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Correspondence

Fast Blind Separation of Long Mixture Recordings Using
Multivariate Polynomial Identification

Johan Thomas, Yannick Deville, and Shahram Hosseini

Abstract—This correspondence presents new approaches for optimizing
kurtosis-based separation criteria in the case of long mixture recordings.
Our methods are based on a multivariate polynomial identification step
that avoids the computation of signal statistics at each step of the commonly
used fixed-point optimization algorithms. As compared to the well-known
FastICA algorithm and to our recent DFICA algorithm intended for blind
partial separation of nonstationary sources, our new methods are very com-
putationally efficient for long recordings of a moderate number of mixed
sources. They are therefore especially suited to blind image separation, be-
cause of the high number of pixels in light sensors. Our algorithms also
avoid the computation and storage of the sphered observation vector, thus
saving memory space.

Index Terms—Blind source separation (BSS), independent component
analysis (ICA), kurtosis, long mixture recordings, non-Gaussian signals.

I. INTRODUCTION

Blind source separation (BSS) aims at estimating a set of N un-
observed source signals from the observation of P mixtures of these
signals when the mixture parameters are unknown. Let us denote by
s(n) = [s1(n); . . . ; sN (n)]t the vector of real-valued zero-mean
sources and x(n) = [x1(n); . . . ; xP (n)]t the vector of observations.
We here consider the case of linear instantaneous mixtures which
occur when each observation is a linear combination of the original
sources. By denoting A the P � N scalar mixing matrix containing
the real-valued scale coefficients between each source and each ob-
servation, the relationship between the source and observation vectors
reads in matrix form as x(n) = As(n). Among all BSS methods, we
here consider those that use independent component analysis (ICA)
[1] and especially which aim at maximizing the non-Gaussianity of
some output signals to estimate the sources.

Non-Gaussianity was considered for the first time in ICA by Comon
[2], [3] who used a fourth-order statistical parameter, i.e., the non-nor-
malized kurtosis, which is defined for a zero-mean variable y(n) by

kurty(n) = E y
4(n) � 3E y

2(n)
2

: (1)

Comon proposed to achieve the separation in two stages. The first one
performs a sphering process which consists in decorrelating and nor-
malizing the set of observations. The second one optimizes a criterion
(COM2) defined as the sum of the squared kurtoses of the output sig-
nals which are linear combinations of the sphered observations. Moreau
and Macchi then proposed to use the sum of the kurtoses of the output
signals as a criterion, which guarantees separation when the kurtoses of
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the sources have the same sign [4]. Comon and Moreau [5] then derived
an analytical solution for the optimization of this criterion (COM1).

Delfosse and Loubaton then proposed a deflation approach which es-
timates the sources iteratively [6]. They proposed to first perform the
same sphering process as above. In the second stage of this approach,
the algorithm maximizes the absolute value or square of the non-nor-
malized kurtosis of one linear combination y(n) = N

i=1
w(i)zi(n)

of the N sphered signals zi(n) under the constraint kwk = 1. This is
done by iteratively updating the vectorw with the following two oper-
ations: a gradient ascent algorithm step for the criterion kurty(n) and
a normalization step to obtain kwk = 1. This yields an estimate of one
source. The other sources are then estimated by a deflation approach [6].

In the FastICA algorithm [7], the same sphering process is applied,
but FastICA then optimizes the above kurtotic criterion by using a
fixed-point algorithm instead of a gradient ascent approach. The fixed-
point iteration alternately updates the extraction vector with the gra-
dient of the kurtosis and then normalizes this vector. This algorithm
takes advantage of the fact that when the extraction vector w maxi-
mizes the absolute value of the kurtosis under the constraint kwk = 1,
the gradient of this kurtosis is collinear to w. As it is fast and has no
tunable parameter, the FastICA algorithm is very popular in the ICA
community and is used for many real applications in various domains
such as astrophysical image separation [8]. Recently, we proposed a
differential fast fixed-point algorithm, called DFICA, for underdeter-
mined blind partial separation of some nonstationary sources in pres-
ence of stationary sources [9].

