion method.317

The main difference between the methods actually lies in the parameterization of Γ (∆).318

In MILE, Γ (∆) = Γ surf does not depend on ∆ since it only characterizes the above-water319

variability. Eq. (14) can thus be simplified, and the MILE estimate ∆̂MILE(r) is given by320

the minimum Mahalanobis distance between the measured and simulated spectra:321

∆̂MILE(r) = argmin
∆

(r− µ(∆))tΓ surf
−1(r− µ(∆)). (16)322

In MILEBI, Γ (∆) depends on ∆, so Eq. (14) cannot be further simplified:323

∆̂MILEBI(r) = argmax
∆

{[
(2π)L|Γ (∆)|

]−1/2
e−

1

2
(r−µ(∆))tΓ (∆)−1(r−µ(∆))

}
(17)324

where Γ (∆) is given by Eq. (13).325

In this paper, MILE and MILEBI are compared to the widely used least-squares (LS) method.326

Note that the LS estimate can also be obtained by maximizing the likelihood in Eq. (14),327

taking Γ = σ2
I where σ is a positive real number and I is the L × L identity matrix (i.e.,328

uncertainties of all spectral bands are assumed to be uncorrelated and of equal variances).329

The LS estimate ∆̂LS(r) is given by the minimum Euclidean distance between the measured330

and simulated spectra:331

∆̂LS(r) = argmin
∆

(r− µ(∆))t(r− µ(∆)). (18)332

Comparing Eq. (16), Eq. (17) and Eq. (18) shows that, unlike LS, MILE and MILEBI utilize333

the information contained in the spectral covariance matrix to further constrain the inversion.334

In addition, both methods allow some deviations between the measured and simulated spectra335

by giving the less reliable wavebands little weights in the cost function. For MILE, these are336

located in the domains of strong environmental noise. For MILEBI, these wavebands not337
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Table 1: Methods compared in this study and derived from the likelihood function presented in Eq. (14).
Subscript “S21” indicates the use of the sum-to-one constraint.

Method ∆ µ(∆) Γ (∆)

LSS21 [H,P,G,X,B] (I −K c)r∞ +K b

(

B
ρb,1

π
+ (1− B)

ρb,2

π

)

σ2
I

MILES21 [H,P,G,X,B] (I −K c)r∞ +K b

(

B
ρb,1

π
+ (1− B)

ρb,2

π

)

Γ surf

MILEBIS21 [H,P,G,X,B] (I −K c)r∞ +K b

(

B
ρb,1

π
+ (1− B)

ρb,2

π

)

K b

[

B2Γ b,1 + (1− B)2Γ b,2

]

K b + Γ surf

LS [H,P,G,X,B1, B2] (I −K c)r∞ +K b

(

B1

ρb,1

π
+ B2

ρb,2

π

)

σ2
I

MILE [H,P,G,X,B1, B2] (I −K c)r∞ +K b

(

B1

ρb,1

π
+ B2

ρb,2

π

)

Γ surf

MILEBI [H,P,G,X,B1, B2] (I −K c)r∞ +K b

(

B1

ρb,1

π
+ B2

ρb,2

π

)

K b

[

B1
2Γ b,1 + B2

2Γ b,2

]

K b + Γ surf

only correspond to the domains of strong environmental noise, but also to the domains of338

strong bottom intrinsic variabilities.339

Implementing MILE, MILEBI and LS with or without the sum-to-one constraint on bottom340

mixture coefficients results in the six methods summarized in Table 1. Note that other341

cost functions, such as SAM or least-squares on spectral derivative (Brando et al., 2009;342

Botha et al., 2013; Petit et al., 2017), could also be tested, since, for example, SAM may343

provide more accurate bathymetry retrieval than LS (Petit et al., 2017). We, however, only344

compared MILE, MILEBI and LS (1) in order to focus primarily on the influence of Γ (∆)345

parameterization on the inversion, and (2) because LS generally offers a better tradeoff than346

SAM and least-squares on spectral derivative for accurately retrieving all the parameters at347

the same time (Petit et al., 2017).348

3.3. Implementation of inversion methods349

For the six methods presented in Table 1, the cost function was iteratively optimized350

using the trust-region reflective algorithm implemented in MATLABR© (version 8.0.0, The351

MathWorks Inc., Natick, MA, 2012) within the “lsqcurvefit” function. Lower and upper op-352

timization bounds were similar to those found in the literature for turbid waters (Hedley et al.,353

2009; Garcia et al., 2014b, 2015), i.e., 0 ≤ H ≤ 30 m, 0 ≤ P ≤ 0.5 m−1, 0 ≤ G ≤ 0.5 m−1,354

0 ≤ X ≤ 0.08 m−1, 0 ≤ B1, B2 ≤ 1.5 and 0 ≤ B ≤ 1.355

356

A special attention was given to the initialization step. While default parameter values357

(Lee et al., 2001; Klonowski et al., 2007; McKinna et al., 2015) or reflectance-derived values358

(Lee et al., 1999; Dekker et al., 2011; Jay & Guillaume, 2016) may be used as initial guesses,359

