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Abstract: Quantum process tomography (QPT) methods aim at identifying a given quantum process.
QPT is a major quantum information processing tool, since it especially allows one to characterize the
actual behavior of quantum gates, which are the building blocks of quantum computers. The present
paper focuses on the estimation of a unitary process. This class is of particular interest because
quantum mechanics postulates that the evolution of any closed quantum system is described by a
unitary transformation. Unitary processes have significantly fewer parameters than general quantum
processes (22nqb vs. 24nqb − 22nqb real independent parameters for nqb qubits). By assuming that the
process is unitary we develop two methods that scale better with the size of the system. In the present
paper, we stay as close as possible to the standard setup of QPT: the operator has to prepare copies of
different input states. The properties those states have to satisfy in order for our method to achieve
QPT are very mild. Therefore, we choose to operate with copies of 2nqb initially unknown pure input
states. In order to perform QPT without knowing the input states, we perform measurements on
half the copies of each state, and let the other half be transformed by the system before measuring
them (each copy is only measured once). This setup has the advantage of removing the issue of
systematic (i.e., same on all the copies of a state) errors entirely because it does not require the process
input to take predefined values. We develop a straightforward analytical solution that first estimates
the states from the averaged measurements and then finds the unitary matrix (representing the
process) coherent with those estimates by using our analytical solution to an extended version of
Wahba’s problem. This estimate may then be used as an initial point for a fine tuning algorithm
that maximizes the likelihood of the measurements. Simulation results show the effectiveness of the
proposed methods.

Keywords: quantum process tomography; unitary process; unitarily-constrained least squares;
maximum likelihood

1. Prior Work and Problem Statement

System identification and system inversion are well-known problems, especially for
classical systems. These problems are less challenging in the “nonblind”/“supervised”
case [1] where the aim is, e.g., to identify the considered system by using the known input
and the measured output. In contrast, in the “blind”/“unsupervised” case [2], the input
values are unknown and uncontrolled, but some hypotheses are sometimes made on the
input signal(s).

For quantum systems, non-blind system identification methods were first introduced
in 1997 in [3] that came up with the name quantum process tomography (QPT), see [4]. They
use copies of a set of known pure input states that are transformed by the process. Those
transformed states are then measured and estimated using quantum state tomography
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(QST aims at estimating a quantum state using measurements). From there, the parameters
of the process can be estimated from what is essentially a regression. This method scales
poorly when the number of qubits increases, and is only experimentally feasible for one
or two qubits. This is to be expected because, in general, a quantum process has d4 − d2

independent real parameters ([4], p. 391), with d the dimension of the Hilbert space (for
an nqb-qubit system d = 2nqb ). This method would later be called standard QPT (SQPT),
in contrast to non-standard QPT that uses ancilla qubits and weak measurements (see [5]
for a survey). In Ref. [6], a SQPT approach that scales better with the number of qubits by
assuming that the process is sparse is introduced. Like Baldwin et al., in most of [7], we
choose to restrict ourselves to unitary processes. This class is of particular interest because
the evolution of any closed quantum system is described by a unitary transformation.
A unitary process has d2 independent real parameters.

A significant problem of SQPT is the need to precisely prepare the copies of the input
states. Any systematic error on the input state has huge consequences for the precision.
In 2015, we introduced the blind version of QPT (BQPT) in [8], then detailed it in [9], and
more recently in [10]. In those papers, we focused on the tomography of the two-qubit
cylindrical-symmetry Heisenberg coupling process. For those algorithms, the operator
has to prepare one or several copies of an unknown set of initial states. This requires a
preparation procedure to be known and reproducible, so that several copies of each used
state may be prepared. It is not a violation of the no cloning theorem, the latter does not
apply if we prepared the state that we want to reproduce. This idea removes the issue
of systematic errors (with respect to a desired state) during the preparation. The system
is identified by processing output measurements associated with ns different unknown
input states going through the system. Generally, we need to perform QST or at least to
estimate some measurement outcome probabilities for each of the ns output states. For the
approaches of [8,9], this kind of QST requires nc copies of each considered output state.
Therefore, for each one of the ns states the same experiment has to be repeated nc times
with the same input state value, for ns × nc input state preparations in total. The most
recent paper [10] also proposes “single-preparation BQPT methods” (SBQPT), i.e., methods
which can operate with only one instance of each considered input state, nc = 1.

