
Academic Editors: Gordana

Dodig-Crnkovic and Emilio

Matricciani

Received: 8 December 2024

Revised: 2 January 2025

Accepted: 17 January 2025

Published: 22 January 2025

Citation: Deville, A.; Deville, Y.

Solving the Zeh Problem About the

Density Operator with Higher-Order

Statistics. Information 2025, 16, 75.

https://doi.org/10.3390/

info16020075

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Solving the Zeh Problem About the Density Operator with
Higher-Order Statistics
Alain Deville 1,† and Yannick Deville 2,*,†

1 Institut Matériaux Microélectronique et Nanosciences de Provence (IM2NP), UMR 7334, Aix-Marseille
Université, CNRS, 13397 Marseille, France; alain.deville@univ-amu.fr

2 Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse, CNRS, CNES,
31400 Toulouse, France

* Correspondence: yannick.deville@irap.omp.eu; Tel.: +33-5-61-33-28-24
† These authors contributed equally to this work.

Abstract: Since a 1932 work from von Neumann, it has been considered that if two statistical
mixtures are represented by the same density operator ρ, they should, in fact, be considered
as the same mixture. In a 1970 paper, Zeh introduced a thought experiment with neutron
spins, and suggested that, in that experiment, the density operator could not tell the whole
story. Since then, no consensus has emerged yet, and controversies on the subject still
presently develop. In his 1995 book, speaking of the use of the density operator, Peres
spoke of a von Neumann postulate. In this paper, keeping the random variable used by
von Neumann in his treatment of statistical mixtures, but also considering higher-order
moments of this random variable, it is established that the two mixtures imagined by
Zeh, with the same ρ, should however be distinguished. We show that the rejection of
that postulate, installed on statistical mixtures for historical reasons, does not affect the
general use of ρ, e.g., in quantum statistical mechanics, and the von Neumann entropy
keeps its own interest and even helps clarifying that confusing consequence of the postulate
identified by Peres.

Keywords: statistical mixture; density operator; von Neumann postulate; von Neumann
entropy; higher-order statistics

1. Introduction
The developments of Physics, Communications and Electronics have led to the birth

and growing of a Theory of Information, first in the classical context (see, e.g., the ap-
pearance of the Shannon entropy [1]) and, for several decades, in the quantum domain
(see, e.g., the Feynman Lectures on Computation [2], and Quantum Computation and Quantum
Information by Nielsen and Chuang [3]). A second quantum revolution is now spoken
of, which also stimulates a reflection on some basic ideas of Quantum Mechanics (QM).
A question asked by Zeh more than fifty years ago [4] about the content of the density
operator ρ, which we will call the Zeh problem, is still waiting for an answer. In the field of
quantum Information Processing (QIP), it has been possible, in a given context, not to use
the density operator formalism (see, e.g., [5–8] and the explanations in [8]). In the following
pages, the Zeh problem is discussed and solved.

The present paper uses standard Quantum Mechanics (QM). As a result of its pos-
tulates, including the existence of a principle of superposition (of states), which the late
Nobel Laureate Steven Weinberg called the first postulate of QM [9], then, given a quantum
system Σ, and its state space E , a Hilbert space, any vector of E (defined up to a phase factor
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eiφ, φ being a real quantity) represents a possible state of Σ called a pure state. This standard
Hilbert space framework is used by both the Copenhagen approach (Bohr, Heisenberg,
Pauli, Rosenfeld) and by the statistical interpretation (Einstein, Schrödinger, Blokhintsev,
Ballentine), with the meaning given by Ballentine [10] to the latter expression; one of these
interpretations is more-or-less implicitly accepted by many users of QM. Weinberg has
stressed that “quantum field theory is based on the same quantum mechanics that was
invented by Schrödinger, Heisenberg, Pauli, Born, and others in 1925–26, and has been
used ever since in atomic, molecular, nuclear, and condensed matter physics” ([11], p. 49).

