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Abstract In this paper, we are interested in the problem of Blind Source Sepa-
ration (BSS) using a Second-order Statistics (SOS) method in order to separate
autocorrelated and mutually independent sources mixed according to a bilinear
(BL) model. In this context, we propose a new approach called Bilinear Second-
order Blind Source Separation (B-SO-BSS), which is an extension of linear SOS
methods, devoted to separate sources present in BL mixtures. These sources, called
extended sources, include the actual sources and their products. We first study the
statistical properties of the different extended sources, in order to verify the as-
sumption of identifiability when the actual sources are zero-mean and when they
are not. Then, we present the different steps performed in order to estimate these
actual centred sources and to extract the actual mixing parameters. The obtained
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results using artificial mixtures of synthetic and real sources confirm the effective-
ness of the new proposed approach.

1 Introduction

Blind Source Separation (BSS) consists in decomposing several observed signals
into a set of source signals and their mixing parameters, with almost no prior
knowledge about them (Comon and Jutten, 2010; Deville, 2016). Most of the
researches dealing with BSS methods suppose that the mixing model is linear,
where the observed signals result from linear combinations of the source signals.
Nevertheless, for some applications, the linear mixing model is not valid, and must
be replaced by a nonlinear one. This nonlinear model provides a better description
of the mixing process and the interactions between sources. Due to the complexity
of nonlinear models, the nonlinear BSS methods are more complex and remain less
studied (Taleb, 2002; Deville and Hosseini, 2009; Hosseini and Deville, 2013). This
complexity may be reduced by constraining the structure of the mixing models.
Indeed, the addition of simplifying assumptions has allowed the development of
exploitable nonlinear models. Among these models, the Linear-Quadratic (LQ)
model has drawn significant attention (see e.g. the survey in (Deville and Duarte,
2015)). Research focused on the LQ model has demonstrated the relevance of its
use in several applications such as remote sensing (Meganem et al, 2014a,b; Eches
and Guillaume, 2014; Jarboui et al, 2014, 2016), analysis of gas sensor array data
(Bedoya, 2006; Ando et al, 2015), and scanned document processing (Merrikh-
Bayat et al, 2011; Duarte et al, 2011; Almeida and Almeida, 2012; Liu and Wang,
2013). The particularity of the LQ model as compared with the linear one is the
presence of the second-order terms. Thereby, considering K observations resulting
from an LQ mixture of L sources, the relationship between the observed and the
source signals can be characterized by the following equation

xi(n) =
L∑

j=1

aj(i)sj(n) +
L∑

j=1

L∑
k=j

aj,k(i)sj(n)sk(n), (1)

where xi(n) is the ith observed signal at time n, sj(n) is the jth unknown source
signal, aj (i) is the linear coefficient associated with the jth source signal and the
ith observed signal, aj,k(i) is the quadratic mixing coefficient associated with the
ith observed signal and resulting from the interaction between the jth and the
kth sources. All the actual sources sj and the pseudo-sources sj × sk are called
extended sources, as in (Deville and Duarte, 2015; Meganem et al, 2014b). There
is a particular case of the LQ model called the bilinear (BL) model where the
squared term coefficients aj,j(i) are null. The model (1) then becomes

xi(n) =

L∑
j=1

aj(i)sj(n) +

L−1∑
j=1

L∑
k=j+1

aj,k(i)sj(n)sk(n). (2)

Various methods applicable to the LQ model have been proposed (Deville and
Duarte, 2015). While some of them are only devoted to Blind Mixture Identifica-
tion (BMI), in order to only identify the mixing parameters (Krob and Benidir,
1993; Abed-Meraim et al, 1996), the others are dedicated to BSS, which aims also
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at estimating the source signals. They include Sparse Component Analysis (SCA)
methods (Jarboui et al, 2014; Deville and Hosseini, 2007), which are only applicable
to sparse sources, Non-negative Matrix Factorization (NMF) methods (Meganem
et al, 2014b; Eches and Guillaume, 2014; Jarboui et al, 2016), which may be used
only when sources and mixing coefficients are non-negative, and Independent Com-
ponent Analysis (ICA) methods (Deville and Hosseini, 2009; Hosseini and Deville,
2013; Castella, 2008), which are based on the assumption that the source signals
are statistically independent. Nevertheless, the use of LQ ICA-based methods, ei-
ther BMI or BSS, is usually constrained by other properties of the sources and/or
the mixture. For example, some of them can be used only when the sources are
complex-valued and circular (Krob and Benidir, 1993; Abed-Meraim et al, 1996)
or binary (Castella, 2008). Others are suited only to determined mixtures (Deville
and Hosseini, 2009; Hosseini and Deville, 2013; Almeida and Almeida, 2012), which
generally means overlooking a useful part of the available observations. Moreover,
most of the existent LQ ICA-based methods are time-consuming.
In this paper, we study the bilinear model in an over-determined configuration. In
addition, we suppose that the sources are real-valued, stochastic, auto-correlated,
mutually independent and jointly strict-sense stationary signals. Then, we propose
a new and fast BSS method, called Bilinear Second-Order Blind Source Separation
(B-SO-BSS), based on Second-order Statistics (SOS) and the joint diagonalization
of correlation matrices of the whitened centred observed signals. Such SOS meth-
ods have already been proposed in the framework of linear BSS (Tong et al, 1990;
Belouchrani et al, 1997). We first study the correlation between different extended
sources in section 2, then we present our proposed method developed based on
the results of this study in section 3, and in section 4, we eventually provide some
simulation results using artificial mixtures of synthetic and real-world sources.