Recently, Zarzoso et al. [10] proposed an alternative to the FastICA
algorithm, called RobustICA, which consists of performing exact line
search optimization of a contrast function which is defined as the nor-
malized kurtosis:

kurtnormy (n) =
kurty(n)

E fy2(n)g2
: (2)

In this paper, we propose an approach for optimizing the same crite-
rion as in FastICA in order to achieve the blind separation of (over)de-
termined mixtures. This approach can be applied to the underdeter-
mined case by using the concept of differential source separation. In
the (over)determined case (P � N), we make the following classical
assumptions concerning the mixture model:

• s(n) is stationary and spatially independent, i.e., its components
si(n) are statistically independent from each other; we also as-
sume that at most one of these components is Gaussian;

• the scalar mixing matrixA is full column rank. If P > N , we can
use Principal Component Analysis (PCA) to reduce the number of
observations to N .

We also assume that the observations contain a high number T of
samples (typically more than 100 000 samples) so that the FastICA and
DFICA algorithms yield high processing times for estimating statistics
at each step of the kurtosis-based optimization algorithms.1 This es-
pecially concerns image sources: because of the present size increase
of CCD and CMOS-type light sensors which imply large numbers of
samples, our proposed approach should then be more efficient than the
classical FastICA and DFICA algorithms. Our method is also attrac-
tive for audio source separation when the signals are stationary over

1The RobustICA algorithm does not explicitly tackle the problems encoun-
tered with long signal recordings as the complexity of each iteration stays pro-
portional to the number of samples, even though less iterations are required com-
pared to the FastICA algorithm.
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long enough periods, in data compression when the files to be com-
pressed are large, or in telecommunications. Besides, we suppose that
the sources to be estimated are not too numerous (typically up to seven
sources), which is often the case.

This paper is organized as follows. In Section II, after describing the
FastICA method and its limitations, we propose our own approach that
aims at improving the separation algorithm in the case of long mixture
recordings. We also stress the possibility of extending our algorithm
to the underdetermined case by applying the differential source sep-
aration principle. The experimental section then compares the speeds
of our optimized algorithms with the FastICA approach and our recent
differential DFICA method [9]. Conclusions are drawn from this in-
vestigation in Section IV.

II. AN OPTIMIZED FAST FIXED-POINT ALGORITHM FOR

(OVER)DETERMINED BSS

A. Principles and Limitations of Standard FastICA Approach

The first step of the FastICA algorithm consists in decorrelating
and normalizing the observations, which can be done by the following
operation:

z(n) = Bx(n) (3)

where B is the sphering matrix of the observation vector and z(n) is
the sphered observation vector, whose correlation matrix is equal to the
identity matrix (Rz = IN ). The sphering matrix is generally obtained
by means of the eigendecomposition of the correlation matrixRx, i.e.,
B is taken equal to ����1=2

E
t, where E and ��� are respectively the or-

thogonal matrix and the diagonal matrix associated with the eigende-
composition of Rx. This process implies equality between the power
of the subsequent output signal y(n) = w

t
z(n) and the squared norm

of the extraction vector w.
There exist two versions of the FastICA second stage. The parallel

version, whose convergence has been rigorously proved by Oja and
Yuan in [11], extracts all the sources at the same time by repeatedly
updating a set of extraction vectors with the gradients of the kurtoses,
orthogonalizing and normalizing these vectors by means of the sym-
metrical operation W = W W

t
W

�1=2
, where the matrix W is

composed of the N extraction vectors wi arranged column-wise. The
fixed-point iteration updates each of the N extraction vectors by the
gradients of the kurtosis, which reads

8 i =1 . . .N

wi  E z(n) wt
iz(n)

3
� 3wi /

@kurtw z(n)

@wi
: (4)

This is performed in the FastICA package [12] by the operation

W = (Z � ( (Z0 � W ) :^3) ) = T� 3 � W (5)

where Z is an N � T matrix containing the T samples of the sphered
observations and W implements the above N � N -size matrix W. As
update (5) requires to store Z and (Z0 � W):^3, we thus need 2N � T
memory words. It may be shown2 easily that operation (5) requires to
compute (4N2 + N)T + 2N2 operations. It was pointed out in [13]
that the averages in the update equation could possibly be estimated
by using a smaller sample size, thus reducing the computational load.

2We assume that each matrix productMN, if the dimensions ofM andN are
respectively d �d and d �d , needs d d (2d �1) elementary operations.