Garcia et al. (2014a,b) have shown that different initial guesses could lead to different local360
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minima and therefore different parameter estimates. This step may be more critical in the361

case of maximum likelihood estimation because considering spectrally-correlated noise may362

introduce more local minima in the parameter solution space (Garcia et al., 2014b). In this363

paper, we thus implemented a Latin Hypercube Sampling scheme as proposed by Garcia et al.364

(2014b) to generate preliminary LUTs containing 100,000 initial guesses and corresponding365

simulated reflectance spectra. Normal distributions were used for H , P , G and X , and uni-366

form distributions bounded by the above lower and upper bounds were used for B, B1 and367

B2. Empirical values were used for means and standard deviations of normal distributions:368

means were set to 0, while standard deviations were set such that the value of the probability369

density function at half maximum corresponded to one-third of the upper bound (e.g., we370

used a standard deviation of 8.5 m for H). Only positive sets of parameters were then kept371

to build the LUTs. The use of such normal distributions allowed us to sample more finely the372

regions of the parameter space where the reflectance strongly varies with depth and water373

clarity parameters, namely, shallow waters and high water clarity (Hedley et al., 2009; Jay374

& Guillaume, 2016). For each measured spectrum to be inverted, the 100 sets of parameters375

corresponding to the 100 closest spectra in the LUT were averaged to provide a single initial376

guess for the iterative optimization process. In vegetation remote sensing, averaging multiple377

best solutions instead of retaining only the best one is known to increase the estimation378

accuracy when the inversion problem is ill-posed and/or the reflectance model is not fully379

accurate (Darvishzadeh et al., 2011; Verrelst et al., 2015; Jay et al., 2017).380

381

In this study, four substrates were identified as possible endmembers (Fig. 4). As only382

two of them could be used in the bottom reflectance model (Eq. (8)), we implemented the383

same type of approach as Brando et al. (2009), i.e., (1) each measured reflectance spectrum384

was inverted using each of the six possible pairs of substrates (note that this requires gener-385

ating six preliminary LUTs for initialization), and (2) these six pairs were sorted according to386

their P(r |∆) value. For similar reasons as for initialization and unlike Brando et al. (2009)387

who only retained the best pair (i.e., corresponding to the highest P(r |∆) value, Pmax), the388

solution was here obtained by averaging all pairs whose P(r |∆) values were sufficiently close389

to Pmax, i.e., within n% of Pmax. In the following, the value of n was investigated based on390
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simulated data (Section 4.2), testing n = 0 (i.e., only the best pair is retained), 1 and 2%.391

The optimum value was then used for processing the airborne data (Section 4.3).392

393

The four bottom intra-class covariance matrices used in MILEBI and MILEBIS21 were394

estimated from hyperspectral images acquired at low tide, similarly to the mean reflectance395

spectra (see Section 2.4). It is worth noting that inverting the covariance matrices detailed in396

Table 1 requires (at least) as many samples (i.e., spectra) as spectral bands for Γ surf and Γ b,i397

estimations. The more samples we have, the more accurate the estimations. In this paper,398

a minimum of 150 spectra (for oyster bag class) were used, this number being substantially399

higher than the number of spectral bands (35).400

3.4. Performance assessment401

3.4.1. Simulated data402

We conducted two series of simulations, each of which corresponded to a different model403

to generate the synthetic data set. For the first data set, we used the probabilistic modeling404

of Eq. (10), therefore assuming that the random variability is only described by Γ surf . The405

influence of water column properties was studied at four depths, i.e., 1, 5, 10 and 20 m, and406

intermediate water clarity as given by Garcia et al. (2015), i.e., P = 0.1 m−1, G = 0.1 m−1,407

and X = 0.01 m−1. The bottom was given either as one of the four substrates shown in408

Fig. 4, or as a 50%/50% mixture of two substrates, thus resulting in ten tested bottom spec-409

tra. Note that intra-class variability was not simulated for this data set. We used the Γ surf410

matrix that was estimated over optically deep waters from the airborne data set presented411

in Section 2, the diagonal of Γ surf being given as the square of NE∆rE shown in Fig. 2. The412

sun-sensor geometry was identical to that used for airborne acquisitions, i.e., nadir viewing413

and a solar zenith angle of 50o.414

The second synthetic data set was generated using the probabilistic modeling of Eq. (12).415