In [11] (2021), we introduced the setup that will be further developed in the current
paper. In Ref. [11] we considered copies of a single 2-qubit state (initially unentangled)
being transformed by a unitary process and measured at 5 different time delays (∆t, ...., 5∆t).
In the current paper, we consider a setup closer to standard QPT where only two times
are considered (see Figure 1). The unit-norm d-dimensional vectors v1, ..., vd represent
the initial quantum pure states. Those initial states are considered unknown. We simply
assume that they are pure, unentangled, linearly independent, and that at least one of
the states is not orthogonal to all the others (i.e., ∃j such that ∀k 6= j vj 6⊥ vj). These
are reasonable hypotheses, as long as the qubits are prepared separately, the states are
unentangled; and d random states are always (probability 1) linearly independent and not
orthogonal in the d-dimensional Hilbert space. After waiting ∆t, each input state vector vj

is multiplied by the unitary d × d matrix M, thus yielding the output state wj = Mvj.
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Figure 1. Considered setup.

We assume that enough types of measurements are performed on copies of all 2d
states to achieve QST on each state. The present paper does not focus on the measurements
performed and the QST algorithm. We simply assume that each state is recovered up to
a global phase and a low residual error. For the numerical simulations, we will use the
first QST algorithm of [12] which is suited to pure states and has the advantage of only
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requiring unentangled measurements on each qubit. However, the current paper is not
bound to [12] and any pure state QST algorithm [13,14] can be performed. The fact that we
perform measurements on the input states means that our algorithm is not blind, but since
their values are not imposed by the proposed method, we keep the main advantage of the
blind approaches (resilience to systematic error).

Section 2 briefly describes the system states and measurements. Section 3 describes
a straightforward method that does not require an initialization and achieves QPT using
the estimates of the states. Section 4 describes a method that improves the first estimate
by maximizing the likelihood of the measurements. Finally, Section 5 contains some
numerical results.

2. States and Measurements

2.1. Considered States

We hereafter consider an nqb-qubit system, typically composed of distinguishable
spins 1/2. Any pure state |ϕ〉 of that system is here expressed in the basis defined as the
tensor product of the standard bases associated with each qubit. The components of |ϕ〉 in
that basis can be stored in a d-element vector v, with d = 2nqb . The components of v are
complex and the norm of v is 1. The global phase of |ϕ〉 has no physical meaning, so we
can assume that the first non-zero component of v is a real strictly positive number. In the
rest of the paper, we consider the vector v instead of the state |ϕ〉.

2.2. Considered Types of Measurements

First focusing on a single qubit, we perform measurements based on the three Pauli
operators σx, σy, and σz [4] and, e.g., related to spin 1/2 components along the X, Y, and
Z axes. For each such direction, we define the eigenvector matrix whose first and second
columns are the eigenvectors of the considered Pauli operator, respectively, associated with
eigenvalues +1 and −1 in the standard basis. These eigenvector matrices may be shown
to read:

PX =
1√
2

(
1 1
1 −1

)
PY =

1√
2

(
1 1
i −i

)
PZ =

(
1 0
0 1

)
. (1)

The probabilities of the outcomes +1 and −1 when performing a measurement for state v

along D ∈ {X, Y, Z} are, respectively, the first and second elements of |PD†v|2 where |.|2 is
the element-wise squared modulus and .† is the trans conjugate.

When considering nqb qubits, we perform the above-defined measurements in par-
allel for all qubits. Each such type T of measurements corresponds to a given direction
Dm ∈ {X, Y, Z} for the m-th qubit for each m in {1, ..., nqb} (T = D1...Dnqb

). For each set
of eigenvectors e1, ..., enqb

(each em is a column of one of the matrix of PDm
of (1)) and

eigenvalue a1, ..., anqb
(am is either +1 if em is the first column of PDm

and −1 if it is the
second), respectively, associated with each qubit, the probability that a measurement on
v yields these eigenvalues reads: pa1...anqb

= |(e1 ⊗ .... ⊗ enqb
)†v|2 (where ⊗ is the tensor

product). Those d probabilities (from p+1...+1 to p−1...−1) therefore form the vector |P†
T v|2

where PT is the eigenvector matrix associated with the measurement along the directions
D1...Dnqb

of T . It is expressed as the tensor (i.e., Kronecker) product of one-qubit matrices
of (1)

PT =

nqb⊗

m=1

PDm
with Dm ∈ {X, Y, Z} s.t. T = D1...Dnqb

. (2)

For example with nqb = 2 qubits, measuring the first one along D1 = Z and the second
one along D2 = X (T = ZX) yields the following eigenvector matrix PT = PZ ⊗ PX =

1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


. Those measurements are not multi-qubit Pauli measurements (used
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in (8.149) in [4]) because the latter only have 2 outcomes whereas the former have d
outcomes (they are the concatenations of nqb 2-outcome measurements). In the rest of
the paper, this type of measurement will be referred to as a string of X, Y, and Z (in this
example, T = ZX).