2 Mutual correlation of the extended sources

In this section, by supposing that the actual sources sj are real-valued, stochastic,
auto-correlated, mutually independent and jointly strict-sense stationary, we inves-
tigate whether all the extended sources are mutually uncorrelated in two different
cases: when the actual sources are zero-mean and when they are not.

2.1 Case of zero-mean actual sources

We here detail the study of the correlation between the different extended sources
when the actual sources are zero-mean. The pseudo-sources are then zero-mean,
as will now be shown. Indeed, these pseudo-sources are defined as sj(n)sk(n), with
j 6= k. Their factors sj(n) and sk(n) are independent and thus uncorrelated, which
yields

E{sj(n)sk(n)} = E{sj(n)}E{sk(n)}
= 0 (3)

where E{.} stands for expectation.
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All extended sources are thus zero-mean in the considered case. Therefore, their
cross-covariance functions, which should be used to measure their correlation, are
here equal to their cross-correlation functions. The latter functions are derived
hereafter.

2.1.1 Correlation function of si(n) and sj(n)

Two different actual sources si(n) and sj(n) being independent and zero-mean,
their cross-correlation function is equal to zero:

Rsi,sj (τ) = E{si(n+ τ)sj(n)} = 0 . (4)

2.1.2 Correlation function of si(n) and sj(n)× sk(n)

If (i 6= j) and (i 6= k), since si(n), sj(n) and sk(n) are independent, we can write

Rsi,(sjsk)(τ) = E{si(n+ τ)(sj(n)sk(n))}
= E{si(n+ τ)}E{sj(n)}E{sk(n)}
= 0 . (5)

If (i = j) or (i = k), the reasoning is similar for the two cases, e.g. considering
(i = j), we get

Rsi,(sisk)(τ) = E{si(n+ τ)(si(n)sk(n))}
= E{si(n+ τ)si(n)}E{sk(n)}
= 0 . (6)

2.1.3 Correlation function of si(n)× sj(n) and sk(n)× sl(n)

If (i 6= k), (i 6= l), (j 6= k) and (j 6= l) , the independence of si(n), sj(n), sk(n)
and sl(n) yields

R(sisj),(sksl)(τ) = E{(si(n+ τ)sj(n+ τ))(sk(n)sl(n))}
= E{si(n+ τ)}E{sj(n+ τ)}E{sk(n)}E{sl(n)}
= 0 . (7)

If (i = (k or l)) xor (j = (k or l)), the reasoning is similar for all cases, e.g.
considering (i = k) and therefore (j 6= (k and l)), the sources si, sj and sl are
independent so that

R(sisj),(sisl)(τ) = E{(si(n+ τ)sj(n+ τ))(si(n)sl(n))}
= E{si(n+ τ)si(n)}E{sj(n+ τ)}E{sl(n)}
= 0 . (8)

Thus, in the case of zero-mean actual sources, all the extended sources are mutually
uncorrelated.
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2.2 Case of non-zero-mean actual sources

In this case, (3) shows that the pseudo-sources are non-zero-mean, so that the
correlation of the extended sources must be measured using their cross-covariance
functions. Assuming that the actual sources are auto-correlated such that the
covariance function Csi,si(τ) 6= 0 at a lag τ , we here present two types of extended
sources which are mutually correlated.

2.2.1 Covariance function of si(n) and sj(n)× sk(n) when (i = j) or (i = k)

The reasoning is similar for the two cases, e.g. considering (i = j), calculating the
covariance function yields

Csi,(sisk)(τ) = E{si(n+ τ)(si(n)sk(n))} − E{si(n+ τ)}E{si(n)sk(n)}
= E{si(n+ τ)si(n)}E{sk(n)} − E{si(n+ τ)}E{si(n)}E{sk(n)}

=
(
E{si(n+ τ)si(n)} − E{si(n+ τ)}E{si(n)}

)
E{sk(n)}

= Csi,si(τ)E{sk(n)}
6= 0 (9)

Therefore, si(n) and si(n)× sk(n) are correlated.