However, this reduced number of samples is also said to have a consid-
erable effect on the accuracy of the final estimate ofW. Since we here
aim at achieving good accuracy, we use all available data.

The deflation version of FastICA extracts the sources one by one, by
applying a deflation-based orthogonalization procedure instead of the
above mentioned symmetrical one. In this case, at each step of the opti-
mization, a unique vectorw is updated with the gradient of the kurtosis
ofwt

z(n) (the matrix W is replaced by a unique N -size column vector
w) and the resulting vector is projected on the space orthogonal to the
previously estimated extraction vectors. This is done by the operation
w = w�WW

t
w, whereW contains the previously estimated vec-

tors arranged column-wise. The resulting vector is then normalized by
the operation w = w=kwk.

B. A New Approach for Optimizing Kurtosis

In this section, we propose a method to avoid the above important
memory requirement and the computation of the sample statistics in
each update operation of the optimization of W or w. This method is
based on a multivariate polynomial identification that allows us to per-
form the computations of the above fixed-point algorithms in a space of
polynomial coefficients. It also avoids the computation and the storage
of the sphered observation vector z(n) defined by (3). This new ap-
proach is attractive for most configurations (typically with N � 7) in
terms of computation time and requested memory space, particularly
for long mixture recordings, whereas it converges towards exactly the
same points as the standard FastICA algorithms.

Let us denote by y(n) = w
t
z(n) a linear combination of the entries

of the sphered observation vector z(n) used in the FastICA algorithm
and computed by using (3) (the computation of z(n) will be avoided
in our approach as explained further). Since all signals are assumed to
be zero-mean, the kurtosis of y(n) reads

kurty(n) = kurtw z(n) = E (wt
z(n))4 �3E (wt

z(n))2
2
:

(6)
As we have

E (wt
z(n))2 =E w

t
z(n)zt(n)w

=wtE z(n)zt(n) w

=wt
Iw

= kwk2 (7)

(6) becomes

kurty(n) = E

N

i ;...;i =1

4

k=1

w(ik)zi (n) � 3

N

i=1

w(i)2
2

=

N

i ;i ;i ;i =1

4

k=1

w(ik) E

4

k=1

zi (n)

� 3

N

i ;i =1

w(i1)
2w(i2)

2: (8)

As (8) is a fourth-order polynomial with respect to the variables
w(1); . . . ; w(N), we can define a set of coefficients (�d)d2D with

D = d 2 f0; . . . ; 4gN n N
k=1 d(k) = 4 such that

kurty(n) =
d2D

�d

N

k=1

w(k)d(k): (9)

Equation (9) corresponds to the canonical expansion3 of the kurtosis
with respect to the variables w(1); . . . ; w(N). Let us denote by R

3The coefficients � here include the binomial coefficients which result from
the expansion of the fourth power of y(n).
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the cardinality4 of D, by d1; . . . ;dR its elements and �1; . . . ; �R the
values of (�d)d2D . We have then

kurty(n) =

R

r=1

�r

N

k=1

w(k)d (k)
: (10)

It would be possible to directly compute the coefficients �r which de-
pend on fourth-order cross moments of the signals z1(n); . . . ; zN(n).
We here propose a method which is more efficient in terms of compu-
tation time. Let us denote by (vi)i=1::R a family of R different N -size
vectors. Replacing w by vi in (10), we then have

8 i = 1 . . .R; kurtv z(n) =

R

j=1

�j

N

k=1

vi(k)
d (k) (11)

which can be expressed by the matrix relation

M��� = k (12)

where��� is the column vector of coefficients (�r)r=1...R and where the
matrixM = [mij ]i;j=1...R and the column vector k = (ki)i=1...R are
respectively defined by

8 i; j = 1 . . .R; mij =
N
k=1 vi(k)

d (k)

8 i = 1 . . .R; ki = kurtv z(n):
(13)

By choosing R extraction vectors vi of size N which yield a nonsin-
gular matrix M, we can thus identify the R coefficients (�r)r=1...R
by computing the kurtoses ki of the R signals vtiz(n) obtained with
these extraction vectors and by using the inverse relation of (12), i.e.,
��� = M

