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In this document, we present a method for solving estimating equations in a non-
stationary Markovian blind source separation (BSS) context. The source and observation
vectors are denoted, respectively, s(t) = [s1(t),...,sx(t)]T and x(t) = [z1(t),...,2x(t)]7,
and we denote the probability density function of a source s; at time ¢ by fs,)(.).
Considering a linear instantaneous mixture model, our aim is to find a separating matrix B
which is an estimate of the inverse of the mixing matrix up to classical BSS indeterminacies.
To this end, we apply a maximum likelihood approach, where sources are supposed to be
non-stationary ¢'"-order Markovian processes. Following the same steps as in [1], we finally
obtain the following set of equations

EN,q[Zwii(t)(si(tﬂsi(t — 1), st —q))s;(t — z)] —0, i#£j=1,...K (1)
=0

where En_q = ﬁ2£q+1 is a temporal mean and wii(t)(.].) is the conditional score
function of a source s; at time ¢ with respect to the source sample s;(t — ), defined by
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Li(si®lsi(t =1),...,si(t —q) = 8fsi) (tg’Si((Z_ ll)) (t Q))’

vV 0<I1<q. (2)

We here propose to solve equations (1) using an equivariant Newton-Raphson algorithm.
The equivariance in BSS algorithms was defined in [2]. To simplify notations, we restrict
our calculus to the case K = 2. However, extending the above results to more than 2
sources is straightforward.

Denoting B the estimate of the separating matrix B at the current algorithm iteration,
the new estimate B is obtained by the updating formula B = I+ A)B Post-multiplying
this equation by the observation vector x, the new source estimate can be written as
s= I+ A)s.

Denoting A = ( o 012

021 022
5i(t) = si(t) + 0ssi(t) + dijs;(t), i#j=1,2 (3)
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>, the above equation reads as follows for K = 2




The diagonal entries of A may be set to any small arbitrary value, due to scaling indeter-
minacy in the BSS problem. The off-diagonal terms are computed as follows.

To be independent, the estimated sources should satisfy the K (K — 1) estimating equa-
tions (1). Replacing the sources in (1) by their expressions (3), when K = 2, we obtain
the following equations

En- q[zwl (0 (Bi(t) + 0ii8i(t) + 05585(1)[8:(t — 1) + 64i8i(t — 1) + 0558;(¢ = 1),...

2 8i(t —q) +0u8i(t — q) + 0453 (t — @){8;(t — 1) + 958i(t — 1) + 0;;5;(t — l)}] =0
i#Aj=1,2 (4)

Using a first-order Taylor expansion of the score function wl at the estimate §;(¢), the

i(t)?
above equation can be written as

q q w
ENq[gib;ty St = D) i)+ 3 S GO 1) =)

(6i35i(t —m) + 6555;(t — n)) | {5;(t — 1) + 655t — 1) + 0555,k — )} =0, i#j=12 (5)

If we neglect second-order terms in the above equation, we obtain a linear equation with
respect to the entries of the matrix A, that reads

(1+5jj)-]1+5jiJ2+5iiJ3+5¢jJ4=O, 1#£j=12 (6)
with
Ji = EN—q_Zwl o @O -1), ... 5‘(75—Q))§j(t—l)]
T 1=0
J, = EN,q' W Gt — 1), 5t ))sl(t—l)]
1=0
o a g wst o N N N
J3 = En_q Z{Zm(sxtﬂsi(t—1),...,si(t—q))sZ-(t—n)}Sj(t—l)]
=0 n=0 "'
_ 4 q awii(t) . _ N _
Ji = En_q Z{Zm(si(t)\sxt—1),-..,si<t—q))s;-(t—n)}sxt—l)}
=0 n=0 "'

We neglect d;; with respect to 1in Eq. (6). In the vicinity of the solution, the estimated
sources may be assumed to be nearly independent and centered, so that for any function

3 E[(I)(gi(t — 1) -5t - n)} ~ E[fb('s}(n - l))] - E[gj(t - n)] is small, which means that
0i;J3 is negligible with respect to the other terms in (6).



These simplifications finally yield a linear set of equations defined by

x| S GOF(t = 1), 5t — ) 5t~ )] 6
=0

Lo MWy _
+EN,q[Z{ZWZ_()n)(Si(t)|Si(t— 1),...,si(t—q))gj(t—n)}.gj(t—n}aij
=0 n=0 v
= _EN—Q[ w.lsi(t)(gi(t)‘gi(t_1)7"'7§i(t_Q))'§j(t_l)]7 i#j=1,2
=0
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