For nqb qubits, there are 3nqb of those measurements. Since we are dealing with pure
states, we can work with only 4 types of measurements: T1 = Z...Z, T2 = Y...Y, T3 =
X...X, T4 = XY... (T4 is X on every odd numbered qubit and Y on the even numbered, all
the others are the same measurement types on all qubits). In Ref. [12] we explain how to
perform QST with those measurements in Sections 3 and 5. We will not mention it again in
the rest of the paper, but if nqb = 1 we perform 3 types of measurements instead of 4 (along
directions X, Y, and Z), as T4 = T3 = X.

Those measurements are performed on {vj}j∈{1,...,d} and {wj}j∈{1,...,d}. In total, 2d
states are measured with 4 types of measurements. To estimate probabilities, each mea-
surement is performed a given number of times that we call nc, the total number of
measurements performed is 8dnc. For each one of the 8d distinct measurements, the num-
bers of times each one of the d outcomes was observed are stored in the d-dimensional
vector nj,k,ℓ where j ∈ {1, ..., d} is the index if the measured state, k ∈ {1, 2, 3, 4} defines the
type of the measurement and l ∈ {0, 1} is 0 if vj is measured and 1 if it is wj. Thus, nj,k,ℓ

contains the measurement counts for the state Mℓvj along direction Tk. The expected value
of nj,k,ℓ is nc|P†

Tk
Mℓvj|2.

3. QST-Based Solution

3.1. Main Idea

We assume that QST is performed properly for the states of Figure 1. It yields:

vj

∧

= vj.e
iξv

j + ε
QST
j ∀j ∈ {1, ..., d} and ŵj = wj.e

iξw
j + ε

QST
d+j ∀j ∈ {1, ..., d}

where ξv
j and ξw

j are unknown phases and ε
QST
j is the residual error, such that

E(||εQST
j ||2) −→

nc→+∞
0 (E is the expected value). For the rest of this section, we consider

ε
QST
j = 0 unless stated otherwise. In Section 2.1, we stated that the global phases of the

states do not matter. This is true if the states are considered independently and this is
the reason why the QST cannot recover the global phase. However, when the states are
considered together (in order to find M) the differences between the global phases of the
different states matter.

We know that wj = Mvj∀j ∈ {1, ..., d}, therefore, with ξ j = ξv
j − ξw

j ∀j, we have:

eiξ j ŵj = Mvj

∧

∀j ∈ {1, ..., d}. Changing M to M.e−iξ1 and ξ j to ξ j − ξ1 ∀j ∈ {1, ..., d} does
not change the equality, so we can also assume ξ1 = 0 and accept that M can only be
recovered up to a global phase.

In the next section, we explain how to estimate the other phases eiξ̂ j ∀j ∈ {2, ..., d}.

From that, we can define w̃j = ŵj.e
iξ̂ j with which an estimate of M can easily be found as

the problem becomes:
w̃j = Mvj

∧

∀j ∈ {1, ..., d}. (3)

M̂ = [w̃1, ..., w̃d][v1
∧

, ..., v̂d]
−1 works as a solution. However, it is generally not a unitary

solution because of the QST errors. Finding M̂ ∈ U3(R) that is the least square solution
of âj = Mbj

∧

∀j ∈ {1, ..., n} with aj

∧

, bj

∧

∈ R3 is a well known problem in the aerospace
community. It is called Wahba’s problem after Wahba who first posed it in 1965 [15]. We
have adapted its solution for M ∈ Ud(C) (details will be provided in a future paper).
This yields:

B = [w̃1, ..., w̃d][v1
∧

, ..., v̂d]
† −→ B = U S V† −→ M̂LS = U V† (4)
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where U S V† is the singular value decomposition of B. We showed that this solution is
optimal in the least square (LS) sense. The solution is unique if, and only if, both [v1

∧

, ..., v̂d]
and [w̃1, ..., w̃d] are of full rank. This QPT method can be extended to any higher number
of input states but with fewer than d, the solution is not unique.

