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Abstract: The aim of fusing hyperspectral and multispectral images is to overcome the limitation of
remote sensing hyperspectral sensors by improving their spatial resolutions. This process, also known
as hypersharpening, generates an unobserved high-spatial-resolution hyperspectral image. To this
end, several hypersharpening methods have been developed, however most of them do not consider
the spectral variability phenomenon; therefore, neglecting this phenomenon may cause errors, which
leads to reducing the spatial and spectral quality of the sharpened products. Recently, new approaches
have been proposed to tackle this problem, particularly those based on spectral unmixing and using
parametric models. Nevertheless, the reported methods need a large number of parameters to
address spectral variability, which inevitably yields a higher computation time compared to the
standard hypersharpening methods. In this paper, a new hypersharpening method addressing
spectral variability by considering the spectra bundles-based method, namely the Automated Extraction
of Endmember Bundles (AEEB), and the sparsity-based method called Sparse Unmixing by Variable
Splitting and Augmented Lagrangian (SUnSAL), is introduced. This new method called Hyperspectral
Super-resolution with Spectra Bundles dealing with Spectral Variability (HSB-SV) was tested on both
synthetic and real data. Experimental results showed that HSB-SV provides sharpened products
with higher spectral and spatial reconstruction fidelities with a very low computational complexity
compared to other methods dealing with spectral variability, which are the main contributions of the
designed method.

Keywords: spectral variability; spectral unmixing; hypersharpening; fusion; hyperspectral/multispectral
image; spectra bundles; sparse unmixing; automated extraction of endmember bundles; sparse
regression based unmixing

1. Introduction

The continuous progress of remote sensing sensors allows one to have a better un-
derstanding of the different phenomena surrounding us [1]. In particular, the remote
sensing hyperspectral images acquired by high-spectral-resolution sensors consist of hun-
dreds of contiguous spectral bands ranging from the visible to infrared wavelength do-
mains. The hyperspectral sensors can be either onboard spaceborne platforms including
EO-1/Hyperion [2], AVIRIS [3], PRISMA [4], HISUI [5], EnMAP [6] or onboard aircrafts
equipped with such sensors as Hyspex [7], AVIRIS-NG [8], and APEX [9]. The data
provided by these sensors having a high spectral resolution deliver useful information
that enable an accurate classification and precise detection of pure materials (also called
endmembers) in the observed scene. This fine spectral resolution permits the use of hy-
perspectral images (HSI) in countless different fields [10] including monitoring of coastal
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areas [11,12], measuring gas flaring [13,14], estimation of the area of photovoltaic pan-
els [15], mineral detection, and mapping [16].

However, because the acquisition of HSIs is realized in narrow bandwidths, it con-
strains the remote sensing hyperspectral sensors to operate in such a way as to achieve
an optimal trade-off between satisfactory signal-to-noise ratio (SNR) [17] and spatial res-
olution. In other words, the remote sensing hyperspectral sensors must obtain enough
photons to retain an acceptable SNR [18]. This physical limitation provides HSIs with low
spatial resolution and consequently hinders their use [19] in applications requiring both
high spectral and spatial resolutions like classification or vegetation monitoring.

A straightforward manner to circumvent such a limitation is to fuse an HSI with a
multispectral image (MSI) of the observed scene, acquired approximately at the same time.
As a matter of fact, the MSIs exhibit a high spatial resolution compared to the HSIs and have
a low spectral resolution (they are acquired over at most around ten spectral bands). Ideally,
the main objective is to provide an unobserved high-spatial-resolution hyperspectral image
by using the spatial information contained in the MSI while preserving as much as possible
the spectral fidelity of HSI. This fusion process is known as hypersharpening [20] and can
be seen as an extension of pansharpening which consists of merging a panchromatic image
(PAN) with an MSI or HSI. Nevertheless, pansharpening appears more complex to achieve
compared to hypersharpening due to the significant gap between the spectral domains
covered by the PAN and HSI images [21].

Various hypersharpening approaches have been developed and among them ones
using a Bayesian formulation [22–24]. Recently, a novel hypersharpening scheme was
introduced and tested on WordlView-3 data [25]. Tensor representations have also been
considered for the fusion process [26–30]. Other methods are based on sparse regression [18,
19]. Currently, Deep Learning (DL) techniques are extensively used for hypersharpening.
Some techniques are based on Convolutional Neural Networks (CNN). In [31], the authors
proposed a Spatial-Spectral Reconstruction Network (SSR-Net) trained by optimizing both
spatial and spectral edge losses. In [32], a new loss function called RMSE, angle and
Laplacian (RAP) to reduce the spectral-spatial distortions was introduced. Even though the
CNN methods prove their effectiveness, these techniques are not always suitable for real
scenarios [33]. Indeed, these networks are trained on simulated data, the Spectral Response
Function (SRF) and Point Spread Function (PSF) are required to be known and generally
are not always available in practical real scenarios. To overcome this problem in [34], the
authors explicitly take into consideration the spectral low rank of the HSI. Other techniques
consider Generative Adversarial Networks (GAN). In [35], an improved Super-Resolution GAN
(SRGAN) was applied to remote sensing images. The GAN based methods are generally
subject to spectral-spatial distortions due to the mode collapse inherent to the GAN [36,37].
In [37], a Latent Encoder Coupled GAN (LE-GAN) was proposed to improve the spectral-
spatial fidelity of the fusion products. For more details, the reader can refer to the recent
review devoted to DL based techniques for image fusion in [33].