As compared with the first data set, the only difference related to the simulation of bottom416

reflectance, which was here not only modeled using multiplicative factors, but also using ran-417

dom vectors nb,1 and nb,2. These vectors were generated based on the intra-class covariance418

matrices estimated from airborne data (see Section 3.3).419
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For each data set, the “mvnrnd” MATLAB function allowed us to generate 100 noise-420

perturbed spectra for every depth and bottom reflectance, hence providing 4,000 simulated421

spectra in total. These spectra were then inverted using the six methods and according to422

the procedure described in Section 3.3. The estimation performances were evaluated in terms423

of mean absolute error (MAE), which has proven to be a more reliable measure of error than424

the classical root mean square error (Willmott & Matsuura, 2005).425

3.4.2. Airborne data426

The retrievals of bathymetry, absorption of phytoplankton at 440 nm and bottom cover427

were also assessed using the airborne data set (Section 2). For each 6×6 m2 flat sandy-bottom428

area (thus containing 12×12 pixels), the semi-analytical model was inverted for each pixel429

using the six methods, and estimated values ofH , P and bottom coefficients were compared to430

their actual values whenever possible. The six methods were also used to retrieve the bottom431

cover for the image presented in Fig. 3, the estimated benthic habitats being qualitatively432

evaluated by visual inspection.433

4. Results and discussion434

4.1. Influences of environmental noise and bottom intra-class variability on subsurface re-435

flectance436

A preliminary study was conducted to quantify the influences of environmental noise437

and bottom intra-class variability on the measured subsurface reflectance, based on the total438

covariance matrix presented in Eq. (13). Representing this matrix for the four depths in-439

vestigated in the simulations (same water quality) and the four pure substrates presented in440

Fig. 4 allows us to see how these two sources of error make the observation deviate from the441

model (note that, if the bio-optical model in Eq. (9) would be perfect, the total covariance442

matrix would be the zero matrix).443

In the absence of water, the four bottom intra-class covariance matrices show quite different444

patterns and magnitudes (Fig. 5). While, overall, sand and oyster bag variabilities steadily445

increase with wavelength, brown algae and, to a lesser extent, seagrasses/green algae, show446

lower variability in the blue and red domains due to the strong chlorophyll absorption leading447
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Figure 5: Total covariance matrix (as defined by Eq. (13)) as a function of depth for the four pure substrates
investigated (P = 0.1 m−1, G = 0.1 m−1 and X = 0.01 m−1). The color scale is the same for every matrix.

to reflectance saturation. For the four substrates, the influence of bottom intra-class variabil-448

ity (resp., environmental noise) decreases (resp., increases) with increasing optical depth. At449

1 m and, to a lesser extent, 5 m, the subsurface reflectance variability in the visible domain is450

primarily driven by the bottom intra-class variability, showing that the latter should not be451

neglected for such optically shallow waters as also observed by Hedley et al. (2012b). Note452

that, at 1 m and for most wavebands larger than 700 nm, the water attenuation is already453

such that the total covariance matrix is mainly dominated by the environmental noise for454

the four substrates. At 10 m, the influence of environmental noise tends to overshadow that455

of bottom intra-class variability; only the variability of the brightest benthic class, namely456

sand, affects the subsurface reflectance in the domain of lower absorption (i.e., in the green457

region for this water type). In optically deep waters (20 m), the bottom is not visible so458

only the environmental noise contributes to the total covariance matrix. Of course, note that459
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the relative influences of environmental noise and bottom intra-class variability as functions460

of optical depth depend on their magnitude, meaning that they should be re-evaluated for461

every sensor, study area, etc.462

To our knowledge, only a few authors (e.g., Hedley et al. (2012b)) have thoroughly analyzed463

the influence of bottom intra-class spectral variability on subsurface reflectance. Using the464

analytical expression in Eq. (13) appears as a simple but convenient way to undertake such an465

analysis and to investigate how accurate Eq. (8) is in modeling the total bottom reflectance.466

4.2. Estimation results obtained with the simulated data467

In Fig. 6 and Fig. 7, we show the inversion results obtained from the two synthetic data468

sets presented in Section 3.4.1. Importantly, as the bottom reflectance variability was simu-469

lated differently in these two data sets, we only present LSS21, MILES21, LS and MILE (resp.470

MILEBIS21 and MILEBI) bottom estimation results when using the first (resp. the second)471

data set. For both data sets, we, however, show the H , P , G and X estimation results for472

the six methods in order to study the influence of bottom mismodeling.473

474

For each method, the H estimation error is similar for both data sets and increases with475

depth (Fig. 6). It could be shown that this increase is caused both by a progressive H un-476

derestimation and by an increasing estimation variance. Overall, MILES21 and MILEBIS21477

(resp., MILE and MILEBI) provide lower errors than LSS21 (resp., LS). For example, at 10 m478

(first data set, n = 0%), the MAEs are 1.52, 1.63 and 2.32 m for MILEBIS21, MILES21 and479

LSS21 resp.. Using the sum-to-one constraint generally improves the performances, especially480

for H ≥ 5 m, MILEBI, MILE and LS respectively obtaining MAEs of 2.48, 2.46 and 3.14 m481

at 10 m.482

On the one hand, the P and G errors tend to show a bowl-shaped pattern with respect to483

depth (the minimum being located at 5 m in most cases), especially when considering the484

second data set. On the other hand, the X error steadily declines with increasing depth485

(Fig. 6). Similarly to H , MILE- and MILEBI-based methods generally better estimate these486

water clarity parameters than LS-based methods. This is more visible for H ≥ 5 m, for487

which similar errors are generally obtained with MILES21, MILEBIS21, MILE and MILEBI.488
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Figure 6: H , P , G and X (rows 1-4, resp.) estimation results obtained by applying the six methods (columns
1-6, resp.) presented in Table 1 to the synthetic data simulated using either Eq. (10) (solid lines) or Eq. (12)
(dashed lines). Black, turquoise and orange lines respectively correspond to the use of n = 0, 1 and 2% for
averaging the best bottom pairs.