2.2.2 Covariance function of si(n)× sj(n) and sk(n)× sl(n) when
(i = (k or l)) xor (j = (k or l))

The reasoning is similar for all cases, e.g. considering (i = k) and therefore (j 6=
(k and l)), the covariance function reads

C(sisj),(sisl)(τ) = E{(si(n+ τ)sj(n+ τ))(si(n)sl(n))}
−E{si(n+ τ)sj(n+ τ)}E{si(n)sl(n)}

=
(
E{si(n+ τ)si(n)}E{sj(n+ τ)}E{sl(n)}

)
−
(
E{si(n+ τ)}E{sj(n+ τ)}E{si(n)}E{sl(n)}

)
= Csi,si(τ)E{sj(n+ τ)}E{sl(n)}
6= 0 (10)

Therefore, si(n)× sj(n) and si(n)× sl(n) are correlated.

3 Proposed BSS method

In this section, we propose a new BSS method, called Bilinear Second-Order Blind
Source Separation (B-SO-BSS), first for zero-mean and then for non zero-mean
actual sources.
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3.1 Case of zero-mean actual sources

The bilinear mixing model (2) can be written in the following matrix form

x(n) = As(n), (11)

where x(n) = [x1(n), · · · , xK(n)]T is the vector of K observed signals at time n,
s(n) = [s1(n), · · · , sL(n), s1(n)s2(n), · · · , sL−1(n)sL(n)]T is the vector of all the
extended sources at time n, and the mixing matrix A, which contains both linear
and quadratic mixing parameters, reads

A =

 a1(1) · · · aL(1) a1,2(1) · · · aL−1,L(1)
...

. . .
...

...
. . .

...
a1(K) · · · aL(K) a1,2(K) · · · aL−1,L(K)

 . (12)

Then, the bilinear mixture can be considered as a linear mixture of the L(L+1)/2
extended sources. In the following, we assume that K ≥ L(L + 1)/2 so that this
reformulated linear mixture is not under-determined. As shown in Section 2.1,
all the extended sources are mutually uncorrelated in the case considered here. If
they are also auto-correlated with different auto-correlation functions, the source
separation may be achieved by jointly diagonalizing the correlation matrices of the
whitened centred observations at different lags as will be detailed in Section 3.4.

3.2 Case of non-zero-mean actual sources

As shown in Section 2.2, in this case some extended sources are mutually correlated.
Here, we show how the original bilinear mixing model may be used to derive a
new mixing model with new mutually uncorrelated extended sources. The mean
E{sj(n)} of the actual source sj(n) does not depend on the considered time n,
since the actual sources are assumed to be strict-sense stationary. The expectation
of sj will be denoted by s̄j hereafter. The centred version of sj(n) is thus s̃j(n) =
sj(n)− s̄j . The bilinear model (2) can then be written as

xi(n) =
L∑

j=1

aj(i)(s̃j(n) + s̄j) +

L−1∑
j=1

L∑
k=j+1

aj,k(i)(s̃j(n) + s̄j)(s̃k(n) + s̄k)

=
L∑

j=1

aj(i)s̃j(n) +
L∑

j=1

aj(i)s̄j +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̃j(n)s̃k(n)

+

L−1∑
j=1

L∑
k=j+1

aj,k(i)(s̄ks̃j(n) + s̄j s̃k(n)) +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄j s̄k. (13)

The fourth term on the right hand side of (13), denoted as F in the following, can
be rewritten as

F =

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄ks̃j(n) +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄j s̃k(n)

=

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄ks̃j(n) +

L−1∑
k=1

L∑
j=k+1

ak,j(i)s̄ks̃j(n), (14)
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where the last term above is obtained just by inverting the roles of symbols j and
k.
Then, we introduce the coefficients aj,k(i) with j > k, defined with respect to the
actual coefficients of (2), as aj,k(i) = ak,j(i).
This yields

F =

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄ks̃j(n) +

L−1∑
k=1

L∑
j=k+1

aj,k(i)s̄ks̃j(n)

=

(L−1∑
j=1

L∑
k=j+1

⋃L−1∑
k=1

L∑
j=k+1

)
aj,k(i)s̄ks̃j(n). (15)

The above sum contains all possible combinations of j ∈ [1, L], k ∈ [1, L] such that
j 6= k. It can then be rewritten as

F =
L∑

j=1

L∑
k=1,k 6=j

aj,k(i)s̄ks̃j(n). (16)

Replacing (16) in (13) leads to

xi(n) =
L∑

j=1

(
aj(i) +

L∑
k=1,k 6=j

aj,k(i)s̄k
)
s̃j(n) +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̃j(n)s̃k(n)

