Non-stationary Markovian Blind Source Separation

Solving Estimating Equations using an Equivariant Newton-Raphson Algorithm

Technical Report
Rima Guidara, Shahram Hosseini and Yannick Deville *

September 19, 2008

In this document, we present a method for solving estimating equations in a nonstationary Markovian blind source separation (BSS) context. The source and observation vectors are denoted, respectively, $\mathbf{s}(t)=\left[s_{1}(t), \ldots, s_{K}(t)\right]^{T}$ and $\mathbf{x}(t)=\left[x_{1}(t), \ldots, x_{K}(t)\right]^{T}$, and we denote the probability density function of a source s_{i} at time t by $f_{s_{i}(t)}($.$) .$ Considering a linear instantaneous mixture model, our aim is to find a separating matrix B which is an estimate of the inverse of the mixing matrix up to classical BSS indeterminacies. To this end, we apply a maximum likelihood approach, where sources are supposed to be non-stationary $q^{\text {th }}$-order Markovian processes. Following the same steps as in [1], we finally obtain the following set of equations

$$
\begin{equation*}
E_{N-q}\left[\sum_{l=0}^{q} \psi_{s_{i}(t)}^{l}\left(s_{i}(t) \mid s_{i}(t-1), \ldots, s_{i}(t-q)\right) s_{j}(t-l)\right]=0, \quad i \neq j=1, \ldots, K \tag{1}
\end{equation*}
$$

where $E_{N-q}=\frac{1}{N-q} \sum_{t=q+1}^{N}$ is a temporal mean and $\psi_{s_{i}(t)}^{l}(. \mid$.$) is the conditional score$ function of a source s_{i} at time t with respect to the source sample $s_{i}(t-l)$, defined by

$$
\psi_{s_{i}(t)}^{l}\left(s_{i}(t) \mid s_{i}(t-1), \ldots, s_{i}(t-q)\right)=\frac{-\partial \log f_{s_{i}(t)}\left(s_{i}(t) \mid s_{i}(t-1), \ldots, s_{i}(t-q)\right)}{\partial s_{i}(t-l)},
$$

We here propose to solve equations (1) using an equivariant Newton-Raphson algorithm. The equivariance in BSS algorithms was defined in [2]. To simplify notations, we restrict our calculus to the case $K=2$. However, extending the above results to more than 2 sources is straightforward.
Denoting $\tilde{\mathbf{B}}$ the estimate of the separating matrix \mathbf{B} at the current algorithm iteration, the new estimate $\hat{\mathbf{B}}$ is obtained by the updating formula $\hat{\mathbf{B}}=(\mathbf{I}+\boldsymbol{\Delta}) \tilde{\mathbf{B}}$. Post-multiplying this equation by the observation vector \mathbf{x}, the new source estimate can be written as $\hat{\mathbf{s}}=(\mathbf{I}+\boldsymbol{\Delta}) \tilde{\mathbf{s}}$.
Denoting $\boldsymbol{\Delta}=\left(\begin{array}{ll}\delta_{11} & \delta_{12} \\ \delta_{21} & \delta_{22}\end{array}\right)$, the above equation reads as follows for $K=2$

$$
\begin{equation*}
\widehat{s}_{i}(t)=\widetilde{s}_{i}(t)+\delta_{i i} \widetilde{s}_{i}(t)+\delta_{i j} \widetilde{s}_{j}(t), \quad i \neq j=1,2 \tag{3}
\end{equation*}
$$

[^0]The diagonal entries of $\boldsymbol{\Delta}$ may be set to any small arbitrary value, due to scaling indeterminacy in the BSS problem. The off-diagonal terms are computed as follows.
To be independent, the estimated sources should satisfy the $K(K-1)$ estimating equations (1). Replacing the sources in (1) by their expressions (3), when $K=2$, we obtain the following equations

$$
\begin{array}{r}
E_{N-q}\left[\sum _ { l = 0 } ^ { q } \psi _ { s _ { i } (t) } ^ { l } \left(\tilde{s}_{i}(t)+\delta_{i i} \tilde{s}_{i}(t)+\delta_{i j} \tilde{s}_{j}(t) \mid \tilde{s}_{i}(t-1)+\delta_{i i} \tilde{s}_{i}(t-1)+\delta_{i j} \tilde{s}_{j}(t-1), \ldots\right.\right. \\
\left.\left., \tilde{s}_{i}(t-q)+\delta_{i i} \tilde{s}_{i}(t-q)+\delta_{i j} \tilde{s}_{j}(t-q)\right)\left\{\tilde{s}_{j}(t-l)+\delta_{j i} \tilde{s}_{i}(t-l)+\delta_{j j} \tilde{s}_{j}(t-l)\right\}\right]=0 \\
i \neq j=1,2 \tag{4}
\end{array}
$$

Using a first-order Taylor expansion of the score function $\psi_{s_{i}(t)}^{l}$, at the estimate $\tilde{s}_{i}(t)$, the above equation can be written as

$$
\begin{align*}
E_{N-q} & {\left[\sum _ { l = 0 } ^ { q } \left[\psi_{s_{i}(t)}^{l}\left(\tilde{s}_{i}(t) \mid \tilde{s}_{i}(t-1), \ldots, \tilde{s}_{i}(t-q)\right)+\sum_{n=0}^{q} \frac{\partial \psi_{s_{i}(t)}^{l}}{\partial s_{i}(t-n)}\left(\tilde{s}_{i}(t) \mid \tilde{s}_{i}(t-1), \ldots, \tilde{s}_{i}(t-q)\right)\right.\right.} \\
& \left.\left.\left(\delta_{i i} \tilde{s}_{i}(t-n)+\delta_{i j} \tilde{s}_{j}(t-n)\right)\right] .\left\{\tilde{s}_{j}(t-l)+\delta_{j i} \tilde{s}_{i}(t-l)+\delta_{j j} \tilde{s}_{j}(t-l)\right\}\right]=0, \quad i \neq j=1,2 \tag{5}
\end{align*}
$$