For example, at 10 m (first data set, n = 0%), the P (resp., X) retrieval error decreases by489

about 30% (resp., 48%) when using one of these four methods instead of LSS21 or LS.490

While both data sets lead to similar results for H ≥ 5 m, strong differences appear for491

H = 1 m. When using the first data set, MILE-based methods offer the best performances492

for P and G, followed by MILEBI- and LS-based methods. In the case of X , MILES21 and493

MILE still perform better, followed by LS- and MILEBI-based methods. However, the errors494

obtained with MILE- and LS-based methods increase when using the second data set. This495

increase is stronger (1) when the bottom mixture coefficients are constrained to sum to one496

(e.g., for P estimation, the MAEs obtained with LSS21 and LS increase by 70 and 21% resp.),497

and (2) in the cases of MILE-based methods as compared to LS-based methods (e.g., for498

X estimation, the MAEs obtained with LSS21 and MILES21 increase by 26 and 78% resp.).499
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On the other hand, MILEBI-based methods offer more similar results over both data sets,500

MILEBIS21 generally performing better than the other methods for these three parameters501

when using the second data set.502

Using n = 0, 1 or 2% for averaging the best bottom pairs does not significantly change the503

H , P , G and X inversion results for LS- and MILE-based methods. For MILEBIS21 and504

MILEBI, increasing the value of n generally slightly degrades the estimation accuracy at 1 m505

(e.g., for P estimation, the MAE obtained with MILEBIS21 increases by 7% when taking506

n = 2% as compared to n = 0%). However, the performances generally improve for H ≥ 5 m507

when taking either n = 1 or 2%. For example, at 10 m (first data set) and for both n values,508

the MAE obtained with MILEBIS21 decreases by 15% for H and 7% for P .509

510

The bottom estimation results show similar trends for every benthic class, method, data511

set and n value, i.e., the error increases with depth (Fig. 7). For H ≤ 5 m, the easiest512

class to be retrieved is generally sand, followed by brown algae, seagrasses/green algae and513

oyster bags. For deeper waters, it is more difficult to note any clear trend among methods514

and benthic classes. Similarly to depth and water clarity parameters, MILE-based methods515

provide equal or better performances than LS-based methods for H ≤ 5 m (e.g., for the sand516

coefficient, the MAEs obtained with LSS21 and MILES21 at 5 m are 0.13 and 0.09 resp.).517

It is worth noting that, despite the additional bottom intra-class variability present in the518

second data set, the performances of MILEBI-based methods generally remain comparable to519

those of MILE-based methods. Also, it can be seen that applying the sum-to-one constraint520

significantly improves the retrieval for every method, especially for H ≥ 5 m. For example,521

for the oyster bag coefficient, the MAE obtained with MILEBIS21 at 5 m (n = 0%) increases522

by 38% when relaxing the sum-to-one constraint.523

Averaging over several bottom pairs instead of retaining only the best one generally has a524

positive effect for every method and H ≥ 10 m (or even for H ≥ 5 m in the cases of LS525

and MILE). For such optically deep waters, taking n = 2% and, to a lesser extent, n = 1%,526

provides equal or better performances than taking n = 0% in most cases. For example, for527

the sand coefficient, the MAE obtained with LSS21 at 10 m decreases by 13% when taking528

n = 2% as compared to n = 0%. For shallower waters, this averaging does not significantly529
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Figure 7: Bottom estimation results obtained by applying the six methods (columns 1-6, resp.) presented
in Table 1 to the synthetic data simulated using either Eq. (10) (solid lines) or Eq. (12) (dashed lines).
Black, turquoise and orange lines respectively correspond to the use of n = 0, 1 and 2% for averaging the
best bottom pairs. Bsa, Bob, Bse and Bba (rows 1-4, resp.) refer to the coefficients of sand, oyster bag,
seagrass/green alga and brown alga spectra, resp..

change the retrieval accuracy for LS- and MILE-based methods. However, taking n = 2%,530

and, to a lesser extent, n = 1%, slightly degrades the MILEBIS21 and MILEBI bottom531

estimation results. In the following results, n is therefore set to 1% as this value offers a good532

compromise between optically shallow and deep waters for the six methods.533

4.3. Estimation results obtained with the airborne data534

Similarly to simulations, for every method, the H estimation error increases with depth535

as a result of a progressive H underestimation and an increasing estimation variance (Fig. 8).536

This underestimation occurs for shallower waters in the cases of LS-based methods as com-537

pared to MILE- and MILEBI-based methods. Unlike for simulations, the sum-to-one con-538

straint leads to poorer performances for every method. MILEBI provides the highest overall539
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Figure 8: Depth estimation results obtained from airborne data (n = 1%): (a) LSS21, (b) MILES21, (c)
MILEBIS21, (d) LS, (e) MILE and (f) MILEBI.