�1
k. In the Appendix, we propose particular vectors (vi)

which yield a well-conditioned matrixM. It must be noted that thanks
to the sphering process, 8 i = 1 . . .R, E v

t
iz(n)

2
= kvik

2 as

proved by (7) and thus kurtv z(n) = E v
t
iz(n)

4
� 3kvik

4 so
that we only have to compute a single fourth-order moment for each of
the R extraction vectors. Furthermore, the relation

8 i = 1 . . .R; v
t
iz(n) =v

t
i���

�1=2
E
t
x(n)

=utix(n) (14)

with uti = v
t
i���

�1=2
E
t allows us to avoid the computation of the

sphered observation vector z(n). In the following, U and V denote
the matrices containing respectively the sets of vectors (ui)i=1...R and
(vi)i=1...R arranged column-wise.

Let us note that the matrix M is independent from the sources
and from the mixing matrix. It is then possible to compute its inverse
once for all for the set of vectors (vi)i=1...R that has been chosen
for the considered number of sources. After we have identified
the set of coefficients (�r)r=1...R by computing the kurtoses ki
of the R signals associated with the R vectors (vi)i=1...R and by
deriving ��� = M

�1
k, we aim at maximizing the absolute value of

kurtw z(n) = R
r=1 �r

N
k=1 w(k)

d (k) with respect to w under
the constraint kwk = 1. This can be done in the same way as in the
standard FastICA algorithm but in the space of polynomial coefficients
�r involved in (10), instead of in the space of signals associated to (6).
As in the deflation-based FastICA algorithm, we alternately update
the extraction vector with the gradient of the kurtosis and normalize
this vector. For a parallel version, N vectors are updated and then
orthonormalized. We thus use the gradient of kurtw z(n) with respect
to w, which reads

@kurtw z(n)

@w
=

R

r=1

�r
@

N
k=1 w(k)

d (k)

@w
(15)

4It may be shown that card(D) = R = N + 3N(N � 1)=2 +
N(N � 1)(N � 2)=2+N(N � 1)(N � 2)(N � 3)=24:

with

@
N
k=1 w(k)

d (k)

@w(j)

=
dr(j)w(j)

d (j)�1
k 6=j w(k)

d (k); if dr(j) � 1

0; if dr(j) = 0:
(16)

Let us now summarize the parallel version of our optimized FastICA
algorithm, which we call O-FICA.

• Estimate the correlation matrixRx of the observation vector x(n)
and compute its eigendecomposition, which yields an orthogonal
matrixE and a diagonal matrix ���, and compute the sphering ma-
trix B = ����1=2

E
t.

• Compute U = B
t
V, where V is composed of the R extraction

vectors proposed in the Appendix.
• Compute the kurtoses (ki)i=1...R of the R signals utix(n); i =

1 . . .R and determine the set of coefficients ��� = (�r)r=1...R by
means of the pre-computed inverse ofM defined by (13), with the
relation ��� = M

�1
k.

• InitializeW toN differentN -size vectors arranged column-wise,
i.e.,W = [w1; . . . ;wN ] = [wji] and repeat until convergence:
1) 8 i; j = 1 . . .N;wji  

R
r=1 �rdr(j)w

max(d (j)�1;0)
ji

k 6=j w
d (k)
ki ;

2) W  W(Wt
W)�1=2.

The deflation version of our O-FICA algorithm can be easily derived
from the relation between the parallel and deflation versions of the clas-
sical FastICA algorithm. We point out that this new algorithm does not
need to estimate signal statistics at each step of the fixed-point algo-
rithm, as opposed to the standard FastICA algorithm, but only works
with polynomial coefficients �r , which is more efficient provided that
they are not too numerous (this is typically the case for N � 7).
Moreover, we avoid to store the matrices Z and (Z0 � W):^3 during the
fixed-point algorithm, which represents 2NT memory words. It may
be shown that we only have to store R2 + R + RN + N2 memory
words during the optimization, which is independent from the number
of samples T and therefore especially attractive for a high T .

