
Non-stationary Markovian Blind Soure SeparationSolving Estimating Equations using an EquivariantNewton-Raphson AlgorithmTehnial ReportRima Guidara, Shahram Hosseini and Yannik Deville ∗September 19, 2008In this doument, we present a method for solving estimating equations in a non-stationary Markovian blind soure separation (BSS) ontext. The soure and observationvetors are denoted, respetively, s(t) = [s1(t), . . . , sK(t)]T and x(t) = [x1(t), . . . , xK(t)]T ,and we denote the probability density funtion of a soure si at time t by fsi(t)(.).Considering a linear instantaneous mixture model, our aim is to �nd a separating matrix Bwhih is an estimate of the inverse of the mixing matrix up to lassial BSS indeterminaies.To this end, we apply a maximum likelihood approah, where soures are supposed to benon-stationary qth-order Markovian proesses. Following the same steps as in [1℄, we �nallyobtain the following set of equations
EN−q

[ q∑

l=0

ψl
si(t)

(si(t)|si(t− 1), . . . , si(t− q))sj(t− l)
]

= 0, i 6= j = 1, . . . ,K (1)where EN−q = 1
N−q

∑N
t=q+1 is a temporal mean and ψl

si(t)
(.|.) is the onditional sorefuntion of a soure si at time t with respet to the soure sample si(t− l), de�ned by

ψl
si(t)

(si(t)|si(t− 1), . . . , si(t− q)) =
−∂logfsi(t)(si(t)|si(t− 1), . . . , si(t− q))

∂si(t− l)
,

∀ 0 ≤ l ≤ q. (2)We here propose to solve equations (1) using an equivariant Newton-Raphson algorithm.The equivariane in BSS algorithms was de�ned in [2℄. To simplify notations, we restritour alulus to the ase K = 2. However, extending the above results to more than 2soures is straightforward.Denoting B̃ the estimate of the separating matrix B at the urrent algorithm iteration,the new estimate B̂ is obtained by the updating formula B̂ = (I + ∆)B̃. Post-multiplyingthis equation by the observation vetor x, the new soure estimate an be written as
ŝ = (I + ∆)s̃.Denoting ∆ =

(
δ11 δ12
δ21 δ22

), the above equation reads as follows for K = 2

ŝi(t) = s̃i(t) + δiis̃i(t) + δij s̃j(t), i 6= j = 1, 2 (3)
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The diagonal entries of ∆ may be set to any small arbitrary value, due to saling indeter-minay in the BSS problem. The o�-diagonal terms are omputed as follows.To be independent, the estimated soures should satisfy the K(K − 1) estimating equa-tions (1). Replaing the soures in (1) by their expressions (3), when K = 2, we obtainthe following equations
EN−q

[ q∑

l=0

ψl
si(t)

(s̃i(t) + δiis̃i(t) + δij s̃j(t)|s̃i(t− 1) + δiis̃i(t− 1) + δij s̃j(t− 1), . . .

, s̃i(t− q) + δiis̃i(t− q) + δij s̃j(t− q)){s̃j(t− l) + δjis̃i(t− l) + δjj s̃j(t− l)}
]

= 0

i 6= j = 1, 2 (4)Using a �rst-order Taylor expansion of the sore funtion ψl
si(t)

, at the estimate s̃i(t), theabove equation an be written as
EN−q

[ q∑

l=0

[
ψl

si(t)
(s̃i(t)|s̃i(t− 1), . . . , s̃i(t− q)) +

q∑

n=0

∂ψl
si(t)

∂si(t− n)
(s̃i(t)|s̃i(t− 1), . . . , s̃i(t− q))

(δiis̃i(t− n) + δij s̃j(t− n))
]
.{s̃j(t− l) + δjis̃i(t− l) + δjj s̃j(t− l)}

]
= 0, i 6= j = 1, 2 (5)If we neglet seond-order terms in the above equation, we obtain a linear equation withrespet to the entries of the matrix ∆, that reads

(1 + δjj)J1 + δjiJ2 + δiiJ3 + δijJ4 = 0, i 6= j = 1, 2 (6)with
J1 = EN−q

[ q∑

l=0

ψl
si(t)

(
s̃i(t)|s̃i(t− 1), . . . , s̃i(t− q)

)
s̃j(t− l)

]

J2 = EN−q

[ q∑

l=0

ψl
si(t)

(
s̃i(t)|s̃i(t− 1), . . . , s̃i(t− q)

)
s̃i(t− l)

]

J3 = EN−q

[ q∑

l=0

{ q∑

n=0

∂ψl
si(t)

∂si(t− n)

(
s̃i(t)|s̃i(t− 1), . . . , s̃i(t− q)

)
s̃i(t− n)

}
s̃j(t− l)

]

J4 = EN−q

[ q∑

l=0

{ q∑

n=0

∂ψl
si(t)

∂si(t− n)

(
s̃i(t)|s̃i(t− 1), . . . , s̃i(t− q)

)
s̃j(t− n)

}
s̃j(t− l)

]We neglet δjj with respet to 1 in Eq. (6). In the viinity of the solution, the estimatedsoures may be assumed to be nearly independent and entered, so that for any funtion
Φ, E[

Φ(s̃i(t− l)) · s̃j(t− n)
]
≃ E

[
Φ(s̃i(n− l))

]
·E

[
s̃j(t− n)

] is small, whih means that
δiiJ3 is negligible with respet to the other terms in (6).
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These simpli�ations �nally yield a linear set of equations de�ned by
EN−q

[ q∑

l=0

ψl
si(t)

(s̃i(t)|s̃i(t− 1), . . . , s̃i(t− q)).s̃i(t− l)
]
δji

+ EN−q

[ q∑

l=0

{ q∑

n=0

∂ψl
si(t)

∂s̃i(t− n)
(s̃i(t)|s̃i(t− 1), . . . , s̃i(t− q))s̃j(t− n)

}
.s̃j(t− l)

]
δij

= −EN−q

[ q∑

l=0

ψl
si(t)

(s̃i(t)|s̃i(t− 1), . . . , s̃i(t− q)).s̃j(t− l)
]
, i 6= j = 1, 2
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