accuracy (MAE = 1.17 m), followed by MILE (MAE = 1.23 m), MILEBIS21 (MAE = 1.35 m)540

and MILES21 (MAE = 1.39 m). On the other hand, LSS21 and LS obtain significantly higher541

errors, with MAEs of 1.97 and 1.86 m respectively. Note that Fig. 8 suggests that the water542

tends to be quasi-optically deep for H > 10 m, thus potentially making the comparison mis-543

leading. When removing the samples corresponding to H > 10 m, the MAEs become 0.49,544

0.53, 0.75 and 0.81 m for MILEBI, MILE, MILEBIS21 and MILES21, respectively. On the545

other hand, LS and LSS21 still obtain poorer performances, with MAEs of 0.92 and 1.12 m,546

respectively. These MAEs are about twice as high as those obtained using MILEBI andMILE.547

548

Similar observations are made from the P inversion results (Fig. 9), i.e., (1) MILE- and549

MILEBI-based methods perform better than LS-methods, and (2) relaxing the sum-to-one550

constraint improves the estimation accuracy. MILEBI and MILE still provide the best per-551

formances with MAE ≈ 0.016 m−1, while LSS21 and LS lead to MAE ≈ 0.027 m−1.552

553
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Figure 9: P estimation results obtained from airborne data (n = 1%): (a) LSS21, (b) MILES21, (c) MILEBIS21,
(d) LS, (e) MILE and (f) MILEBI.

The bottom estimation results obtained from the 14 areas of known depth (Fig. 10) show554

the same pattern for every method, i.e., (1) the sandy-bottom cover is accurately retrieved555

in shallow waters, and (2) the estimated sand coefficient decreases as depth increases, which556

is compensated for by increasing coefficients of darker substrates. This decrease occurs for557

shallower waters (i.e., for H ≥ 4.70 m) for the three methods that do not constrain the sum558

to one, i.e., LS, MILE and MILEBI. For example, for these methods and H ≥ 4.70 m, the559

estimated sand coefficient generally does not exceed 0.5, while the estimated brown alga co-560

efficient is mostly close to 1.5. On the other hand, LSS21, MILES21 and MILEBIS21 generally561

lead to reasonable estimates of bottom cover until around 9.00 m, the best performances562

being obtained using MILES21 with a minimum estimated sand coefficient of 0.6.563

564

In Fig. 11, the same concise and qualitative RGB representation as Petit et al. (2017) is565

adopted to show the estimated spatial distributions of the four investigated substrates based566

on the image presented in Fig. 3. Beforehand, for each pixel, the four estimated bottom567
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Figure 10: Mean estimated coefficients for (a) sand (Bsa), (b) oyster bags (Bob), (c) seagrasses/green algae
(Bse) and (d) brown algae (Bba) for the 14 sandy-bottom areas (n = 1%).

coefficients were normalized by their sum (that obviously equals one for LSS21, MILES21 and568

MILEBIS21) so that the obtained normalized coefficients were closer to the actual fractional569

covers (if we assume that the effect of intra-class variability is lower than that of fractional570

cover), which facilitates the comparison of the six methods. This allows representing (1) the571

distributions of oyster bags, seagrasses/green algae and brown algae through the blue, green572

and red channels of the color composite image, resp., and (2) the distribution of sand through573

the absence of blue, green and red, i.e., through the pixel darkness.574

The large sandy-bottom area is accurately retrieved by LSS21, MILES21 and MILEBIS21, the575

LSS21 map being slightly noisier than the other two, e.g., in the deeper (upper right) part576

of the image. Except in the shallower (left-hand) part of the image for MILEBI, relaxing577

the sum-to-one constraint leads to poorer results in the main sandy area. Indeed, even578

if LS, MILE and MILEBI retrieve some sand, they greatly overestimate the presence of579

seagrasses/green algae, brown algae and oyster bags respectively.580
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Figure 11: Color composite images showing the estimated spatial distributions of the four investigated
substrates based on the image presented in Fig. 3: (a) LSS21, (b) LS, (c) MILES21, (d) MILE, (e) MILEBIS21,
and (f) MILEBI (n = 1%). The normalized estimated coefficients of oyster bags, seagrasses/green algae and
brown algae are respectively coded by the blue, green and red channels. The normalized estimated sand
coefficient is coded by the pixel darkness (i.e., the absence of red, green and blue).
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Overall, the six methods accurately retrieve the seagrass meadow. Some confusions with581

brown algae however occur in the lower and shallower part of the meadow when using MILE,582

MILEBI, and to a lesser extent, MILEBIS21, MILES21 and LSS21.583

Similarly to what is observed with simulations, the retrieval of oyster bag distribution is584

generally less accurate. The results are seemingly more consistent with MILEBIS21 and585