Considerable emphasis has been put on methods based on Spectral Unmixing (SU)
intended for hypersharpening [38–41]. Such approaches aim to extract the spectral infor-
mation (the spectral signature of the endmembers) contained in the HSI and the spatial
information (the abundance coefficients) included in the MSI. To this end, they employ the
techniques developed in the field of Blind Source Separation (BSS), especially those using the
Nonnegative Matrix Factorization (NMF) framework [42–44]. Most of these SU methods are
based on the Linear Mixing Model (LMM) [1] mainly due to its simplicity. In particular, this
model assumes that each endmember is described by only one spectral signature in the
whole image. However, this assumption is no longer valid when some physical phenomena
occur in the observed scene. Thus, the LMM appears rather limited by two main issues,
namely: the spectral/intra class variability and the nonlinearity [45–47].

Currently, a growing attention is dedicated to tackle the spectral variability by intro-
ducing the notion of class of endmembers instead of the concept of endmembers. Several
methods have been developed to this end, particularly using parametric models [47]. These
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models aim to integrate the spectral variability directly in the LMM, like in [48–50] which
incorporate additive terms in the LMM or using scaling factors [51–53]. The nonlinear-
ity can be caused by multiscattering effects or intimate interactions [54]. To overcome
this limitation, authors in [55–57] have proposed a Linear Quadratic NMF (LQ NMF) or
a Bilinear NMF. Models and algorithms employed for nonlinear unmixing are described
in [54]. Indeed, neglecting the spectral variability and nonlinearity may spread error dur-
ing hypersharpening and particularly the spectral variability. The present paper aims at
addressing the spectral variability issue. Therefore, several methods based on SU have
been investigated to tackle the spectral variability in the fusion process [28,30,58–60]. The
cited methods provide hypersharpening products with an interesting spectral and spatial
fidelities. However, these techniques present a high computational complexity particularly
the methods based on parametric models. Indeed, they need a large number of parameters
and variables to address spectral variability. To reduce the computational load of the above
cited approaches, we propose a new hypersharpening method using a sequential strategy.
The introduced method is based on spectra bundles (which are composed of the extracted
set of spectral signatures) [61,62].

The introduced method called Hyperspectral Super-resolution with Spectra Bundles
dealing with Spectral Variability (HSB-SV) considers the Automated Extraction of Image-
Based Endmember Bundles or Automated Extraction of Endmember Bundles (AEEB) [61].
The AEEB method is a simple and efficient way to handle the spectral variability by building
a spectral library from the pure material spectra extracted from the HSI. This enables one
to construct a spectral dictionary compatible with the physics of the HSI as the candidate
endmembers are estimated directly from the considered HSI. Moreover, the use of the
AEEB method significantly reduces computational complexity. Then, to estimate the high-
spatial-resolution abundance maps, a sparse regression technique is considered, namely
Sparse Unmixing by Variable Splitting and Augmented Lagrangian (SUnSAL) [63]. The
SUnSAL technique is applied using the down-sampled candidate endmember spectra and
the MSI. Finally, the fusion product is obtained by combining the extracted high-resolution
pure material spectra and the high-spatial-resolution abundance maps.

The main contributions of this paper are as follows:

• Significantly reducing the processing time with respect to the hypersharpening meth-
ods addressing spectral variability.

• Solving the hypersharpening problem by deriving a spectral library and applying a
sparsity-based method to improve the spatial and spectral fidelities of the hypersharp-
ening products.

• Dealing with multiple types of spectral variabilities like illumination variations and
intrinsic variability or caused by other phenomena since the physics of the considered
scene is respected in the proposed approach by using the spectral signatures extracted
directly from the considered HSI.

The remainder of the paper is structured as follows. Section 2 is devoted to the related
works. In particular, the recent techniques incorporating the spectral variability in the
fusion process by employing parametric models are described. The observation model
based on the LMM and details of the proposed hypersharpening approach are introduced
in Section 3. The Section 4 describes the synthetic and real data used for all the conducted
experiments. In Section 5, the experimental results based on synthetic and real data are
presented. The results of the designed approach are compared to those provided by some
of the state-of-the-art methods, in particular the recent methods tackling spectral variability.
Finally, Section 6 concludes this paper.

2. Related Works

In this section, some recent spectral unmixing hypersharpening techniques addressing
spectral variability by means of parametric models are reported. The spectral variability is
often induced by several factors such as:
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• Illumination changes, mainly caused by topography variations in the observed scene
affecting the angles of the incident radiation.

• Atmospheric conditions which alter the radiance measured by the hyperspectral sensors.
• Intrinsic spectral variability caused by physicochemical differences especially in ob-

served scenes constituted by vegetation.

The FuVar method [58] for HS-MS Image Fusion with spectral Variability, addresses the
spectral variability in the case of seasonal spectral variability (inter-image). More precisely,
the FuVar method considers a parametric model called the Generalized LMM (GLMM) [64].
The GLMM model translates the spectral variability as scaling factors that depend both
on the pixel and the spectral band. This provides the GLMM the flexibility to handle the
spectral variability. The GLMM is generally adopted for spectral variability caused by the il-
lumination changes and seasonal changes [58]. The FuVar method considers the Alternating
Direction Method of Multipliers (ADMM) to solve the fusion problem. Furthermore, the FuVar
method appears very effective when fusing HSI and MSI with spatially uniform variations.
However, the spectral variability cannot only be described by illumination and topography
changes since spectral variability can be induced by several factors. Furthermore, methods
based on parametric models (like FuVar) require substantial user supervision for tuning the
involved parameters, which is a challenging task when it comes to addressing non-convex
problems. Moreover, the FuVar method has a high computational cost since it takes in
consideration a large amount of variables.