+
L∑

j=1

aj(i)s̄j +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄j s̄k, (17)

which yields

xi(n) =
L∑

j=1

ãj(i)s̃j(n) +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̃j(n)s̃k(n) + Ci, (18)

where ãj (i) are the linear coefficients of the new model which are defined as

ãj (i) = aj(i) +
L∑

k=1,k 6=j

aj,k(i)s̄k, (19)

and Ci is a constant defined as

Ci =
L∑

j=1

aj(i)s̄j +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄j s̄k. (20)

Since the actual centred sources s̃j(n) and s̃k(n) are zero-mean and independent,
from (18) the mean of the observed value xi(n) is equal to x̄i = Ci. Thus, its
centred version can be written as follows:

x̃i(n) = xi(n)− x̄i (21)

=
L∑

j=1

ãj(i)s̃j(n) +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̃j(n)s̃k(n).
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As can be seen, the centred observations form a new bilinear mixture of the actual
centred sources, although the mixing parameters of the linear part in this new
model are not the same as those in the original mixture. According to the results
provided in Section 2.1, the new extended sources s̃j(n) and s̃j(n)s̃k(n) are all
mutually uncorrelated. We can then rewrite this new bilinear model in the matrix
form (11) just by replacing s and x by s̃ and x̃, and the parameters aj(i) by ãj(i)

in the expression (12) of the matrix A to obtain the matrix Ã.
The approach that we developed at this stage therefore yields a modified set of
observations, namely the centred observations x̃i(n), which form a determined (or
overdetermined) linear mixture of a modified set of mutually uncorrelated source
signals, namely the extended centred sources related to the actual centred sources.
Moreover, we hereafter consider the case when these modified source signals are
auto-correlated with different auto-correlation functions. With respect to these
modified observations and source signals, the configuration that we thus derived
meets the same main assumptions as those which have previously been used in the
literature, for plain linear mixtures, to derive second-order BSS methods, such as
the Algorithm for Multiple Unknown Signals Extraction (AMUSE) (Tong et al,
1990) or its improved version, that is the Second-Order Blind Identification (SOBI)
method (Belouchrani et al, 1997). This then allows us to derive extended versions
of the above standard methods, which were initially intended for linear mixtures,
in order to process our configuration based on bilinear mixtures. In particular, we
hereafter propose an extension of SOBI.

3.3 Identifiability condition

A necessary step in the proposed method is to check the mixture identifiability
condition. Similarly to the SOBI method, the proposed method uses several cor-
relation matrices of the whitened centred observations for a fixed set of different
non-zero lags τi ∈ {τ1, ..., τm}. For a lag τi, the correlation matrix of the L(L+1)/2
whitened centred observations z(n) = Wx̃(n) (where W is a whitening matrix) is
given by:

Rz(τi) = URs̃(τi)U
T (22)

where U denotes an orthogonal matrix, T stands for transposition, and Rs̃(τi)
denotes the correlation matrix of the extended centred sources associated with the
lag τi, which is a diagonal matrix since the extended centred sources are mutually
uncorrelated.

Let us consider the following theorem:

Theorem: Let τi = {τ1, · · · , τm} be m non-zero lags, V be an orthogonal matrix,
such that:

∀1 ≤ i ≤ m VTRz(τi)V = diag[d1(i), · · · , dL(L+1)/2(i)] (23)

∀1 ≤ j 6= k ≤ L(L+ 1)/2, ∃i, 1 ≤ i ≤ m dj(i) 6= dk(i). (24)
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Then, U and V are essentially equal, i.e. they are equal up to a multiplication by
a matrix P, such that U = VP, where P has one nonzero entry in each row and
column, whose value is equal to ±1.
This theorem provides a uniqueness condition for the matrix U and consequently
the mixing matrix Ã. Note that the mixing matrix cannot be identified when
the extended centred sources have identical normalized spectra. But, if they have
different normalized spectra, it is possible to find a set of lags τi satisfying the
theorem condition. More details are provided in (Belouchrani et al, 1997).
It should in particular be noted that if one of the actual centred sources s̃i(n) is
temporally uncorrelated, then all the pseudo-sources related to it, i.e. s̃i(n)s̃j(n)
with i 6= j are temporally uncorrelated too, so that all these extended centred
sources have identical (constant) normalized spectra. Thus, a necessary condition
for identifiability is that all the actual centred sources must be autocorrelated1.

3.4 Proposed algorithm

Our proposed algorithm (B-SO-BSS), which provides estimates of centred actual
sources up to a permutation and scale factors, is summarized in Algorithm 1.

Algorithm 1 : B-SO-BSS

- Estimate the zero-lag correlation matrix Rx̃(0) of the centred observed signals
x̃(n).