MILEBI, as both methods obtain higher and more homogeneously-distributed oyster bag586

coefficients over oyster racks as compared to the other methods. Note that only the MILES21587

and MILEBI-based methods can reliably detect the deepest oyster racks located within the588

seagrass meadow. On the other hand, LSS21 obtains a spatially-inconsistent mixture of oyster589

bags and seagrasses, while LS and MILE retrieve a sand-dominated bottom.590

It is worth noting that the brown algae retrieved by MILEBIS21 over some oyster racks in the591

lower left part of the image are more sparsely detected by MILES21 and almost not detected592

by LSS21. These brown algae are, however, consistently retrieved by the three methods with593

relaxed sum-to-one constraint.594

4.4. Discussion of estimation performances595

4.4.1. General considerations596

By definition, a bio-optical model is only a model, which means that various sources of597

error may make it deviate from the observation. Given the number of potential sources (e.g.,598

environmental noise or bottom intra-class variability), the difficulty to properly take them599

into account (e.g., skyglint) and the low water-leaving radiance, it seems quite challenging600

to include them explicitly within the modeling and to estimate the corresponding additional601

parameters during the inversion process. Yet, the results presented in Fig. 5 show that602

such variability may make the shallow water reflectance strongly differ from the bio-optical603

model. As a result, it may significantly decrease the estimation accuracy as obtained using the604

classical LS method, since the latter tries to perfectly match the model with the observation.605

Alternatively, we propose to include these deviations within a probabilistic forward model of606

shallow water reflectance variability, thus assuming that they all can be described through607

an additive zero-mean multivariate Gaussian noise that is fully determined by its spectral608

covariance matrix. The MILE- and MILEBI-based inversion methods are derived from such609
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probabilistic modeling, and the results derived from simulated and airborne data show that610

they all succeed in decreasing the detrimental influence of environmental noise as compared to611

LS-based methods, especially in optically deep waters. In addition, MILEBI-based methods612

decrease the influence of bottom intra-class variability, especially in very optically shallow613

waters.614

4.4.2. Common trends in method performances615

Overall, the results obtained with simulated and airborne data show similar trends and616

are consistent with expectations for every method. For example, depth and benthic cover617

estimations become less accurate as depth increases due to the decreasing bottom influence618

on subsurface reflectance (Fig. 6, Fig. 7, Fig. 8 and Fig. 10). The retrievals of water clarity619

parameters differ between absorbing (P and G) and scattering (X) components that respec-620

tively decrease and increase the subsurface reflectance (Fig. 6). For P and G, the depth621

of minimum error is the one that offers the best compromise between (1) maximizing the622

subsurface reflectance so that there is more contrast between absorbing and non-absorbing623

regions (which facilitates the retrieval), and (2) minimizing the influence of bottom variabil-624

ity on subsurface reflectance. For X , the error is minimum in optically deep waters, where625

the bottom does not affect the subsurface reflectance.626

4.4.3. Influence of averaging the best bottom pairs627

Due to the ill-posedness of the inversion problem (resulting in compensations between628

model parameters) or to potential deviations between the measured reflectance and the629

model, the actual bottom pair may not be the one that leads to the lowest cost function630

value. In simulations, the inversion is particularly ill-posed for quasi-optically deep waters,631

where (1) H and coefficients of dark bottoms often tend to compensate, and (2) all the dark632

benthic classes (e.g., seagrasses/green algae and brown algae) nearly have the same effect on633

subsurface reflectance (Fig. 6 and Fig. 7). In this case, selecting a particular dark substrate634

in the bottom spectral library instead of another dark substrate is not strongly justified,635

given the different sources of error between the observed and modeled reflectances that ac-636

tually make both substrates equally likely. The results (Fig. 6 and Fig. 7) demonstrate that,637

alternatively, taking the average of multiple best bottom pairs (if sufficiently close to the638
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best pair) can decrease the ill-posedness influence and increase the overall retrieval accuracy,639

acting as a regularization step. Testing the effect of the n value (that directly controls the640

number of best pairs to be averaged), we show that a high n value (even greater than 2%) can641

be chosen for optically deep waters, where a reasonable aim is only to discriminate among642

bright and dark substrates. In very shallow waters, a too large n value may, however, increase643

the confusion between classes, therefore making the value of 1% a good compromise for our644

data. Of course, this value should be reassessed for each data set, as it is expected to depend645

on, e.g., the environmental noise and/or the benthic classes encountered on the study site.646

4.4.4. Influence of sum-to-one constraint647

The results show that the sum-to-one constraint always leads to better inversion results648

if the shallow water reflectance model is perfect (e.g., when applying LS- and MILE-based649

methods to the first data set, or MILEBI-based methods to the second data set), because650

reducing the number of parameters to be retrieved reduces the estimation uncertainty. In651

practice, the observation may, however, deviate from the model. These deviations may be652

caused either by the observation, e.g., in the case of imperfect preprocessing of at-sensor653

radiance (e.g., atmospheric and sea surface corrections), or by the model, e.g., in the case of654

imperfect bio-optical modeling. In this study, such deviations are present when considering655

airborne remote-sensing data or when applying LS- and MILE-based (resp., MILEBI-based)656

methods to the second (resp., first) synthetic data set. In these cases, relaxing the sum-to-one657

constraint adds a degree of freedom, which enables unmodeled (or mismodeled) variability658

to be compensated for by misestimation of bottom cover rather than by misestimation of659

depth and/or water clarity parameters. This is demonstrated by the results obtained with660

airborne data, since (1) Fig. 8 and Fig. 9 show that LS, MILE and MILEBI better retrieve661