A state of the Hilbert space—pure state—used in QM, and described by a ket in the
Dirac formalism [12], obeying the Schrödinger equation if Σ is isolated, can be obtained
from a preparation act, and if an observable O attached to Σ is measured while Σ is in the
pure (normed) state | Ψ⟩, the mean value of the result is the quantity ⟨Ψ | Ô | Ψ⟩ (with Ô
being the Hermitian operator attached to O).

The questions on the meaning of the pure state concept, of the principle of superposi-
tion (of pure states) and of the probabilistic content of the quantity ⟨Ψ | Ô | Ψ⟩ are presently
still debated, through the so-called problem of the foundations of QM. From the beginning
of this paper, the reader is urged to keep in mind that this paper is NOT devoted to the problem
of the foundations of QM and its so-called interpretation (the interested reader may consult [13]),
but to a far more modest question.

We start from the fact that von Neumann [14,15] considered a more general situation
than the one described by a pure state, the one called a mixed state or statistical mixture
(of states). Since von Neumann’s work, it is considered that if two so defined statistical
mixtures are represented by the same density operator, they must be seen as the same
statistical mixture, and it is more generally considered that ρ completely describes the
properties of a statistical mixture. Already in 1970, Zeh, in a paper devoted to the question
of the measurement in QM, imagined a thought experiment with neutrons, and wrote
that “the statistical ensemble consisting of equal probabilities of neutrons with spin up and
spin down in the x direction cannot be distinguished by measurement from the analogous
ensemble having the spins parallel or antiparallel to the y direction. Both ensembles,
however, can be easily prepared by appropriate versions of the Stern–Gerlach experiment.
One is justified in describing both ensembles by the same density matrix as long as the
axiom of measurement is accepted. However, the density matrix formalism cannot be a
complete description of the ensemble, as the ensemble cannot be rederived from the density
matrix” [4]. We call this situation for neutrons proposed by Zeh the Zeh problem. Since
then, no consensus has emerged. Recently, for instance, a controversy appeared after a
2011 paper by Fratini and Hayrapetyan [16] claimed that they had established limits in
the statistical operator formalism, through considerations about variances, followed by a
paper from Bodor and Diosi [17] asserting that their analysis was irrelevant, without any
final agreement [18]. We recently showed [19] that the use of variances made in [16,18] was
wrong. The question from Zeh, therefore, still keeps its own interest.

Peres, in his 1995 book [20], when he writes that “the ρ matrix completely specifies all
the properties of a quantum ensemble” (p. 76), has first spoken of a “fundamental postulate”
(p. 75). In Section 2, considering the content of [14], we first confirm that von Neumann
proposed a postulate when introducing the density operator ρ. We point out that the
use of the ρ formalism, which certainly facilitates the calculations may, however, hide the
probabilistic content then manipulated. In Section 3, we come to the Zeh problem, with a
spin 1/2 and the two von Neumann mixed states considered by Zeh, described by the same
density operator. Using the density operator formalism, we calculate the mean value of the
sx component of the neutron spin, successively for the first and second mixtures, leading to
the same result. This is just the first moment of the Random Variable (RV) considered by



Information 2025, 16, 75 3 of 11

von Neumann in the presence of his statistical mixture. Disregarding the von Neumann
postulate, we then calculate the successive moments of that RV, and show that at least one
of these moments differs when comparing their values for the two mixtures considered by
Zeh, which allows us to differentiate between these two mixed states. Section 4 is devoted
to a discussion, before a conclusion in Section 5. In a short Appendix A, any reader wishing
to access the 1970 paper by Zeh is invited not to confuse the von Neumann postulate
considered in this paper and what Zeh, in his 1970 paper, called the measurement axiom.

2. von Neumann Statistical Mixture and Postulate
In the following, we keep the notations introduced in Section 1, which, e.g., imply that

any pure state is normed, and that the mean value of observable O in pure state | Ψ⟩ is ⟨Ψ |
Ô | Ψ⟩. In his 1932 book (see also his 1927 paper [15]), von Neumann used the language
of the wave function, and obviously not the ket formalism, introduced by Dirac seven
years later [12]. In this section, we consequently both respect his own writing and, when
commenting passages from [14], keep the notations introduced in Section 1.