A recent approach addresses the spectral variability to merge HSI with MSI acquired
approximately at the same time. This approach is known as Hyperspectral and Multispectral
data fusion based on IP-NMF (HMF-IPNMF) [59]. This method applies the Inertia-Constrained
Pixel-by-Pixel NMF (IP-NMF) [65] to extract, for each class of endmembers, slightly different
spectral signatures for each pixel of the HSI. The IP-NMF method proves to be very
attractive when it comes to handle spectral variability arising from intrinsic variability
caused by physicochemical differences [12,65]. Furthermore, unlike the Coupled NMF
(CNMF) [38] or Joint-Criterion NMF (JCNMF) [40] which use alternating or joint iterative
algorithms, HMF-IPNMF considers a simple sequential strategy composed of three main
stages. The first one is the extraction of hyperspectral endmember spectra via IP-NMF [65].
The second stage consists of estimating high-spatial-resolution abundance fractions through
a linear regression, using the Fully Constrained Least Square (FCLS) method [66]. The last
stage combines both results of the first and second stages to obtain the fusion product.
Nevertheless, HMF-IPNMF uses specific matrix structures involving many variables to
describe the HSI, which leads to a significant processing time.

A recent hypersharpening technique [67] extends the JCNMF [40] method to handle
the spectral variability by exploiting the same specific matrix structure of the used matrices
in IP-NMF [65]. The JCNMF method, contrary to CNMF, simultaneously unmixes the HSI
and MSI. Moreover, JCNMF exploits the spatial degradation between the MSI and HSI.
The degradation operator can be considered as a blurring-decimation matrix containing
Gaussian filter values. Ideally, this operator can represent the PSF. This degradation model
is used to generate realistic synthetic data in the conducted experiments. Nonetheless,
this joint unmixing implies that not only the HSI but also the MSI is described by the
above-mentioned specific structures of matrices which inevitably increases the number of
variables and leads to a high computational time.

Another method accounting for spectral variability and called FSVA [60] has also been
proposed. Like FuVar, FSVA is based on the parametric model known as the Augmented
LMM (ALMM) [53] and solves the fusion problem by using an alternating strategy (ADMM).
The ALMM is an extension of the Extended LMM (ELMM) [68] obtained by adding a low
rank term to the ELMM to describe more complex spectral variability. This feature permits
FSVA to simultaneously handle the scaling factors, intrinsic variability and nonlinearity,
which leads to performance improvement. Furthermore, FSVA tries to combine a spatio-
spectral degradation model and the spectral variability model. As for SU based methods
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dealing with spectral variability, it requires a large number of variables leading to a high
processing time.

3. Proposed Approach
3.1. Observation Model

For a proper understanding, we summarize the required principles of LSU [1] in this
section because the proposed method circumvents one of the main limitations of LSU
namely the spectral variability. The LSU assumes that any observed pixel of the HSI or
MSI corresponds to a linear mixture between the endmember spectra, weighted by the
associated abundance coefficients following the observation models

Xh = Sh Ah, (1)

Xm = Sm Am, (2)

where Xh ∈ RLh×Ph
+ and Xm ∈ RLm×Pm

+ are the observed hyperspectral and multispectral
images, respectively; P stands for the number of pixels and L the number of spectral bands,
with h and m indices referring to the hyperspectral and multispectral images, respectively;
Ah ∈ RN×Ph

+ and Am ∈ RN×Pm
+ are the spatially degraded associated abundance fractions

of the HSI and associated abundance fractions of the MSI; N represents the number of
endmembers. For the sake of clarity, N is assumed to be the same for both HSI and MSI.
The estimated hyperspectral and spectrally degraded multispectral endmember spectra are
denoted by Sh ∈ RLh×N

+ and Sm ∈ RLm×N
+ .

The spatially degraded abundances Ah and the spectrally degraded endmember
spectra Sm are here modelled as

Ah = AmF, (3)

Sm = RSh. (4)

The matrix F ∈ RPm×Ph
+ represents the Point Spread Function (PSF) and R ∈ RLm×Lh

+
the Spectral Response Function (SRF). These two functions have a significant role during
the fusion process to respect the physics. Indeed, to preserve the physical meaning of
the fusion process, we must consider the sensor spectral response for each band [69]. It
is not physically meaningful if the SRFs of the considered sensors for the fusion do not
overlap [69]. Furthermore, the hypersharpening aims to provide a fused product from an
ideal virtual sensor that would combine the spectral sensitivity of the hyperspectral sensor
and the high spatial resolution of the multispectral sensor [69].

3.2. Description of HSB-SV

As mentioned above, the proposed approach is based on a sequential strategy used in
HMF-IPNMF framework. It is divided in three main parts: (1) Estimation of the Hyperspec-
tral Endmember Spectra by employing the AEEB method; (2) Estimation of High-Spatial-
Resolution Abundance Fractions by means of the SUnSAL method; and (3) Fusion stage.

3.2.1. Extraction of Spectral Library by AEEB

The first part of the introduced technique aims to estimate endmembers from HSI by
considering the spectral variability. More precisely, the objective is to extract a spectral
dictionary. The main motivation behind the use of a spectral library is mainly due that it
can deal with different types of spectral variabilities. Indeed, hypersharpening algorithms
based on parametric models like FuVar rely on the assumption that the spectral variability
can be described by only considering scaling factors, which is not always relevant. The
most significant example showcasing this is an HSI describing urban areas composed
by various pure materials including vegetation (green spaces), tile roofs, architectural
monuments, small streets, etc. In this case [65], the spectral variability is arising from
different causes. Building a spectral library directly from HSI allows one to handle the
spectral variability efficiently and effectively by considering different factors. Constructing
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a spectral dictionary from a HSI is a simple task which consists of applying an Endmember
Extraction Algorithm (EEA) [1] to random subsets of the HSI to obtain multiple signatures
of each pure material in the observed scene. Moreover, using EEA techniques reduces
undoubtedly the computational load compared to the hypersharpening methods cited
in Section 2. Basically, the AEEB method is built on the assumption that the statistics of
the HSI can be approximately recovered with a small fraction of it [61]. In other words,
if enough pure pixels are present in the HSI then they will be available in the randomly
selected subset from that HSI [61,70]. The validity of such an assumption relies on the size
of the subsets and the number of pure pixels present in the observed scene [61].