3.2. Phase Recovery

The aim of the current section is to find eiξ̂ j ∀j ∈ {2, ..., d} given the vectors, vj

∧

, ŵj ∀j ∈
{1, ..., d} such that there exist a unitary matrix M that realizes (3), with ξ1 assumed to be 0.

The basic idea is to use the fact that eiξ j1 ŵj1 + eiξ j2 ŵj2 = M(v̂j1 + v̂j2) ∀j1, j2 ∈ {1, ..., d}
and M is unitary so does not change the norm. Therefore, ξ j1,j2 = ξ j2 − ξ j1 is subject to:

‖ŵj1 + eiξ j1,j2 ŵj2‖2
2 = ‖v̂j1 + v̂j2‖2

2
⇔ ‖ŵj1‖2

2 + ‖ŵj2‖2
2 + rj1,j2 cos(ξ j1,j2) + ij1,j2 sin(ξ j1,j2) = ‖v̂j1 + v̂j2‖2

2
(5)

with rj1,j2 and ij1,j2 the real and imaginary part of 2ŵj2
†ŵj1 , respectively. Equation (5) is

solvable if, and only if, ŵj1 and ŵj2 are not orthogonal. By writing cos(ξ j1,j2) =
1−t2

1+t2 and

sin(ξ j1,j2) =
2t

1+t2 with t = tan
( ξ j1,j2

2

)
, (5) becomes a quadratic equation (when both sides

are multiplied by 1 + t2) with two real solutions for t, corresponding to two solutions for
ξ j1,j2 that we call ξ1

j1,j2
and ξ2

j1,j2
(they can have the same value). It is numerically possible to

have no real solution but this never happens if there are no QST errors. If there are no real
solutions, we consider ξ1

j1,j2
and ξ2

j1,j2
both set to the real part of the complex solutions.

In order to choose between ξ1
j1,j2

and ξ2
j1,j2

, we have to consider a third pair of vectors:
{v̂j3 , ŵj3}. Solving (5) for the 3 possible pairs of indices ({j1, j2}, {j1, j3}, {j2, j3}) gives us
23 = 8 possibilities for ξ j1,j2 , ξ j1,j3 , ξ j2,j3 . However, by definition ξ j2,j3 = ξ j1,j3 − ξ j1,j2 and it
may be hoped that there is only one of the 8 possibilities that satisfies this. We keep the
solution that comes the closest.

We can apply this method for (j1, j2, j3) ∈ {(1, 2, 3), (3, 4, 5) , ..., (d − 2, d − 1, d)}. We
would thus know all the differences between the phases, and, since ξ1 is 0, we would know
all the phases.

In practice, doing this would work as long as one of the vj is not orthogonal to all the
others (otherwise (5) is not solvable for enough indices j1, j2); but this would not be robust
to a realistic QST error. The actual algorithm we use will be described in a future longer
paper. It is based on the same idea: finding the two solutions of (5) for all {j1, j2} indices.
We improve the robustness by considering more than 3 pairs of well chosen indices.

4. Fine Tuning

4.1. Problem Statement

Section 3 describes a method to achieve QPT using the results of the QST on every
state. The current section details a different approach that requires an initial estimate
of M (we will use M̂LS from (4)) and finds the unitary matrix M̂ML and initial states
V
∧

ML = [v1
∧

, ..., v̂d] that maximize the likelihood of the measurements. Formally:
(M̂ML, V

∧

ML) = arg max
M,V

L(M, V,M), where M = {nj,k,ℓ}j,k,ℓ represents the measurements

results and L is the log-likelihood which we maximize in order to maximize the likelihood.
The problem is actually simpler if we perform the maximization successively, i.e., find the
best V for each M of which we compute the likelihood,

M̂ML = arg max
M

(
max

V
L(M, V,M)

)
, because optimizing V knowing M (i.e., comput-

ing max
V

L(M, V,M)) can be performed independently on all the vj: max
V

L(M, V,M) =

∑
d
j=1 max

vj

(
L(vj,Mvj

) + L(Mvj,Mwj
)
)
, where Mvj

= {nj,k,0}k and Mwj
= {nj,k,1}k are

the measurements performed on vj and wj, respectively. This is the case because the