- Calculate the whitening matrix W = D−1/2ET where D and E are, respec-
tively, the matrices containing the eigenvalues on its diagonal and unit-norm
eigenvectors of the estimate of Rx̃(0).

- Whiten the centred observed signals x̃(n): z(n) = Wx̃(n).

- Estimate the correlation matrices Rz(τi) of z, where τi = {τ1, · · · , τm} are m
chosen lags.

- Perform the joint diagonalization of the estimates of matrices Rz(τi) to provide
an estimate Û of an orthogonal matrix U so that Rz(τi) = URs̃(τi)U

T where
τi = {τ1, · · · , τm} (Belouchrani et al, 1997).

- Calculate ŝ(n) = ÛT z(n) which provides an estimate of the extended centred
source vector s̃(n), up to permutation and scale indeterminacies.

- Calculate Â = W†Û (where † stands for pseudo-inverse) which provides an

estimate of the matrix Ã, up to permutation and scale indeterminacies.

- Identify the L estimated actual centred sources among all the estimated ex-
tended centred sources according to Section 3.5.

In the particular case in which the actual sources are zero-mean, the same algo-

1 Note that in the linear SOBI, at most one source may be temporally uncorrelated.
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rithm may be used just by choosing s̃ = s, Ã = A, and x̃ = x.
The last step of the proposed algorithm, which consists in identifying the esti-
mated actual centred sources among all the estimated extended centred sources, is
detailed below.

3.5 Identifying the estimated actual centred sources

The first steps of the proposed method yield a set of signals ŝ(n) composed of
estimates of the L(L + 1)/2 unordered extended centred sources, up to a permu-
tation and scale factors. Thus, if e.g. ŝj(n) and ŝk(n) correspond to two centred
actual sources and ŝi(n) corresponds to their product, then ŝi(n) must ideally be
proportional to ŝj(n) × ŝk(n). As a result, the absolute value of the correlation
coefficient between ŝi(n) and ŝj(n) × ŝk(n) must be close to one. Thus, by com-
puting this correlation coefficient for all the possible triplets {i, j, k} , i 6= j 6= k, we
can identify the estimated actual centred sources among all the estimated extended
centred sources2.

3.6 Estimation of actual mixing coefficients

Many BSS applications only aim at estimating the actual source waveforms, which
are provided by our Algorithm 1. In some applications (like in hyperspectral image
unmixing), however, it is also needed to estimate the mixing parameters. In the
case of non-zero-mean actual sources, our algorithm provides an estimate of matrix
Ã, and not A (up to a permutation and a diagonal matrix). As mentioned in

Section 3.2, matrix Ã consists of:

– columns containing quadratic coefficients aj,k(i), like in matrix A,
– columns containing modified linear coefficients ãj(i), which are different from

the actual coefficients aj(i) included in matrix A, and are defined by (19).

In the following, we propose a method to recover an estimate of the actual matrix
A (up to classical indeterminacies) from the estimate of matrix Ã provided by
Algorithm 1.
From (19), we have

aj(i) = ãj (i)−
L∑

k=1,k 6=j

aj,k(i)s̄k. (25)

2 In the special case of L = 2 actual centred sources, it is also possible to identify the
estimated actual centred sources among 3 estimated extended centred sources using a criterion
measuring statistical independence, like mutual information. Actually, we know that s̃1 and
s̃2 are mutually independent while s̃1 × s̃2 is not independent from s̃1 and s̃2.
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Inserting (25) in (20) yields

Ci = x̄i

=
L∑

j=1

[ãj(i)−
L∑

k=1,k 6=j

aj,k(i)s̄k]s̄j +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄j s̄k

=
L∑

j=1

ãj(i)s̄j −
L∑

j=1

L∑
k=1,k 6=j

aj,k(i)s̄ks̄j +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄j s̄k

=
L∑

j=1

ãj(i)s̄j − 2

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄j s̄k +

L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄j s̄k

=
L∑

j=1

ãj(i)s̄j −
L−1∑
j=1

L∑
k=j+1

aj,k(i)s̄j s̄k

=
L∑

j=1

ãj(i)

dj
(dj s̄j) +

L−1∑
j=1

L∑
k=j+1

aj,k(i)

dj,k
(−dj,ks̄j s̄k),

(26)

where dj and dj,k are unknown arbitrary scale factors, up to which the extended

centred sources and the columns of matrix Ã have been estimated by Algorithm
1. The above result can be written in the following matrix form

c = Ã1e, (27)

where c = [C1, · · · , CK ]T , e = [d1s̄1, · · · , dLs̄L, (−d1,2s̄1s̄2), · · · , (−dL−1,Ls̄L−1s̄L)]T ,

and Ã1 is the result of dividing the columns of matrix Ã by unknown scale factors
dj and dj,k. In other words, Ã1 is the matrix Â provided by Algorithm 1 up to
estimation errors3.
Note that c can easily be obtained by estimating the means of observations. As a
result, e can be obtained using

e = Ã†1c, (28)

where † stands for pseudo-inverse.