Due to its simplicity, the AEEB method allows one to have an efficient representation
of the spectral variability with a very low computational cost. Recent methods proposed
to directly incorporate the spectra bundles (which are composed of the extracted set of
spectral signatures for each run and for each class of endmembers) into the LMMs [71]. The
endmember bundles can be expressed as [71]

B = [B1
∣∣B2
∣∣· · · ∣∣Bj] (5)

where Bj ∈ R
Lh×Yj
+ denotes the bundle representing the j-th class, J is the number of classes,

Yj is the number of pure spectra in the j-th class and Y the total number of endmember

spectra of all classes with Y = ∑J
j=1 Yj.

Thus, an observed hyperspectral pixel spectrum xhi
∈ RLh×1

+ is expressed as

xhi
= Bahi

(6)

where ahi
∈ RY×1

+ stands for the abundance coefficients corresponding to each individual
spectrum of the endmember bundles B.

Furthermore, to apply the AEEB method some parameters must be fixed a priori like
the number of pure materials present in each subset, the number of subsets and then their
sizes. The number of pure materials represents the number of endmembers present in each
subset. The number of subsets corresponds to the number of subsets randomly selected
from the HSI that is used by the AEEB method to provide the spectral library. The size
of each subset is the number of pixels. The performance of the AEEB method (and the
methods based on a spectral library) is related crucially to the presence of sufficient number
of pure pixels in the HSI to have a coherent description of the spectral variability present
in the scene. For all the conducted experiments, we use the well-known Vertex Component
Analysis (VCA) [72] method as EEA. Indeed, VCA is a fast EEA which also permits to
reduce the processing times.

The complete algorithm of HSB-SV is described in Algorithm 1.

Algorithm 1. Hyperspectral Super-resolution with Spectra Bundles dealing with Spectral
Variability (HSB-SV).

Input: hyperspectral image Xh and multispectral image Xm.
Output: the unobservable sharpened high-spatial-resolution hyperspectral image X̃ f .

1. Set the number of pure materials.
2. Set the number of subsets representing the number of applied runs of AEEB.
3. Set the size of subsets used by the AEEB method.
4. Extract B from Xh by running AEEB over the selected number of subsets.
5. Deduce Bm by downsampling B using (4).
6. Obtain ami by solving (7) using SUnSAL.
7. Recombine B and ami by using (8) to obtain X̃ f .

3.2.2. Estimation of High-Spatial-Resolution Abundance Fractions

The second stage of the introduced method aims at extracting the high-spatial-resolution
abundance fractions (stored in Am) in each pixel individually from the MSI. To this end, the
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sparsity regression-based method called SUnSAL [63] is applied. The main goal of sparse
regression-based techniques is to estimate abundance coefficients from a large spectral
library already available. Indeed, a small number of endmembers are active in a given
pixel. Therefore, the sparse unmixing allows one to obtain a linear combination of pure
material spectra for each of the observed remote sensing spectra. In other words, the sparse
unmixing tries to estimate the optimal subset of pure materials in the spectral library than
can best represent each mixed pixel in the observed scene [1]. Moreover, sparse unmixing
methods are generally efficient in terms of computational cost [47]. This feature decreases
quite significantly the processing time of HSB-SV especially compared to the hypersharpen-
ing methods addressing spectral variability. The performance of sparse unmixing methods
relies on the availability of suitable spectral libraries [1]. In our case, the spectral library
was extracted directly from the HSI and consequently allows to improve the performance
of the SUnSAL method.

For each multispectral pixel xmi , the high-spatial-resolution abundance fractions asso-
ciated ami (forming part of Am) associated with the i-th pixel is estimated by means of the
SUnSAL method, which is used between the multispectral image Xm and the multispectral
spectra bundles forming the matrix Bm. The matrix Bm is derived from B extracted in the
first stage in the same way as in (4) using the SRF of the considered sensors in the experi-
ments. The SRF can be known or estimated. Indeed, only a few instances of the dictionary
Bm are used to reconstruct a pixel spectrum. The objective of the SUnSAL method is to
estimate the high-spatial-resolution abundance fractions ami by optimizing the following
cost function, separately for each pixel

min
ami
‖ Bmami − xmi ‖

2
2 +λ ‖ ami ‖1 (7)

where ‖ · ‖2
2 is the `2-norm and ‖ · ‖1 is the `1-norm which is responsible for promot-

ingsparsity. λ is a non-negative parameter which tunes the relative weight between the `1
and `2 terms of (7).

The SUnSAL method makes use of the ADMM to optimize (7). As in the first stage
of our method, the main motivation behind applying the SUnSAL method is that it can
deliver efficient results with low computational complexity.

3.2.3. Fusion

The third and last stages of the proposed approach consists of creating the fusion
product X̃ f by recombining the obtained matrices. Hence, each pixel spectrum x̃ f.

i
of the

unobservable sharpened high-spatial-resolution hyperspectral image X̃ f is defined as

x̃ f.
i
= Bami (8)

4. Datasets

For the conducted experiments, two sets of data were considered, namely synthetic
and real data. We chose data with a small size because HMF-IPNMF and FuVar involve
important memory capacity and computation cost as these two methods use large size
matrices as suggested by the authors of the corresponding methods [58,59].