Phys. Sci. Forum 2022, 5, 29 6 of 9

{Mv1 ,Mw1 , ...,Mvd
,Mwd

} are statistically independent and involve different arguments
to be maximized for different j. Considering this, the problem becomes:

M̂ML = arg max
M

d

∑
j=1

max
vj

(
L(vj,Mvj

) + L(Mvj,Mwj
)
)
. (6)

In order to solve (6) we first need to be able to compute the likelihood of the measurements.
Since most gradient based optimization algorithms can only be performed with a real
number vector as argument, we also need to find real number parametrization for M and
vj. Those two points are the focuses of the following two subsections.

4.2. Statistical Model for the Measurements

In [16], the formula for the likelihood of samples from multiple outcome measurements
is given (albeit for a mixed state represented by a density matrix which we would have
to replace by vv† or ww†). Once we remove additive constants, the log-likelihood boils
down to: L(no

1, ..., no
d) = ∑

d
m=1 no

mlog(pm), where pm is the theoretical probabilities of
the m-th outcome, and no

m is the number of times the m-th outcome has been measured.
If the measurement whose likelihood we want to compute has PTk

as eigenvectors matrix
(k ∈ {1, 2, 3, 4}) and is performed on vj, then [p1...pd]

T = |P†
Tk

vj|2 and [no
1...no

d]
T = nj,k,0

(see the definition of nj,k,ℓ and PTk
in Section 2.2, .T stands for transpose). If, instead of v,

we measure w, then [p1...pd]
T = |P†

Tk
wj|2 and [no

1...no
d]

T = nj,k,1. Let us rewrite L using

the notation adapted to our measurements: L(Mℓvj, nj,k,ℓ) = nT
j,k,ℓ log(|P†

Tk
Mℓvj|2) (ℓ is

either 0 or 1 so Mℓvj is either vj or wj). We can replace L in (6) by its expression (knowing
MMℓvj

= {nj,1,ℓ, ..., nj,4,ℓ}), this yields:

M̂ML = arg max
M

d

∑
j=1

max
vj

4

∑
k=1

1

∑
ℓ=0

nT
j,k,ℓ log

(
|P†

Tk
Mℓvj|2

)
. (7)

4.3. Parametrization of the Arguments

For a given j ∈ {1, ..., d} vj represents an unentangled state. By definition, it can be
decomposed as a tensor product of nqb 1-qubit states: vj = qj,1 ⊗ ... ⊗ qj,nqb

. Each qj,h, h ∈

{1, ..., nqb} has 2 real parameters, rj,h and θj,h qj,h =
[
rj,h

√
1 − r2

j,heiθj,h
]T

. Therefore, vj

can be parameterized with 2nqb real parameters: vj = fvj
(rj,1, θj,1, ..., rj,nqb

, θj,nqb
).

M is a unitary matrix. Hence, it can be shown that there exists a Hermitian matrix
H, such that M = exp(iH) where exp is the matrix exponential. Therefore, M can be
parameterized with d2 real parameters: (h1, ..., hd2), where h1, ..., hd2 is the parametrization
of H starting with the d(d + 1)/2 real parts of the components that are on or above the
diagonal (H1,1, H1,2, ..., Hd,d) where Hir ,ic is the element on row ir and column ic of H) and
ending with the d(d − 1)/2 imaginary parts of the components that are strictly above the
diagonal (H1,2, H1,3, ..., Hd−1,d). Accounting for the fact that M can only be recovered up to
a global phase, we can assume that h1 corresponding to the top left element of H is 0 and
remove it from the parametrization. Indeed, H − h1Id (Id is the d × d identity matrix) has
a 0 for its top left element and exp(iH) and exp(iH − ih1Id) only differ by a global phase.
Therefore, as far as the optimization algorithm is concerned, M has d2 − 1 real parameters:
M = fM(h2, ..., hd2).