Tables I and II present the number of floating-point operations
needed by the FastICA and O-FICA algorithms, respectively.5 These
tables show that the number of elementary operations of one FastICA
iteration is approximately proportional to the number of samples T ,
whereas O-FICA iteration complexity is proportional to R, which is
independent from and here much lower than T . Besides, the FastICA
initialization stage, which comes before the optimization iterations, is
faster than the O-FICA one. However, this criterion is not the only one
to be considered to assess the speed of an algorithm. Indeed, in modern
computer architectures, the speed of execution strongly depends on
the possibility or not to store intermediate results in cache memory.
The interest of our O-FICA algorithm is increased by the fact that,
unlike FastICA, it does not require to manipulate large-size matrices
that cannot be stored in cache memory. In the experimental section,
we will determine the computation gain of our optimized approach by
doing some statistical tests with the Matlab software.

C. Extension to Underdetermined Blind Source Separation

In this subsection, we briefly present the application of the above
polynomial identification principle to our differential fast fixed-point
algorithm DFICA recently proposed in [9] (we call O-DFICA the op-
timized version of our DFICA algorithm).

5Because of the assumption N < 7, the eigendecomposition ofR and the
computation of B are very fast; their number of operations is indeed propor-
tional to N , which is denoted O(N ) in the tables. Besides, as the values of
3kv k ; 8 i = 1 . . .R andM depend on the chosen set (v) but nei-
ther on the sources nor on the mixing process, they can be stored in the working
directory and the numbers of operations to compute them are thus not counted.
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TABLE I
NUMBER OF FLOATING-POINT OPERATIONS NEEDED BY INITIALIZATION AND OPTIMIZATION STAGES OF FASTICA ALGORITHM

TABLE II
NUMBER OF FLOATING-POINT OPERATIONS NEEDED BY INITIALIZATION AND OPTIMIZATION STAGES OF O-FICA ALGORITHM

In [9], we introduced the so-called differential kurtosis that masks
the effect of the noise sources and thus allows the partial separation of
the nonstationary sources of interest.

DFICA consists of an extension of the kurtosis-based FastICA algo-
rithm to underdetermined mixtures when the sources are divided into
two types: ~N sources of interest, which are long-term nonstationary
between two instants n1 and n2 with ~N � P , and an arbitrary number
of long-term stationary noise sources.

Like the standard FastICA algorithm, our DFICA method is com-
posed of two stages: a differential sphering process followed by a fixed-
point algorithm. The differential sphering process estimates the differ-
ential correlation matrix of the observations defined as the difference
between the correlation matrices, respectively, estimated on the two
time intervals associated to n1 and n2:

DRx(n1; n2) = Rx(n2)�Rx(n1): (17)

Then, provided DRx(n1; n2) is positive definite,6 its eigendecompo-
sition is computed, which gives an orthogonal matrix E and a diag-
onal matrix ���. The differential sphering matrix is then obtained as
B = ����1=2

E
t. Then, the differentially sphered observations are com-

puted by using (3).7 We proved in [9] that the maximization of the ab-
solute value of the differential kurtosis of wt

z(n), defined by

Dkurt
w z

(n1; n2) = kurt
w z

(n2)� kurt
w z

(n1) (18)

with respect to w under the constraint kwk = 1 achieves the partial
separation of the nonstationary sources, i.e., the output signal y(n) =
w
t
z(n) is then composed of a unique long-term nonstationary source

superimposed with all stationary sources.

6We proved in [9] that DR (n ; n ) is positive definite if and only if the
source powers increase between the two times n and n ; if all these powers
decrease, we can permute the two time intervals associated to n and n . In
order to choose the time intervals associated to n and n , we can for instance
select some couple of intervals randomly until the necessary condition, i.e., the
positive definiteness of the differential correlation matrix, is verified.

7If P > ~N , we should use a differential PCA process which consists in
using matrices ~E and ~�~�~� instead of E and ���, where ~E is composed of the ~N
eigenvectors associated to the highest eigenvalues ofDR (n ; n ), and ~�~�~� is
the diagonal matrix composed of these eigenvalues.