H and P as compared to LSS21, MILES21 and MILEBIS21 resp. (note that this is consistent662

with the results of Petit et al. (2017) in the case of LS), and (2) Fig. 10 shows that LSS21,663

MILES21 and MILEBIS21 provide better bottom retrievals than LS, MILE and MILEBI resp..664

However, relaxing the sum-to-one constraint does not always degrade the bottom retrieval:665

indeed, if the bottom intra-class variabilities affect the subsurface reflectance (i.e., mostly666

for low optical depths, see Fig. 5), allowing both benthic reflectances in Eq. (8) to vary in667
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a multiplicative way enables LS and MILE to better capture this intra-class variability and668

improve the overall performances.669

MILEBIS21 thus appears as an interesting alternative to LS- and MILE-based methods, be-670

cause (1) it takes into account potentially complex (i.e., not only multiplicative) bottom671

intra-class variabilities through their associated covariance matrix, and (2) it limits the prob-672

lem ill-posedness as it does not require any additional parameter to be estimated. The benthic673

covers derived from airborne data (Fig. 11) illustrate this dual improvement, as MILEBIS21674

not only provides accurate performances in the deepest sandy-bottom areas similarly to LSS21675

and MILES21, but also retrieves the presence of brown algae over oyster racks in shallower676

waters, similarly to LS, MILE and MILEBI.677

4.4.5. Robustness of inversion methods678

All LS-, MILE- and MILEBI-based methods require some prior knowledge on the con-679

sidered scene, this knowledge concerning either the mean endmember reflectances or the680

covariance matrices. However, obtaining an accurate prior knowledge may be difficult, which681

requires investigating how such errors can affect the method performances.682

It should first be noted that obtaining an accurate estimate of the environmental noise ma-683

trix (as necessary for MILE- and MILEBI-based methods) is usually not problematic, since684

it only necessitates finding a homogeneous area in the image. This may easily be done using685

the methodology proposed by Wettle et al. (2004), and areas of optically deep water are ideal686

to perform this estimation. Using this matrix for inversion allows MILE-based methods to687

greatly improve the retrieval of depth and water clarity parameters in sufficiently deep waters688

as compared to LS-based methods (Fig. 6, Fig. 8 and Fig. 9). It also improves the remote689

sensing of shallow waters if Eq. (8) accurately models the actual bottom reflectance. How-690

ever, if the latter cannot accurately be modeled by Eq. (8) (e.g., due to complex intra-class691

variabilities or poorly-known mean endmember reflectances) while having a strong effect on692

subsurface reflectance (i.e., in very optically shallow waters), the performances of MILE-693

based methods may decrease more strongly than those of LS-based methods (Fig. 6). In694

such cases, MILE is shown to better estimate depth and water clarity parameters than LS,695

LSS21 and MILES21 (Fig. 6, Fig. 8 and Fig. 9), especially because relaxing the sum-to-one696
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constraint reduces the detrimental influence of bottom intra-class variability.697

Alternatively, MILEBI and MILEBIS21 allow the modeled endmember spectra to vary around698

their mean through the use of bottom intra-class covariance matrices. Both methods are thus699

less affected by an imperfect knowledge of endmember reflectances. This aspect is one of the700

primary advantages of these methods as compared to LS- and MILE-based methods, and701

may be of tremendous importance when mapping poorly-known shallow water environments,702

for which the use of a single mean reflectance spectrum for each benthic class may seem703

unrealistic.704

However, obtaining accurate estimates of bottom covariance matrices may sometimes be diffi-705

cult since, similarly to the mean endmember reflectances used by the six tested methods, and706

as emphasized in Section 2.4, these matrices are estimated from a limited number of spectra707

that may not be fully representative of the variability encountered in the whole study area.708

That said, the results obtained with simulated data (Fig. 6) suggest that accurate knowl-709

edge of these matrices may only be necessary for very optically shallow waters, as MILE- and710

MILEBI-based obtain nearly the same results over both data sets beyond 5 m. As the optical711

depth increases, the water attenuation and environmental noise smooths the spectral details712

present in bottom covariance matrices (Fig. 5), so rough estimates become sufficient to take713

this variability into account. For very optically shallow waters, unlike LS- and MILE-based714

methods, MILEBI-based methods show similar performances for both synthetic data sets715