4.4. Optimization

In order to find the real parameters of M that solve (7) we use the BFGS quasi-Newton
algorithm [17] initialized at the d2 − 1 parameters that yield M̂LS up to a global phase.
This algorithm is implemented with the fminunc Matlab function, we provide it with the
analytical expressions of the gradients of the criterion in order to make it run faster. At each
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step of the optimization of M, d optimizations are performed on 2nqb arguments in order
to find the {vj} (to solve the max inside the first sum in (7)). Those optimizations are also
performed using the BFGS quasi-Newton algorithm with the analytical gradient provided.
The latter algorithm is initialized at the real parameters of the unentangled state that is
the closest to 1

2 vj

∧

+ 1
2 M−1w̃j, where M−1 is the inverse of the M at the current state of the

optimization (the M whose likelihood we are computing in order to maximize it), j is the
index of the vj we are optimizing and vj

∧

and w̃j are defined in Section 3.1. The optimization
algorithms stop when the norm of the difference between the arguments at two successive
iterations is lower than 10−30. Moreover, for the optimization of M it stops after 700
iterations if the previous criterion is not met. For 3 qubits or less, the optimization of M

always stops before the 700 iterations. For 4 and 5 qubits, this is not always the case but
the BFGS algorithm decreases the criterion at every step so even if the algorithm has not
properly converged, the final estimate M̂ML is still more likely than all the others, and, in
particular, more likely than M̂LS.

5. Numerical Results

Our algorithm is tested by simulating a random matrix Mtrue which is a random com-
plex matrix (composed of independent realizations of X1 + iX2 with X1 and X2 independent
standard normal variables) to which the Gram–Schmidt process has been applied in order
to make it unitary. The states {vj} are generated randomly by applying fvj

(defined in
Section 4.3) to the 2nqb random parameters generated uniformly on the intervals on which
they are defined.

We then simulate the associated measurements and apply the algorithms of
Sections 3 and 4 in order to obtain estimates of M̂LS and M̂ML. With nc = 10, 000, the com-
putation time on one thread on an Intel Xeon silver 4214 2.4-GHz processor is way shorter
for M̂LS (around 30 s for 5 qubits and less than 10 s for fewer qubits) than for M̂ML (around
7 h for 5 qubits, 15 mn for 4 qubits and less than a minute for fewer qubits).

We choose to perform further tests with 4 qubits. 500 matrices Mtrue are generated,
and the associated M̂LS and M̂ML are computed with nc = 625 and nc = 2500 for 2 qubits
and nc = 2500 and nc = 10, 000 for 4 qubits. The associated numbers of copies of states to be
measured are 8d times greater, so 20, 000 and 80, 000 for 2 qubits and 320, 000 and 1, 280, 000
for 4 qubits. We also compute M̂re f with is the result of the likelihood maximization
initialized at Mtrue (only available in simulation) instead of M̂LS.

The metric we use in order to quantify the proximity between Mtrue and its estimate
M̂ (either M̂LS or M̂ML) is 1√

2d
||Mtrue − M̂eiφ|| where φ is the angle that maximizes our

metric (it accounts for the fact that Mtrue can only be recovered up to a global phase) and
||.|| is the Frobenius norm. This metric is between 0 (if M̂ and Mtrue are the same up to
a global phase) and 1 (if they are orthogonal with respect to the Hilbert–Schmidt inner
product).

The cumulative density function (cdf) of our metric (called error) is displayed in
Figure 2. We note that:

• M̂ML is very similar to its reference M̂re f (especially with nc = 10, 000). This means
that the likelihood algorithm converges towards the global minimum (so 700 iterations
is enough and M̂LS is a good enough initial point).

• M̂LS is worse than M̂ML. This means that the costly likelihood maximization is not
made in vain.

• The errors with nc = 10, 000 are roughly twice smaller than the errors with nc = 2500.
So we are in the classic linear case where the error is proportional to the square root of
the number of measurements. Additionally, the same graph with any nc > 2500 could
be deduced from Figure 2.
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Figure 2. Empirical cdf of the errors of the 3 maximum likelihood estimators with 4 qubits.

6. Conclusions and Future Work

In this paper, we introduced two QPT methods that do not require the initial states
to be set to predetermined values, but work with randomly selected initial states that are
measured beforehand. The first method uses QST to estimate the input and output states,
lifts the phase ambiguities and finds the unitary matrix which fits the estimated states the
best. The second method finds the unitary matrix that is the most likely according to the
statistical distribution of the measurements. The latter method is more precise but slower
and uses the result of the first method as an initialization.

We intend to perform more extensive tests and compare our method to non-blind
methods such as [7]. We also want to link this algorithm with that of [11] by considering
fewer initial states and more time delays than in Figure 1.
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