Furthermore, (25) can be rewritten as

aj(i)s̄j =
ãj(i)

dj
(dj s̄j) +

L∑
k=1,k 6=j

aj,k(i)

dj,k
(−dj,ks̄j s̄k). (29)

As mentioned above,
ãj(i)
dj

and
aj,k(i)
dj,k

(∀i = 1, · · · ,K) correspond to the columns

of Ã1, estimated by Algorithm 1, and (dj s̄j) and (−dj,ks̄j s̄k) are the entries of e,

3 In fact, the columns of the matrix estimated by Algorithm 1 are also permuted. However,
using the method explained in Section 3.5, we can identify the columns containing linear
coefficients and the columns containing quadratic ones. It is then possible to arrange the
columns of the estimated matrix so that the first L ones correspond to the linear part (their
order is not really important) and the other ones are matched correctly to these first L columns.
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estimated using (28). Consequently, aj(i) ∀i = 1, · · · ,K can be estimated up to
unknown factors s̄j according to (29). In other words, this approach allows one
to estimate the columns of the actual matrix A containing the linear coefficients
up to scale factors. Note that the columns of this matrix containing the quadratic
coefficients are directly provided by Algorithm 1 (up to scale factors too).

4 Simulation results

In this section, we present and discuss the results obtained by the proposed B-SO-
BSS method presented in Algorithm 1 to unmix the bilinear mixtures, with adding
the step described in Section 3.6 to estimate the actual mixing coefficients. Herein,
we just present the results obtained when the sources are non-zero-mean since we
found nearly the same performance for both zero-mean and non-zero-mean cases.
In our simulations, the processed data are non-negative, and hence it is possible
to compare the obtained results to those obtained by the NMF-Grd-LQ algorithm
presented in (Meganem et al, 2014b) which is an NMF-based method adapted
to LQ mixtures, exploiting the non-negativity of data involved in mixtures. Note
that the physical constraints of the NMF-Grd-LQ algorithm, originally adapted to
remote sensing applications, i.e the sum of the linear coefficients equal to 1 and the
quadratic mixing coefficients lower than 0.5, have been omitted in our simulations
and the NMF-Grd-LQ method has been modified accordingly.

4.1 Performance criteria

In order to evaluate the performance of the methods, we calculate the Signal-to-
Interference Ratio (SIR) and the Normalized Mean Square Error (NMSE) related
to each actual centred source according to the following equations

SIRsi = 10 log10

∑N
n=1 s̃i(n)2∑N

n=1(s̃i(n)− ŝi(n))2
(30)

NMSEsi =

∑N
n=1(s̃i(n)− ŝi(n))2∑N

n=1 s̃i(n)2
(31)

where N represents the number of available samples for each signal and the nota-
tion ‘ˆ ’ refers to the estimated values after removing the permutation and scale
factor indeterminacies. In the same way, we calculate SIRa and NMSEa related
to all the mixing parameters, aj and aj,k, estimated according to Section 3.6.

4.2 Tests

We performed the following four experiments:

Experiment 1: we considered artificial mixtures of synthetic sources. The mix-
ing parameters aj(i) and aj,k(i) were generated randomly with values uniformly
distributed between 0 and 1. The generation of two sources was realized as fol-
lows: At first, we generated two independent and identically distributed (i.i.d.)
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signals e1(n) and e2(n) uniformly distributed over [0, 1], then we filtered them by
two first-order auto-regressive filters in order to obtain two auto-correlated source
signals according to the model si(n) = ei(n) +ρisi(n− 1). The chosen parameters
were ρ1 = 0.7 and ρ2 = 0.5. The tests were repeated using different source sample
numbers N : 10000, 1000, and 100. Finally, three observed signals were generated
using the BL model (2).

Experiment 2: we generated artificial mixtures of two real-world sources. These
sources, shown in Fig. 1 and described in (Duarte et al, 2014), correspond to the
activities (which can be seen as effective ionic concentrations) of ions Na+ and
K+ measured for 41 samples. As in Experiment 1, the mixing parameters aj(i)
and aj,k(i) were generated with random values uniformly distributed between 0
and 1. Thereafter, we generated three observed signals using the BL model (2),
even if the mixture model of the concentrations of the chemical species is usually
approximated by a linear-quadratic model.

Fig. 1 Activities of Na+ and K+ ions.