In order to avoid any misunderstanding for a reader unfamiliar with the wave function
language, we first recall the definition of a (von Neumann) mixed state, or statistical mixture,
given by Cohen-Tannoudji et al. in [21] (p. 300): in such a situation, “the state of this system
may be either the state | ψ1⟩ with a probability p1, or the state | ψ2⟩ with a probability p2, etc.
Obviously: p1 + p2 + ... = ∑k pk = 1”. The experiment imagined by Zeh (see Section 3)
gives two instances of such mixtures. In Note 156 from [14], with his reference to von Mises,
von Neumann indicates that he uses what is now called the frequentist interpretation of
probability (see also, e.g., [22]).

If Σ is in pure state | Ψ⟩, and observable O is then measured, the result of the measure-
ment is random, and, at the beginning of the present section, it was recalled that the mean
value of the (result of the) measurement, obeying specific (so-called quantum) rules, is the
quantity ⟨Ψ | Ô | Ψ⟩. On page 296 of [14], von Neumann, in the presence of a statistical
mixture {| ψi⟩, pi}, introduces an expectation value “in the sense of the generally valid rules
of the calculus of probabilities”. Considering an observable O and that statistical mixture,
he introduces the following RV: the quantity ⟨ψi | Ô | ψi⟩, associated with pure state | ψi⟩
of the mixture. von Neumann then defines the following quantity, which is here denoted
as m1:

m1 = ∑
i

pi⟨ψi | Ô | ψi⟩. (1)

The latter quantity, called the mean value of (the result of the measurement of) O by
physicists, and its expectation by people from the field of probability, is presently written
as m1, since it is the first moment of the considered RV. More generally, the nth moment
of this RV, denoted as mn (we have adopted the notation used by Papoulis in his treatise
on probability; see page 109 of [23]), and not considered in von Neumann’s book, is the
following quantity:

mn = ∑
i

pi(⟨ψi | Ô | ψi⟩)n (2)

and the summation is over all the pure states of the statistical mixture.
Equation (2) should be commented on. Any user of QM knows well that when a

quantum system is in a pure state, the result of the measurement of an observable has
a random character. The bra–ket formalism and rules of calculation allow him, e.g., to
know the mean value of an observable while respecting the superposition principle and the
possible existence of so-called quantum interference terms. Faced with a (von Neumann)
statistical mixture, he uses the density operator formalism, without any explicit use of the
general laws of probability. Reading Equation (2), he should, however, notice the following:
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once the von Neumann postulate has been given up, Equation (2) is just respecting the fact
that von Neumann first defined a statistical mixture using the general concepts of probability
theory, and then took the quantity ⟨ψi | Ô | ψi⟩ (associated with a randomly drawn pure state | ψi⟩
of the mixture) as the random variable.

The difficulty in mentally manipulating mixed states may be subsumed through the
following observation: One applies the general laws of the probability theory to a quantum
quantity, ⟨ψi | Ô | ψi⟩. Anybody who has first accepted to give up the von Neumann
postulate, but then refuses the definition of the moments as expressed in Equation (2), must
successively deny the existence of the first moment (i.e., the mean value) of an observable
in the presence of the statistical mixture, then deny the concept of a density operator,
and finally deny the very existence of a statistical mixture as introduced by von Neumann,
whereas the thought experiment from Zeh does exist (think also of thermal equilibrium).

In the context of QIP, if somebody (the writer) prepares a statistical mixture {| ψi⟩,
pi} and gives access to that mixture to someone (the reader), without telling him which
the | ψi⟩ and their probabilities pi are, then, if the reader wants to identify this mixture,
his task is to determine the states of the mixture, i.e., the | ψi⟩, and their probabilities, pi.
The measurement of the ⟨ψi|Ô| ψi⟩ for some O is just a tool for this work.

The introduction of the density operator ρ = ∑i pi | ψi⟩⟨ψi |, a linear operator acting
on the elements of E attached to Σ, allows one to write m1 as a Trace, a quantity which is
independent of the chosen basis: m1 = TrρÔ.