4.1. Synthetic Data

The synthetic data sets were obtained from a real airborne high spatial and spectral
resolution hyperspectral image [73]. This real hyperspectral image covers the spectral
domain 0.35–1.05 µm with 144 wavelengths. More precisely, we used a subset (Figure 1)
of this hyperspectral image with 100× 100 pixels [59]. This subset was constituted by
seven classes of endmembers with spectral variability. The selected subset was used to
obtain synthetic data sets, more precisely to create two synthetic images by means of Wald’s
protocol [74]. To this end, the subset was spatially and spectrally degraded to obtain the
low-spatial-resolution hyperspectral image and the low-spectral-resolution multispectral
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image respectively. The low-spatial-resolution hyperspectral image was generated by
degrading the real hyperspectral image by a factor of 2. This degradation was applied
by considering a blurring-decimation matrix with a Gaussian filter like in [40] (this can
represent the PSF in (3)). The low-spectral-resolution multispectral image was created by
spectrally degrading the original image by using the ENVI software and considering the
SRF of the QuickBird sensor (Table 1).

Figure 1. True-color image composite for the synthetic dataset. (a) Original Hyperspectral image;
(b) Low-spectral-resolution multispectral image; (c) Low-spatial-resolution hyperspectral image.

Table 1. Spectral bands of the QuickBird Sensor [75].

Quick Bird

Spectral Bands (µm)

0.45–0.52

0.52–0.60

0.63–0.69

0.76–0.90

4.2. Real Data

We also considered real data for the conducted experiments, specifically a real hy-
perspectral and a real multispectral image. These two images were acquired on the same
day (3 March 2003) and at the same time [40,59]. These real data were geometrically
coregistered and radiometrically corrected and cover a small part of the urban area of
Oran (Algeria). These images were mainly composed of seven classes of endmembers.
The low-spatial-resolution hyperspectral image was acquired by the Earth Observing-1
(EO-1) [2] Hyperion sensor with 125 spectral bands and 30× 30 pixels (Figure 2a). This
hyperspectral image presented a spatial resolution of 30 m. The high-spatial-resolution
pansharpened multispectral image was acquired by the EO-1 Advanced Land Imager (ALI)
with 9 spectral bands (Table 2) and 90× 90 pixels (Figure 2b). The multispectral image had
a 10 m spatial resolution which represents a scale factor of three between the hyperspectral
and multispectral images.
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Figure 2. True-color image composite for the real dataset. (a) Low-spatial-resolution hyperspectral
image; (b) High-spatial-resolution pansharpened multispectral image.

Table 2. Spectral bands of the EO-1 Advanced Land Imager Sensor [76].

EO-1 Advanced Land Imager

Spectral Bands (µm)

0.433–0.453

0.450–0.515

0.525–0.605

0.630–0.690

0.775–0.805

0.845–0.890

1.200–1.300

1.550–1.750

2.080–2.350

5. Experiments
5.1. Performance Criteria

To evaluate the performance of the proposed method and the tested state-of-the-
art methods, various metrics were employed. For the synthetic data set, the obtained
sharpened hyperspectral products X̃ f from the introduced method and the tested state-
of-the-art techniques were compared to the reference image X using spectral and spatial
performance criteria. The first quality measure for the synthetic data is the Spectral Angle
Mapper (SAM). The SAM at the i-th pixel is obtained as follows [77]

SAMi = arcos

( 〈xi, x̃ f.
i
〉

‖ xi ‖2 . ‖ x̃ f.
i
‖2

)
(9)

with i = 1 · · · P. The average value of the SAM over all pixels was used to determine the
quality of the fusion product. The lower the value of the SAM, the better the method.

The second performance criterion was the Spectral Normalized Mean Square Error
NMSEλ [59]

NMSEλi =
‖ xi − x̃ f.

i
‖2

‖ xi ‖2
(10)
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As for the SAM, the average value of the NMSEλ over all pixels was used to determine
the spectral quality of the fusion product. The ideal value for the NMSEλ is 0.

The third performance criterion was the Spatial Normalized Mean Square Error
NMSES [59]

NMSEsk =
‖ Xk − X̃ fK ‖2

‖ Xk ‖2
(11)

where Xk and X̃ fk
are the k-th spectral band of the reference hyperspectral image and the

estimated sharpening product. The average value of the NMSES over all spectral bands
was used to determine the spatial quality of the fusion product. The ideal value for the
NMSES is 0.

We also used the Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS)
defined in [77]

ERGAS = 100r

√√√√√ 1
Lh

Lh

∑
l=1

RMSEl

µ
(

X̃ fl

)
2

(12)

where r is the spatial factor between MSI and HSI, µ
(

X̃ fl

)
the mean of the estimated image

and RMSEl represents the Root Mean Square Error. The ideal value for the ERGAS is 0.
The Peak Signal to Noise Ratio (PSNR) was also used [77]

PSNRl = 20× log10

max
(

X̃ fl

)
RMSEl

 (13)

where RMSEl represents the Root Mean Square Error. A higher value of PSNR means a
better spatial reconstruction.