If we neglect second-order terms in the above equation, we obtain a linear equation with respect to the entries of the matrix $\boldsymbol{\Delta}$, that reads

$$
\begin{equation*}
\left(1+\delta_{j j}\right) \mathbf{J}_{1}+\delta_{j i} \mathbf{J}_{2}+\delta_{i i} \mathbf{J}_{3}+\delta_{i j} \mathbf{J}_{4}=0, \quad i \neq j=1,2 \tag{6}
\end{equation*}
$$

with

$$
\begin{aligned}
& \mathbf{J}_{1}=E_{N-q}\left[\sum_{l=0}^{q} \psi_{s_{i}(t)}^{l}\left(\widetilde{s}_{i}(t) \mid \widetilde{s}_{i}(t-1), \ldots, \widetilde{s}_{i}(t-q)\right) \widetilde{s}_{j}(t-l)\right] \\
& \mathbf{J}_{2}=E_{N-q}\left[\sum_{l=0}^{q} \psi_{s_{i}(t)}^{l}\left(\widetilde{s}_{i}(t) \mid \widetilde{s}_{i}(t-1), \ldots, \widetilde{s}_{i}(t-q)\right) \widetilde{s}_{i}(t-l)\right] \\
& \mathbf{J}_{3}=E_{N-q}\left[\sum_{l=0}^{q}\left\{\sum_{n=0}^{q} \frac{\partial \psi_{s_{i}(t)}^{l}}{\partial s_{i}(t-n)}\left(\widetilde{s}_{i}(t) \mid \widetilde{s}_{i}(t-1), \ldots, \widetilde{s}_{i}(t-q)\right) \widetilde{s}_{i}(t-n)\right\} \widetilde{s}_{j}(t-l)\right] \\
& \mathbf{J}_{4}=E_{N-q}\left[\sum_{l=0}^{q}\left\{\sum_{n=0}^{q} \frac{\partial \psi_{s_{i}(t)}^{l}}{\partial s_{i}(t-n)}\left(\widetilde{s}_{i}(t) \mid \widetilde{s}_{i}(t-1), \ldots, \widetilde{s}_{i}(t-q)\right) \widetilde{s}_{j}(t-n)\right\} \widetilde{s}_{j}(t-l)\right]
\end{aligned}
$$

We neglect $\delta_{j j}$ with respect to 1 in Eq. (6). In the vicinity of the solution, the estimated sources may be assumed to be nearly independent and centered, so that for any function $\Phi, E\left[\Phi\left(\widetilde{s}_{i}(t-l)\right) \cdot \widetilde{s}_{j}(t-n)\right] \simeq E\left[\Phi\left(\widetilde{s}_{i}(n-l)\right)\right] \cdot E\left[\widetilde{s}_{j}(t-n)\right]$ is small, which means that $\delta_{i i} \mathbf{J}_{3}$ is negligible with respect to the other terms in (6).

These simplifications finally yield a linear set of equations defined by

$$
\begin{aligned}
& E_{N-q}\left[\sum_{l=0}^{q} \psi_{s_{i}(t)}^{l}\left(\widetilde{s}_{i}(t) \mid \widetilde{s}_{i}(t-1), \ldots, \widetilde{s}_{i}(t-q)\right) \cdot \tilde{s}_{i}(t-l)\right] \delta_{j i} \\
& \quad+E_{N-q}\left[\sum_{l=0}^{q}\left\{\sum_{n=0}^{q} \frac{\partial \psi_{s_{i}(t)}^{l}}{\partial \tilde{s}_{i}(t-n)}\left(\widetilde{s}_{i}(t) \mid \widetilde{s}_{i}(t-1), \ldots, \widetilde{s}_{i}(t-q)\right) \tilde{s}_{j}(t-n)\right\} \cdot \tilde{s}_{j}(t-l)\right] \delta_{i j} \\
& \quad=-E_{N-q}\left[\sum_{l=0}^{q} \psi_{s_{i}(t)}^{l}\left(\widetilde{s}_{i}(t) \mid \widetilde{s}_{i}(t-1), \ldots, \widetilde{s}_{i}(t-q)\right) \cdot \tilde{s}_{j}(t-l)\right], \quad i \neq j=1,2
\end{aligned}
$$

References

[1] S. Hosseini, C. Jutten and D. T. Pham, Markovian Source Separation, IEEE Transactions on Signal Processing, vol. 51, no. 12, pp. 3009-3019, 2003.
[2] J. F. Cardoso and B. Laheld, Equivariant adaptive source separation, IEEE Transactions on Signal Processing, vol. 44, no. 12, pp. 3017-3030, 1996.

[^0]: *Authors are with the Laboratory of Astrophysics Toulouse-Tarbes, University of Toulouse, CNRS, 14 av. Edouard Belin, 31400 Toulouse, France, \{contact: rguidara@ast.obs-mip.fr\}.