The differential kurtosis of y(n), as a difference of kurtoses be-
tween two instants, is thus also a multivariate polynomial with respect
to the variables w(1); . . . ; w( ~N). We can therefore optimize it with
the same principle as in the previous subsection, which first consists
in identifying the corresponding polynomial coefficients (�r)r=1...R
and second in applying the same update iterations as DFICA but in the
computation space associated to these polynomial coefficients.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results which compare the
speeds of our O-FICA and O-DFICA algorithms with the standard
FastICA and DFICA methods. In the first series of tests, we compared
the computation times of the algorithms until they reach the stopping
criterion that is used in the Matlab FastICA Package [12]. To put it
briefly, this criterion compares the directions of the extraction vectors
after the last two updates, and the optimization is stopped if these di-
rections do not vary more than a certain threshold (we set this threshold
parameter to 10�4, which is the default value in the package). We
tested the parallel and deflation versions of the algorithms to sepa-
rate sources with uniform and Laplacian distributions in about equal
numbers. For the differential algorithms O-DFICA and DFICA, we
took two time intervals between which the powers of the sources of
interest vary in the same way. On these intervals, we mixed them with
three stationary noise sources corresponding to uniform, Gaussian and
Laplacian distributions.

Fig. 1(a) and (b) represents the values of t0=t depending on the
number of samples T , where t0 and t are, respectively, the computation
times of the optimized and standard algorithms. For each configura-
tion, we made 100 Monte Carlo simulations by varying the sources,
and the mixing coefficients with a uniform distribution in [0; 1], and
we averaged the values of t0=t. We can see in Fig. 1(a) and (b) that for
a number of sources (a number of nonstationary sources in the differ-
ential case) up to 7 (up to 6 for the differential versions) the ratio t0=t
is notably lower than 1 when the number T of samples is high enough
and decreases when T increases, which shows the effectiveness of our
optimized methods. In addition, we compared our O-FICA method
with the JADE algorithm which also performs the estimations with
all samples once for all before beginning the optimization iterations,
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Fig. 1. a) and b): t =t depending on the number T of samples. a) plain lines: ratio of symmetrical O-FICA (t ) and symmetrical FastICA algorithms (t), dashed
lines: ratio of deflation O-FICA (t ) and deflation FastICA algorithms (t), dot-dashed lines: ratio of symmetrical O-FICA (t ) and JADE algorithms (t). b) plain
lines: ratio of symmetrical O-DFICA (t ) and DFICA algorithms (t), dashed lines: ratio of deflation O-DFICA (t ) and DFICA algorithms (t). c) and d): Per-
formance index Perf depending on the computation time, plain lines: optimized algorithms, dashed lines: standard algorithms. c) (over)determined FastICA and
O-FICA algorithms, d) underdetermined DFICA and O-DFICA algorithms.

but uses another criterion, based on the cancellation of fourth-order
cross-cumulants. Our tests also show that our method yields somewhat
better performance than the JADE algorithm.

In the second series of experiments, we represented the performance
index depending on the allowed computation time for the symmetrical
standard and optimized algorithms. The above-mentioned performance
index is defined as

Perf = meanj max
i

10 log
10

g2ij=
j 6=i

g2ij

+meani max
j

10 log
10

g2ij=
j 6=i

g2ij

where the gij values are the entries of the performance matrixG, which
is defined as the product of the mixing and separating matrices. In the
differential case, we only take into account the columns ofG associated
with the nonstationary sources and thus evaluate the quality of the par-
tial separation of the sources of interest. As previously, for each config-
uration associated with a number of sources and an allowed processing
time, we made 100 Monte Carlo simulations by varying the sources
(with uniform and Laplacian distributions in about equal numbers) and
the mixing coefficients (with a uniform distribution in [0; 1]) and then
averaged the values of Perf . We chose an overall number of samples

equal to 100 000 (T = 50 000 in the differential case). Fig. 1(c) and (d)
show that the optimized algorithms reach the highest value ofPerf with
a significantly shorter processing time (except for ~N = 7 in the differ-
ential case). We also see that for the standard FastICA and DFICA algo-
rithms, the performance index progressively increases, contrary to our
optimized versions for which the index increases suddenly at the time
when the polynomial parameters (�r) have been estimated (the period
when the performance criterion is low corresponds to the polynomial
identification stage), as the optimization updates are then performed in
a very efficient computation space.