The last quality metric used for the synthetic data was the Universal Image Quality
Index (UIQI) [77]

UIQI
(

X , X̃ f

)
=

4 δX X̃ f
. µ(X) . µ(X̃ f )(

σ2
X + σ2

X̃ f

)
(µ(X)2 + µ(X̃ f )

2
)

(14)

where δX X̃ f
is the covariance between the reference image X and the estimated image

X̃ f . σ2
X and σ2

X̃ f
are their variances. µ(X) and µ(X̃ f ) denote their means. The UIQI varies

between −1 and 1. Its ideal value is 1 which indicates a perfect reconstruction.
For the real data, other types of metrics were used as there is no ground truth for such

data. The Modified Quality with no Reference criterion (mQNR) [40] was considered. The
mQNR is based on the Quality with no Reference (QNR) [78] and was modified to incorporate
the hypersharpening process. The mQNR is given by

mQNR = (1− Dλ)
σ(1− Ds)

ρ (15)

where σ and ρ are real-valued exponents set to 1 for the test conducted on real data. DS
and Dλ represent the spatial and spectral distortion indices. The spectral distortion index
Dλ reads [40]

Dλ = ω

√√√√ 1
Lh(Lh − 1)

Lh

∑
j=1

Lh

∑
r=1, r 6=j

∣∣∣UIQI
(

X̃ f j
, X̃ fr

)
−UIQI

(
Xhj

, Xhr

)∣∣∣ω (16)

where ω is a positive exponent set to 1 for the experiments. X f∗ is a spectral band of the
fusion product and Xh∗ is a spectral band of the reference hyperspectral image.
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The spatial distortion index Ds was obtained as follows. A subindex was first cal-
culated as mentioned in [78] between each multispectral band and hyperspectral bands
covered by the same multispectral band without considering the hyperspectral bands
outside the spectral range of the multispectral image. The final spatial distortion index Ds
is the mean of the estimated subindices.

5.2. Results and Discussion
5.2.1. Results for Synthetic Dataset

The first part of the tests was devoted to the synthetic dataset. The regularization
parameters, for HMF-IPNMF [59,65], HySure [41,77] and FuVar [58], considered for the
synthetic dataset are reported in Table 3.

Table 3. Regularization parameters for the HMF-IPNMF, HySure and FuVar methods.

Regularization Parameters

HMF-IPNMF µ = 30

HySure λm = 1 and λϕ = 10−3

FuVar λm = 1, λA = 10−4, λ1 = 0.01 and λ2 = 10, 000

For the HMF-IPNMF method, the maximum number of iterations of IP-NMF was set
to 100. For the CNMF method, the numbers of iterations for the inner and outer loops were
fixed to 100 and 3, respectively. For the FuVar and HySure methods, the blurring kernel was
assumed to be known a priori. As an initialization step for all the state-of-the-art methods,
the VCA method was applied. The FCLS method was used to initialize the abundance
coefficients for the FuVar CNMF and HMF-IPNMF methods. As the CNMF and HySure
methods do not consider the spectral variability, they were executed by fixing the number
of pure materials to 30 as suggested in [77]. This allows them to have more flexibility and
to somehow manage the spectral variability although they are not designed for it. The
HMF-IPNMF and FuVar methods were applied by considering the manually determined
number of classes of endmembers equal to 7, because these two methods deal with the
spectral variability.

For the HSB-SV method, all the fixed parameters are reported in Table 4. The numbers
of pure materials and subsets were fixed to perform the spectral reconstruction while
preserving the processing time as much as possible.

Table 4. Considered parameters for HSB-SV.

Experiment Settings for HSB-SV

Number of classes of pure materials 7

Number of subsets 5

Size of Subsets 10%

Sparsity prompting parameter λ (SUnSAL) 5× 10−4

Finally, the CPU used in the conducted experiments was an Intel Core i5-8350U
processor running at 1.70 GHz, with a memory capacity of 16 GB. The results of the
quality metrics for the synthetic dataset are reported in Table 5. Figure 3 illustrates the
spectra library extracted from the HSI by means of the AEEB method. Figure 3 clearly
shows the presence of spectral variability and corroborates that this phenomenon must be
taken into account.
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Table 5. Performance criteria for the synthetic dataset.

HSB-SV HMF-IPNMF FuVar HySure CNMF

SAM (◦) 2.65 3.53 3.75 3.63 4.34

NMSEλ (%) 7.49 7.92 14.42 8.79 11.89

NMSEs (%) 6.76 8.52 15.96 9.62 13.73

PSNR (dB) 43.01 40.61 34.12 38.73 35.50

UIQI 0.9728 0.9627 0.9098 0.9652 0.9402

ERGAS 4.96 5.77 10.26 6.18 8.93

Figure 3. Extracted spectral library from the synthetic data by AEEB.

Table 5 clearly shows that the methods considering the spectral variability yielded
the best results, in particular HMF-IPNMF and HSB-SV. The FuVar method reached the
highest value of NMSEλ with 14.42% which led to the worst spectral reconstruction in
terms of spectral fidelity compared to the tested methods. This finding demonstrates that
the spectral variability is not induced by only illumination or topography changes in the
observed scene. The CNMF and HySure methods improved this aspect by obtaining an
NMSEλ of 11.89% and 9.62%, respectively. The HMF-IPNMF method provided the best
spectral reconstruction for the tested state-of-the-art methods with a value of SAM of
3.53◦ and NMSEλ equal to 7.92%. The HSB-SV method delivered the best overall results
denoted by spectral performance criteria with the lowest values of the SAM (2.65◦) and the
NMSEλ (7.49%), which clearly demonstrates the superior performance of HSB-SV in terms
of spectral fidelity compared to the tested state-of-art-methods. These findings show that
considering a spectral library to estimate the hyperspectral spectra is very effective.

Furthermore, these findings were confirmed by the PSNR with the highest value (equal
to 43.01) corresponding to a substantial gain of nearly 3 dB as compared with HMF-IPNMF
and 10 dB with respect to the FuVar method. To illustrate the notable gain of HSB-SV,
Figure 4 represents the PSNR of all methods for each spectral band for the synthetic dataset.
This figure illustrates clearly that the HSB-SV method obtains the best values of the PSNR
in almost all the spectral bands, particularly between band 20 and band 80.
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Figure 4. Band-wise PSNR for the synthetic dataset.