When Peres speaks of a fundamental postulate (and we will speak of the von Neumann
postulate), he is considering a statistical mixture, and the fact that von Neumann, introducing
the concept of a statistical mixture, then adds that the density operator expresses the
whole content of that statistical mixture. One has to refer here to the beginning of Ch.
IV in [14]: von Neumann, having considered the probability content attached to a pure
state, adds (pp. 295–296) that “the statistical character may become even more prominent,
if we do not even know what state is actually present—for example when several states
ϕ1, ϕ2, ... with the respective probabilities w1, w2, ...(w1 ≥ 0, w2 ≥ 0, ...w1 + w2 + ... = 1)
constitute the description” of the quantum system of interest, which he denotes as S. He
then introduces the expectation value of the observable O in the mixed state, the quantity
Σiwi⟨ϕi | Ô | ϕi⟩, writing it as a Trace: Tr{ρÔ} (where the density operator is denoted as
U in [14]). And, on page 296, having just introduced the density operator and that Trace,
and concerning this operator, von Neumann adds: “Hence, it characterizes the mixture of
states just described completely, with respect to its statistical properties”. Consequently,
given a system Σ in a statistical mixture described by ρ, and Ô attached to an observable O
of ∑, the assertion that everything should be contained in the expression E{Ô} = Tr{ρÔ}
and, hence, in ρ expresses a postulate, as stressed by Peres. However, this fact is not
always identified, a result of von Neumann’s authority. A significant instance in the field
of quantum information is found in the already-cited book by Nielsen and Chuang, in the
version [3] published ten years after the appearance of the book from Peres: its authors, on
page 98, consider a quantum system “in one of a number of states | ψi⟩, where i is an index,
with respective probabilities pi”. But on page 97, without any proof or at least reference,
they have claimed that “the density operator” formalism “is mathematically equivalent to
the state vector approach”.

The density operator ρ = Σi pi | φi⟩⟨φi | is Hermitian, and is positive-definite (all of
its eigenvalues are non-negative; see, e.g., [24]). The eigenvalue spectrum of a Hermitian
positive-definite operator with a finite trace is entirely discrete, a result of Hilbert space
theory ([24], p. 335). When an isolated system is in a statistical mixture, ρ obeys the
Liouville–von Neumann equation. In the special case when Σ is in a pure state | Ψ⟩, ρ is a
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projector: ρ =| Ψ⟩⟨Ψ |. The relation Trρ2 ≤ Trρ is obeyed by ρ, the equality being verified
iff ρ is a projector, i.e., if and only if ρ describes a pure state. ρ2 = ρ iff ρ is a projector.

3. The Zeh Problem and the Use of Higher-Order Moments
The problem identified by Zeh through his thought experiment manipulating neutrons

was presented in Section 1. Zeh introduces Stern–Gerlach (SG) equipment. In their 1922
experiment, Stern and Gerlach used silver atoms placed in a furnace heated to a high
temperature, leaving the furnace through a hole and propagating in a straight line. They
then crossed an inhomogeneous magnetic field and condensed on a plate (see [21], p. 394).
As they have no electric charge, they were not submitted to the Laplace force, but they
have an electronic permanent magnetic moment. In a classical approach, one should then
observe a single spot, whereas two spots were observed, which could only be explained, later
on, as the result of a quantum behavior: a silver atom has a spin 1/2. Zeh considers the
random emission of neutrons by a neutron source. It is well-established that a neutron
has a nuclear spin 1/2, here denoted as −→s (it is usually written as

−→
I , with the symbol −→s

being kept for spins with electronic origin) and a magnetic moment µ = −1.913047 µN

(µN : nuclear magneton) proportional to its spin. The force acting on the magnetic moment
of the successive neutrons deflects them into two well-identified beams, with one beam
corresponding to the spin quantum state | +z⟩ and one beam corresponding to the spin
quantum state | −z⟩. The letter z is reminiscent of the fact that the field gradient and the
force on the spin were directed along z in Figure 1, on page 395 of [21]. + indicates that the
state is an eigenstate of sz, for the eigenvalue +1/2.