Experiment 3: The third experiment aims at evaluating the robustness of our
method to noise. The mixtures were, first, generated in the same way as in Ex-
periment 1, with N = 10000. A zero-mean Gaussian i.i.d noise was then added to
the observed signals in order to obtain a noisy setting. The SNR (Signal to Noise
Ratio) values are varied from 60 dB down to 30 dB.

Experiment 4: With the same strategy concerning noise effect adopted in Ex-
periment 3, we added a zero-mean Gaussian i.i.d. noise to the observed signals
generated in Experiment 2. As in Experiment 3, the SNR values are varied from
60 dB down to 30 dB.
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4.3 Results

In order to separate the mixed sources and to estimate the mixing parameters,
we applied the steps described in Algorithm 1 and Section 3.6 in two different
configurations: using only one lag (τi = 1), and using 4 lags (τi = {1, 2, 3, 4}).

In the first two experiments, we performed 100 Monte Carlo simulations for
our method and NMF-Grd-LQ. At each simulation, we, randomly, modified the
source signals and the mixing parameters in the case of Experiment 1, and only
the mixing parameters in the case of Experiment 2. The mean of SIR and NMSE
of the sources and all the mixing parameters, and the CPU time 4, averaged over
all 100 simulations realized in Experiment 1 and Experiment 2, are shown in Table
1.

Table 1 Simulation results using our algorithm (B-SO-BSS) with one and four lags, and using
NMF-Grd-LQ algorithm. SIRS and NMSES refer to sources, while SIRa and NMSEa refer
to mixing parameters.

hhhhhhhhhhhhhhhhAlgorithms

Number of samples

Synthetic

sources

100

samples

Synthetic

sources

1000

samples

Synthetic

sources

10000

samples

Chemical

sources

41

samples

B-SO-BSS
τi = 1

SIRs(dB) 9.06 20.18 30.15 13.68

NMSEs 0.33 0.022 0.0022 0.072

SIRa(dB) 8.71 11.25 19.38 17.58

NMSEa 0.36 0.33 0.08 0.31

CPU Time (sec) 6.4 e−4 8.8 e−4 2.1 e−3 3.9 e−4

B-SO-BSS
τi = 1, 2, 3, 4

SIRs(dB) 8.05 19.54 29.80 15.99

NMSEs 0.36 0.028 0.0024 0.068

SIRa(dB) 8.73 11.15 18.89 18.52

NMSEa 0.39 0.32 0.08 0.31

CPU Time (sec) 2.4 e−3 2.8 e−3 8.7 e−3 8.5 e−4

NMF-Grd-
LQ

SIRs(dB) 7.65 12.27 14.87 7.48

NMSEs 0.37 0.069 0.06 0.51

SIRa(dB) 7.21 7.45 11.09 6.80

NMSEa 0.64 0.70 0.18 0.41

CPU Time (sec) 4.94 19.87 127.77 3.11

As can be seen, our proposed method leads to the best results. In terms of run-
time, the proposed method is much faster than NMF-Grd-LQ.

Moreover, to evaluate the quality of the source estimation, comparisons are then

4 Computation has been performed with Matlab, on a computer with an intel core i7 pro-
cessor, a frequency of 2.7 GHz, and a RAM size of 16 GB.



A Second-Order Blind Source Separation Method for Bilinear Mixtures 15

provided in Fig. 2 and Fig. 3 between the actual and estimated sources obtained
by different methods. Indeed, the actual sources used in Fig. 2 correspond to an
example of Experiment 1 where N = 1000 and the random mixing matrix AExp1

is given by

AExp1 =

 0.0075 0.1461 0.3237

0.1221 0.4249 0.0723

0.4813 0.2845 0.5262

 , (32)

while Fig. 3 shows an example of Experiment 2 where the random mixing matrix
AExp2 is as follows

AExp2 =

 0.1549 0.1405 0.3916

0.5258 0.2041 0.9370

0.2047 0.5108 0.4310

 . (33)

We notice in Fig. 2, which only shows 50 samples corresponding to n ∈ [200, 249]
for the sake of clarity, that both synthetic sources are much better estimated by
our method than by the NMF-Grd-LQ method. Fig. 3 shows that both chemical
sources are well estimated by our method, while only one source is well estimated
by the NMF-Grd-LQ method.

In the following, our goal is to evaluate the performance of the proposed method
with only one, then four lags, when the observed signals are corrupted by noise.
Moreover, comparisons with the NMF-Grd-LQ method are carried out.
In the last two experiments, we performed 100 Monte Carlo simulations and, at
each simulation, we modified the source signals and the mixing parameters in case
of Experiment 3, and only the mixing parameters in case of Experiment 4.

The mean of the SIR and NMSE of the sources and of all the mixing parame-
ters obtained for these two experiments are presented in Table 2 and Table 3. For
clarity, SIRs representation was performed versus the SNR values as shown in
Fig. 4 (Experiment 3) and Fig. 5 (Experiment 4).