The spatial quality metrics confirmed the findings obtained from the spectral metrics,
the HSB-SV method outperforms the other methods in terms of spatial fidelity, with the
highest value of the UIQI and the lowest value of the ERGAS. These results clearly show
the attractiveness of using sparse regression to estimate high-spatial-resolution abundance
fractions. Indeed, the AEEB method provides a quite suitable spectral library which
improves the performance of the SUnSAL method.

These results demonstrate that using a spectral library improves the spectral recon-
struction on one hand and it enhances the spatial fidelity on the other hand by providing
SUnSAL with a suitable spectral library.

The processing times of the tested techniques are reported in Table 6. As expected,
as the HMF-IPNMF and FuVar methods consider matrices with large sizes to tackle the
spectral variability, their processing times were the highest with running times equal to
465.98 s and 363.64 s, respectively. The HSB-SV method achieved the best results with the
lowest execution times when compared to the tested state-of-art methods. It should be
noted that the high-quality spectral and spatial reconstructions obtained by the HSB-SV
method do not come at the price of a higher processing time as it is reported in Table 6.
Indeed, although the HSB-SV method deals with spectral variability like the HMF-IPNMF
and FuVar methods, HSB-SV provided the best results with a computation time equal to
0.74 s. Moreover, the HSB-SV method had a lower computing time compared to the CNMF
and HySure methods (with computational times around 3.20 s and 12.89 s, respectively)
even though these methods are not considering spectral variability and are supposed to
be more efficient in terms of computational cost. These findings prove the effectiveness of
the HSB-SV method to deal with spectral variability during the hypersharpening process
by providing products with high fidelity reconstruction at a very low processing cost.
This significant reduction of the processing time is caused by two main elements. The
first one is that the AEEB method is very efficient, in particular a fast algorithm (VCA) is
considered for the extraction of endmembers. The second main reason is the efficiency of
the SUnSAL method.
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Table 6. Time processing of the tested methods (in seconds) for the synthetic dataset.

HSB-SV HMF-IPNMF FuVar HySure CNMF

0.74 465.98 363.64 12.89 3.20

For the visual inspection of the obtained results, Figure 5 illustrates the true color
composite of the synthetic dataset for all tested methods. We can observe clearly that
the HSB-SV and HMF-IPNMF methods achieved the best spatial reconstruction when
compared to the other methods, particularly compared to CNMF and FuVar, which have
many spatial and spectral distortions present in the buildings area (red buildings).

Figure 5. True-color image composite for the synthetic dataset. (a) Original hyperspectral image;
(b) Obtained HSB-SV sharpened hyperspectral image; (c) Obtained HMF-IPNMF sharpened hyper-
spectral image; (d) Obtained HySure sharpened hyperspectral image; (e) Obtained CNMF sharpened
hyperspectral image; (f) Obtained FuVar sharpened hyperspectral image.

To have a clearer view of the spatial gain obtained by the HSB-SV method (as it is
difficult to make a clear conclusion from the color composite images), Figure 6 shows
the obtained hypersharpening products for all the methods for the spectral band in the
0.850 µm region. This figure clearly shows that the HSB-SV method comes with the lowest
spatial distortions compared to the other tested methods and it is the closest to the reference
hyperspectral image.
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Figure 6. Spectral band in the 0.850 µm region (a) Original hyperspectral image; (b) Obtained HSB-
SV sharpened hyperspectral image; (c) Obtained HMF-IPNMF sharpened hyperspectral image; (d)
Obtained HySure sharpened hyperspectral image; (e) Obtained CNMF sharpened hyperspectral
image; (f) Obtained FuVar sharpened hyperspectral image.

5.2.2. Results for Real Dataset

The second part of the tests is devoted to the real data. The regularization parameters
were identical to those in the tests performed with the synthetic dataset for the state-of-
the-art methods (Table 3). For the HSB-SV method, the used parameters are reported in
Table 7. The spectra library extracted from HSI by means of the AEEB method is illustrated
in Figure 7. Figure 7 clearly illustrates the presence of spectral variability in the real dataset
and thus the notion of class of endmembers must be considered.

Table 7. Considered parameters for HSB-SV for the real dataset.

Experiment Settings for HSB-SV

Number of pure materials 7

Number of subsets 5

Size of Subsets 10%

Sparsity prompting parameter λ (SUnSAL) 2× 10−4
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Figure 7. Spectral library extracted from the real data by AEEB.

Table 8 reports the performance metrics for the real dataset. The CNMF method
obtained the highest values for Dλ and Ds showing that it provided the lowest spectral
and spatial fidelities of this benchmarking. The FuVar method improved this aspect with a
better spatial and spectral reconstruction as it considered spectral variability. The HMF-
IPNMF method achieved the best overall results among the tested state-of-the-art methods
in particular for the mQNR above 0.95 which proves that it handles the spectral variability
better than the FuVar method (equal to 0.9288). The HSB-SV method outperformed all the
other tested methods in terms of spectral and spatial fidelities. In particular, it achieved the
best spatial reconstruction with Ds equal to 0.0064. This spatial enhancement was mainly
due to the SUnSAL method, which was applied by considering a suitable spectral library.
Furthermore, the HSB-SV method obtained the best value of the mQNR, equal to 0.9615.
This finding proves that using a spectral library significantly improves the performance of
spectral reconstruction with respect to the tested state-of-art methods.

Table 8. Performance criteria for the real dataset.