(Fig. 6), although the first data set is generated using zero covariance matrices that strongly716

differ from those used in MILEBIS21 and MILEBI. This important result demonstrates the717

robustness of these two methods against imperfect knowledge of bottom covariance matrices,718

which may have important implications for their implementation at larger scales (e.g., global719

scale).720

5. Conclusions and perspectives721

In this study, we propose a realistic probabilistic model of shallow water reflectance vari-722

ability as well as two associated inversion methods, denoted MILE and MILEBI. As compared723

to classical least-squares fitting, these methods improve the remote sensing of shallow waters724

by utilizing specific parameterizations of the spectral covariance matrix. MILE and MILEBI725
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not only constrain model inversion based on the off-diagonal terms of covariance matrices, but726

also allow the measured data to differ from the model by giving the less reliable wavebands727

lower weights in the cost function. For MILE, these wavebands correspond to the domains728

where the environmental noise is the strongest. For MILEBI, the less reliable wavebands729

not only correspond to the domains of strong environmental noise, but also to the domains730

where the bottom intra-class variability is the highest. To our knowledge, MILEBI is one of731

the first shallow water remote-sensing methods that explicitly take into account the inherent732

variability of each benthic class without adding any multiplicative parameter to be estimated733

during the inversion process (the bottom covariance matrices, however, need to be estimated734

beforehand, similarly to the mean endmember reflectances).735

Based on simulated and airborne data, we show that these specific covariance parameteriza-736

tions enable MILE and MILEBI to generally perform better than LS. Further, studying the737

influence of constraining bottom mixture coefficients to sum to one shows that this constraint738

provides better inversion results if the reflectance model reliably describes the observation. In739

the presence of unmodeled (or mismodeled) variability in the remote-sensing data (e.g., due to740

bottom intra-class variability, imperfect atmospheric correction or bio-optical modeling, etc),741

relaxing this constraint may decrease the detrimental influences of these deviations, however742

at the cost of an increasingly noisy bottom retrieval as the optical depth increases. In prac-743

tice, as there are always some slight deviations between measured and simulated data, these744

results thus suggest that most inversion methods cannot accurately retrieve all the targeted745

parameters at the same time, and that applying different constraints during the inversion746

will lead these deviations to affect the estimation of other unconstrained parameters. That747

said, the sum-to-one constrained version of MILEBI combines the advantage of limiting the748

number of parameters to be estimated (thus reducing the problem ill-posedness) with that749

of allowing the observation to differ from the model. This dual aspect makes this method750

promising to remotely sense complex shallow water environments.751

752

Future studies would certainly benefit from the probabilistic forward model of shallow753

water reflectance variability presented in Eq. (12) so as to generate more realistic data sets754

than those usually generated using Eq. (10). This model could also be combined with other755
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bottom reflectance models (e.g., a single substrate model, linear models including more than756

two substrates or even non-linear mixing models) in order to further refine the modeling of757

bottom reflectance and improve the inversion performances. This may be important for more758

accurately simulating the response of very shallow waters, for which an increase in bottom759

modeling complexity significantly affects the measured subsurface reflectance.760

As far as the inversion is concerned, perspectives include refining the initialization part, that761

may be critical for MILE methods in very shallow waters (results not shown). Optimizing the762

construction of the LUT used for initialization (size, parameter distributions, etc) is likely763

to speed up the inversion while keeping similar estimation performances. Alternatively, the764

Mahalanobis distance used in MILE could easily be used as a metric within a LUT-based765

inversion approach such as ALLUT (Hedley et al., 2009) in order to further speed up the766

inversion process or to avoid local minima. Note that the approach recently proposed by Jay767

& Guillaume (2016) could also be implemented to regularize the inversion by introducing768

prior knowledge on targeted parameters.769

Ultimately, an important perspective is the assessment of MILE and MILEBI performances770

for shallow water remote sensing at the global scale, e.g., in the context of the forthcoming771

“Environmental Mapping and Analysis Program” mission (Guanter et al., 2015). For this772

purpose, besides properly estimating the environmental noise on the image itself, a generic773

library of bottom mean reflectance spectra will be necessary to parameterize the total benthic774

reflectance. This library may be built from a comprehensive spectral database gathering all775

the expected bottom classes in the considered study site. For example, the 12-class database776

presented by Hochberg et al. (2003) could be of great help for coral reef remote sensing. This777

database could also be used to build an associated generic library of intra-class covariance778

matrices to implement MILEBI. As shown by Hochberg et al. (2003) in Fig. 3, the intra-779

class variability at the global scale is such that using a single mean reflectance spectrum780

for each bottom class to map this class across different areas worldwide seems to be highly781

unrealistic. MILEBI thus offers an interesting alternative to LS and MILE to take such782

variability into account in a more accurate manner. In particular, given the high intra-class783

variabilities presented by Hochberg et al. (2003) and the significant overlaps between these784

classes, MILEBI may greatly improve the remote sensing of coral reefs.785

36

MG-Hipe
Texte surligné 



Acknowledgments786

This work was supported by the French Defense Procurement Agency (DGA) with the787

reference ANR-15-ASTR-0019 (HypFoM). We are also grateful to Actimar, that carried out788

the field measurement campaign (Smet et al., 2010) within the exploratory research and789

innovation project “HypLitt”, funded by the French Defence Agency (DGA). ActiMar was790

a company based in Brest, France, and specialized in operational oceanography and high-791

resolution remote sensing (www.actimar.fr). These activities are now carried out by the792

Hytech Imaging company (www.hytech-imaging.fr). Many thanks to Marc Lennon, John D.793

Hedley and the anonymous reviewers for their valuable comments. Note, finally, that the794

codes of the proposed methods are available on demand.795

References796
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