As the neutrons are emitted one by one (no interaction between them), interact only
with the magnetic field before being collected on the plate, and are not each identified when
leaving the furnace, but are only counted when arriving on the plate, with the same total
number N/2 in the two packets, one may say (strictly speaking, in the limit N −→ ∞) that
one has prepared the following (von Neumann) statistical mixture: | +z⟩, 1

2 , and | −z⟩, 1
2 .

This mixture is the one compatible with the SG equipment in reference [21]. Following up
the question from Zeh in [4], we now consider a spin 1/2, and successively its state in

Mixture 1: | +x⟩, 1/2 and | −x⟩, 1/2 (3)

Mixture 2: | +y⟩, 1/2 and | −y⟩, 1/2 (4)

with | +x⟩ and | −x⟩ being the eigenkets of sx for the values +1/2 and −1/2, respectively,
and | +y⟩ and | −y⟩ those of sy for the values +1/2 and −1/2, respectively.

The density operator associated with both mixtures is ρ = I/2 (I: identity operator in
the state space of the spin). We decide to forget the existence of the von Neumann postulate
(as called by Peres), which suggests that both mixtures are the same, and which therefore
would discourage us from undertaking what follows. We choose to use, instead of the
ρ formalism, the very definition of these mixtures. And, in order to try and clarify the
Zeh problem, keeping the RV used by von Neumann (see Section 2) in the presence of
a statistical mixture, we decide to use the moment mn of an arbitrary order introduced
in Section 2, and not only the mean value, and then, in both mixtures, measure the sx

component of the neutron spin.
Just before the plate, at the level of each arriving beam, we therefore introduce equip-

ment able to measure the sx component of each neutron, and to store the result. von
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Neumann wrote that the mean value of the result of this measurement, written in the Dirac
formalism, is

1
2

⟨ +x | sx | +x⟩+ 1
2
⟨ − x | sx | −x⟩ for mixture 1 (5)

1
2

⟨ +y | sx | +y⟩+ 1
2
⟨ − y | sx | −y⟩ for mixture 2. (6)

As detailed in Section 2, after Equation (2), for any value of the non-negative integer
n, when measuring sx, the corresponding nth moment, which we will note mn,sx , has the
following value for mixture 1:

mixture 1: mn,sx =
1
2
(⟨+ x | sx | +x⟩)n +

1
2
(⟨ − x | sx | −x⟩)n

=
1
2
(

1
2
)n +

1
2
(−1

2
)n. (7)

Therefore, in statistical mixture 1, any odd moment mn,sx has a value equal to 0, and any even
moment is equal to 1/2n.

We now come to mixture 2. In practice, one uses a large number of independent
neutron spins. Due to the just-explained behavior of the Stern–Gerlach apparatus (and here
transposed to a field along direction y, hence with two beams, associated with states | +y⟩
and | −y⟩, respectively), one separately accesses two well-identified subsets of neutron
spins; respectively, those in state | +y⟩ and those in state | −y⟩. One can then separately
obtain estimates of ⟨+ y | sx | +y⟩ and of ⟨ − y | sx | −y⟩ and then derive an estimate of
the nth moment (of the von Neumann RV, which we have decided to keep), mn,sx , which
has the following value:

mixture 2: mn,sx =
1
2
(⟨+ y | sx | +y⟩)n +

1
2
(⟨ − y | sx | −y⟩)n. (8)

We recall the developments of | +y⟩ and | −y⟩ within the standard basis,

| +y⟩ = | +⟩+ i | −⟩√
2

and | −y⟩ = | +⟩ − i | −⟩√
2

.

The quantity ⟨+ y | sx | +y⟩ is equal to zero, as the diagonal quantities ⟨+ | sx | +⟩
and ⟨− | sx | −⟩ are both equal to 0, and the sum of the interference terms is equal to zero.
The same result is obtained for ⟨ − y | sx | −y⟩.

Therefore, in statistical mixture 2, any moment mn,sx is equal to 0.
We have therefore established that each even-order moment of the RV introduced by von

Neumann for the (result of the) measurement of sx possesses different values in Zeh mixtures 1 and
2, a result that allows one to say that the two Zeh mixtures should be distinguished.