IV. CONCLUSION

In this paper, we have presented a new method for optimizing the
kurtosis-based separation criteria used by the well-known FastICA al-
gorithm and by our recent DFICA algorithm intended for underdeter-
mined partial separation of nonstationary sources. We proved that these
criteria can be expressed as multivariate polynomials and proposed a
fast method to identify their coefficients. This lets us realize their con-
strained optimization in a simpler computation space as compared to
the space associated to the classical FastICA and DFICA algorithms.
Our approach is particularly attractive in terms of computation time and
requested memory space when the observations contain a large number
of samples, which is often encountered in blind image separation for
instance.
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E1 = w 2 f0; 1gN n 9i1; w(i1) = 1;8 i 6= i1 w(i) = 0

E2 = w 2 f0; 1gN n 9i1; i2; w(i1) = w(i2) = 1;8 i 6= i1; i2 w(i) = 0

E3 = w 2 f0; 1; 2gN n 9i1; i2; w(i1) = 2w(i2) = 2;8 i 6= i1; i2 w(i) = 0

E4 = w 2 f0; 1; 2gN n 9i1; i2; i3; w(i1) = 2w(i2) = 2w(i3) = 2;8 i 6= i1; i2; i3 w(i) = 0

E5 = w 2 f0; 1gN n 9i1; . . . ; i4; w(i1) = � � � = w(i4) = 1;8 i 6= i1; . . . ; i4 w(i) = 0 :

APPENDIX

PROPOSED FAMILY OF EXTRACTION VECTORS

Let us define the five sets8: see the equation shown at the top of the
page.

The cardinalities of E1; . . . ; E5 are, respectively, N , N(N � 1)=2,
N(N � 1), N(N � 1)(N � 2)=2, N(N � 1)(N � 2)(N � 3)=24.
By denoting E = [5

i=1Ei, we have card(E) =
5

i=1
card(Ei)= N + 3N(N � 1)=2+N(N � 1)(N � 2)=2 +

N(N � 1)(N � 2)(N � 3)=24= card(D) = R. We numerically
verified that using this family as the vectors vi gives a nonsingular
matrix M as defined in (13) for a number of sources N � 7. The
respective conditioning numbers of M (defined as the ratio of
the greatest and lowest eigenvalues of M) for N = 2; . . . ; 7 are
indeed 182; 414;844; 1605; 2758; 4344 which is very low given the
associated values of R (respectively, 5; 15; 35; 70; 126;210). For
instance, the mean conditioning number of 210-dimensional matrices
with coefficients uniformly distributed between 0 and 1 is greater than
50 000. This family of vectors (vi)i=1::R may then be used to identify
the set of coefficients (�r)r=1...R as defined in (10).

To illustrate this choice of family, let us describe each set
Ei; i 2 1 . . . 5 in the simplest cases, i.e., N = 2 and N = 3.
For N = 2, we have E1 = f(1; 0); (0; 1)g, E2 = f(1; 1)g,
E3 = f(2;1); (1; 2)g, E4 = ;, E5 = ;. For N = 3, E1 =
f(1; 0; 0); (0; 1; 0); (0; 0; 1)g, E2 = f(1; 1; 0); (1; 0; 1)(0;1; 1)g,
E3 = f(2; 1; 0); (1; 2; 0); (2; 0; 1); (1; 0; 2); (0; 2; 1); (0; 1; 2)g,
E4 = f(2; 1; 1); (1; 2; 1); (1; 1; 2)g, E5 = ;.
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On the TT-Transform and Its Diagonal Elements

Carine Simon, Martin Schimmel, and Juanjo José Dañobeitia

Abstract—The TT-transform stands for time–time transform and has
been derived as an inverse Fourier transform of the time-frequency

-transform. Up to date, only the diagonal of the TT-transform has been
used for signal characterization. We show here an alternative and simpli-
fied derivation of the TT-transform which enables a better understanding
of this transform. In particular, we demonstrate that the diagonal elements
of the TT-transform represent a simple frequency filtered version of
the original signal and, thus, that little additional information is gained
through the TT-transform.

Index Terms—Local spectra, -transform, time-frequency localization,
time–time analysis, time-varying filters, TT-transform.

I. INTRODUCTION

I N disciplines such as music or geophysics, signals are nonsta-
tionary. The need for processing such signals has led to the ap-

pearance of several types of time varying frequency filters, such as the
short time Fourier transform [1], wavelets [2], and more recently the
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