Considering Experiment 3, it is noted that the SIRs obtained by the B-SO-BSS
method are acceptable down to SNR equal to 40 dB. By comparing these re-
sults with those obtained by NMF-Grd-LQ, we notice that for high SNR values,
B-SO-BSS gives the best results, however for low ones, NMF-Grd-LQ seems more
efficient. Indeed, it can be seen that the SIRs obtained by NMF-Grd-LQ remain
acceptable down to SNR = 30 dB.
In the case of Experiment 4, the results obtained by the B-SO-BSS method are
acceptable down to SNR equal to 50 dB. On the contrary, for all considered SNR
values, NMF-Grd-LQ fails to yield accurate enough estimates.

In that regard, as expected, the presence of noise in the observed signals de-
creases the separation performance of our method. Nevertheless, performance re-
mains acceptable for relatively high SNR values.
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Table 2 Simulation results obtained by Experiment 3 using B-SO-BSS with one and four lags
and NMF-Grd-LQ when mixtures are corrupted by noise.

```````````̀Algorithms
SNR (dB)

60 50 40 30

B-SO-BSS
τi = 1

SIRs (dB) 25.46 20.49 13.60 6.13

NMSEs 0.03 0.08 0.21 0.43

SIRa (dB) 17.80 14.35 8.99 7.15

NMSEa 0.11 0.21 0.51 0.62

B-SO-BSS
τi = 1, 2, 3, 4

SIRs (dB) 25.22 20.48 13.66 6.47

NMSEs 0.03 0.08 0.21 0.42

SIRa (dB) 18.17 14.52 9.21 7.29

NMSEa 0.10 0.21 0.51 0.61

NMF-Grd-
LQ

SIRs (dB) 14.82 14.61 13.93 12.77

NMSEs 0.06 0.06 0.06 0.07

SIRa (dB) 11.00 10.98 10.62 10.60

NMSEa 0.18 0.19 0.19 0.20

Table 3 Simulation results obtained by Experiment 4 using B-SO-BSS with one and four lags
and NMF-Grd-LQ when mixtures are corrupted by noise.

```````````̀Algorithms
SNR (dB)

60 50 40 30

B-SO-BSS
τi = 1

SIRs (dB) 13.59 13.10 9.55 5.10

NMSEs 0.2881 0.33 0.45 0.61

SIRa (dB) 20.69 19.83 17.93 14.87

NMSEa 0.38 0.51 0.70 0.80

B-SO-BSS
τi = 1, 2, 3, 4

SIRs (dB) 16.60 15.57 10.11 6.64

NMSEs 0.24 0.36 0.66 0.74

SIRa (dB) 20.72 20.20 16.66 14.47

NMSEa 0.34 0.42 0.73 0.56

NMF-Grd-
LQ

SIRs (dB) 7.54 5.89 3.02 2.01

NMSEs 0.51 0.54 0.66 0.74

SIRa (dB) 6.43 6.43 6.37 6.36

NMSEa 0.41 0.41 0.41 0.41

5 Conclusion

In this paper, we proposed a new and fast BSS method, called Bilinear Second-
Order Blind Source Separation (B-SO-BSS), which is an extension of linear SOS
methods, to separate sources mixed according to the bilinear model. First, we
studied the statistical properties of the different extended sources when the actual
sources are zero-mean and when they are not. Then, we presented the different
steps performed in order to separate the actual centred sources and to estimate the
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actual mixing parameters. Finally, we presented the experimental results, obtained
by our proposed method. As a first step, we evaluated the method separation per-
formance when applied to noiseless artificial mixtures of synthetic or chemical
sources. We, therefore, clearly noticed the effectiveness of our method as com-
pared to the NMF-Grd-LQ method. As a second step, we evaluated the method
robustness to noise, and as expected, we noticed that the presence of noise in
the generated mixtures decreases the effectiveness of our method. However, the
performance remained acceptable for relatively high SNR values.
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Fig. 2 Comparison between estimated and actual synthetic sources, in the case of a noiseless
artificial BL mixture, using 3 different methods: B-SO-BSS (τi = 1) (top), B-SO-BSS (τi =
1, 2, 3, 4) (middle) and NMF-Grd-LQ (bottom). Only a part of signals corresponding to n ∈
[200, 249] is shown here.
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Fig. 3 Comparison between estimated and actual chemical sources, in the case of a noiseless
artificial BL mixture, using 3 different methods: B-SO-BSS (τi = 1) (top), B-SO-BSS (τi =
1, 2, 3, 4) (middle) and NMF-Grd-LQ (bottom).
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Fig. 4 SIRs versus SNR in the case of Experiment 3.
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Fig. 5 SIRs versus SNR in the case of Experiment 4.
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