HSB-SV HMF-IPNMF FuVar HySure CNMF

Dλ 0.0322 0.0335 0.0485 0.0442 0.1243

Ds 0.0064 0.0119 0.0238 0.0098 0.0863

mQNR 0.9615 0.9549 0.9288 0.9464 0.8000

The execution times for the methods applied to the real data are provided in Ta-
ble 9. The HSB-SV method was significantly faster compared to the tested state-of-the-art
methods and particularly the approaches tackling the spectral variability. As the HMF-
IPNMF and FuVar methods are handling the spectral variability with modified LMMs
involving matrices with large sizes, they came with the highest processing times, around
461.91 s (HSB-SV was about 2310 times faster than HMF-IPNMF) and 238.99 s (HSB-SV
was around 1195 times faster than FuVar), respectively. The CNMF and HySure methods
improved this aspect with running times around 1.63 s and 12.02 s, respectively, because
they do not consider the spectral variability. However, the CNMF and HySure methods
are slower compared to the HSB-SV method, in particular HySure (HSB-SV is around
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60 times faster than HySure). The HSB-SV method presented the lowest execution time,
below one second, i.e., around 0.20 s. Furthermore, the HSB-SV method brings obvious
improvements in terms of spectral and spatial fidelities compared to the methods dealing
with spectral variability. It provided a high fidelity with the lowest computational time.
These significant improvements with respect to the state-of-the-art tested methods prove
the attractiveness of using sparse regression to achieve the best spatial reconstruction at the
lowest computational cost.

Table 9. Time processing for each method for the real dataset (in seconds).

HSB-SV HMF-IPNMF FuVar HySure CNMF

Time (s) 0.20 461.91 238.99 12.02 1.63

To illustrate the performance of the tested techniques, Figure 8 shows the true color
composite of the obtained hypersharpening products. It can be seen clearly that the CNMF
method presented more spatial distortions in the urban area in particular for the roads
(roundabout region). The HMF-IPNMF and HySure methods improved this aspect with
less spatial distortion and a better spatial fidelity for the urban area (roundabout region).
The HSB-SV method achieved the best spatial reconstruction, in particular the roads were
reconstructed with more spatial fidelity.

Figure 8. True-color image composite for fusion products derived for the real dataset. (a) Obtained
HSB-SV sharpened hyperspectral image; (b) Obtained HMF-IPNMF sharpened hyperspectral image;
(c) Obtained HySure sharpened hyperspectral image; (d) Obtained CNMF sharpened hyperspectral
image; (e) Obtained FuVar sharpened hyperspectral image.
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To have a better visual interpretation of the results, Figure 9 shows the obtained hy-
persharpening products for all the methods for the spectral band in the 0.854 µm region.
This figure demonstrates clearly that the HySure and HSB-SV methods obtained hyper-
sharpening products with the best spatial reconstruction. In particular, the HSB-SV method
provided a hypersharpening product with less spatial distortion. Finally, the HSB-SV
method proves the effectiveness of the use of the spectral library with sparse regression to
achieve the fusion of hyperspectral and multispectral images with both high spatial and
spectral fidelities. Indeed, the HSB-SV method allows one to have a hypersharpening prod-
uct at a very low computational cost compared to methods tackling the spectral variability
like HMF-IPNMF and FuVar.

Figure 9. Spectral band in the 0.854 µm region. (a) Obtained HSB-SV sharpened hyperspectral
image; (b) Obtained HMF-IPNMF sharpened hyperspectral image; (c) Obtained HySure sharpened
hyperspectral image; (d) Obtained CNMF sharpened hyperspectral image; (e) Obtained FuVar
sharpened hyperspectral image.

6. Conclusions

In this paper, a new hypersharpening method called Hyperspectral Super-resolution
with Spectral Bundles dealing with Spectral Variability (HSB-SV) is introduced. This technique
is related to spectra bundles, more precisely to the Automated Extraction of Endmember
Bundles (AEEB) method. The AEEB method tackles the spectral variability by constructing a
spectral library directly from the hyperspectral image by means of an Endmember Extraction
Algorithm (EEA) applied to random subsets of the HSI. This straightforward and efficient
approach allows one to have a spectral dictionary. Furthermore, it substantially reduces
the number of manipulated variables when compared to the hypersharpening methods
from the literature which treat the spectral variability. This directly impacts the execution
time by reducing it significantly compared to the HMF-IPNMF and FuVar methods, which
constitutes the main originality of this work. Indeed, the use of the Sparse Unmixing by
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Variable Splitting and Augmented Lagrangian (SUnSAL) method proves to be very attractive
to estimate high-spatial-resolution abundance coefficients while preserving the processing
time to a very low level.

The proposed technique was tested on synthetic and real datasets along with some
recent state-of-the-art methods. The results, based on spatial and spectral performance
criteria, show that the introduced strategy is very attractive and efficient in terms of spectral
and spatial reconstructions. The new method outperforms the approaches tested in this
paper. Besides, the HSB-SV method has the lowest processing time compared to the
considered tested state-of-the-art methods, specifically compared to techniques dealing
with spectral variability. These findings prove that using a spectral library appears very
effective for the hypersharpening process. Indeed, the AEEB method allows one to construct
a spectral library which considers different types of spectral variabilities present in the
observed hyperspectral scenes which improves the spectral performance. Moreover, the
HSB-SV method enables one to achieve a sufficient reconstruction while providing the
lowest execution time of the benchmark. This is mainly due to the efficiency of the SUnSAL
method. Moreover, the SUnSAL method yields a sufficient spatial reconstruction quality
proving the attractiveness of sparse regression. Indeed, these findings show clearly that the
HSB-SV method can handle a complex phenomenon like the spectral variability and still
provides good satisfactory results while preserving computational complexity.

An interesting extension of this work may consist of developing techniques con-
sidering other spare regression methods to improve the obtained spatial reconstruction.
Moreover, future work will focus on improving the efficiency of the AEEB method by re-
ducing the number of pure elements needed to achieve a sufficient spectral reconstruction.
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