One guesses that if, in contrast, for the same mixtures being considered, one measures
sz instead of sx, and then follows the same approach, the difference found for the moments
mn,sx should disappear, since the choice of sz introduces a new symmetry, and an inability
for the von Neumann RV to distinguish between the two mixtures through the use of the
moments of sz. We choose to examine this question explicitly. One first considers the values
of the moments mn,sz when the spin is in mixture 1. The developments of | +x⟩ and | −x⟩
in the standard basis are, respectively,

| +x⟩ = | +⟩+ | −⟩√
2

and | −x⟩ = | +⟩− | −⟩√
2

.



Information 2025, 16, 75 7 of 11

The value of ⟨ + x | sz | +x⟩, calculated through a development of | +x⟩ in the
standard basis, is obtained as the sum of its interference terms, each equal to zero, and of
the diagonal terms, with the sum of their contributions being equal to 0. Therefore, ⟨+ x |
sz | +x⟩ = 0. For the same reason, ⟨ − x | sz | −x⟩ = 0. Therefore, any moment mn,sz

in mixture 1 now has a value equal to 0. Following the same approach, one obtains the
same result for mixture 2. As expected, considering measurements of sz and the moments
of the associated von Neumann RV, one is unable to establish any difference between
Zeh mixtures 1 and 2. This result, however, does not change the previous conclusion,
which corresponds to a sufficient condition: considering the two mixtures introduced
by Zeh, possessing the same density operator, we first chose sx as the observable to be
measured. The mean value of the result when the spin is in a pure state | φ⟩ is ⟨φ | sx | φ⟩.
Then, considering the two Zeh mixtures, we calculated m1,sx , the mean value of the result
of the measurement, following the method introduced by von Neumann, which can be
interpreted as the calculation of the first moment of his RV of interest. We then calculated
the value of any moment mn,sx of that RV for both mixtures, which showed that at least one
moment, and even all the even-order moments, have different values in mixtures 1 and 2,
which allows one to establish a distinction between Zeh mixtures 1 and 2.

Before ending this section, one imagines someone who, in the presence of the first Zeh
mixture, first decides to calculate ⟨+ x | sn

x | +x⟩ (n: integer where n ≥ 1), i.e., the mean
value of sn

x in the pure state | +x⟩, and then calculates

1
2
⟨+ x | sn

x | +x⟩+ 1
2
⟨ − x | sn

x | −x⟩ =
[

1
2n if n is even
0 if n is odd

]
. (9)

He then performs the same calculation for the second Zeh mixture, and obtains an
identical result. This just means that, faced with a von Neumann statistical mixture, instead
of keeping the RV introduced by von Neumann and using the collection of its moments
mn,sx , he focused on each pure state, considering sn

x instead of sx, and first its mean value
in the chosen pure state and, secondly, its mean value in the mixture, an approach focused
on mean values in a given pure state, which introduces no direct link with the content of a
given mixed state, and which, therefore, had no reason for why it should be successful.

4. Discussion
In this paper, the fact that the mean value of an observable O in a pure state | Ψ⟩ is

⟨Ψ | Ô | Ψ⟩ is accepted, and its meaning is not discussed. As stressed in the introduction,
the subject of this paper, far more modest, starting once the existence of mixed states has
been accepted is, however, still under debate (cf. Section 1).

von Neumann first accepted the existence of mixed states, using the usual probability
concept, through its so-called frequency interpretation (cf. Section 2). When the state of the
system of interest is described by a mixed state, von Neumann then decided to calculate
the expectation value of an observable attached to the system, “in the sense of the generally
valid rules of the calculus of probabilities” (page 296 of [14]). This led him to introduce a
density operator ρ. Then, instead of considering that ρ is a tool useful for the calculation of
a mean value, truly an answer to an important question, he tried to interpret ρ as describing
the state of the system; therefore, giving up his first definition of the situation through his
original definition of a mixed state and, finally, redefining the state of the system through
its associated density operator ρ.

In his 1970 paper, Zeh focused on the spin of neutrons and Stern–Gerlach equipment,
and on two statistical mixtures chosen so that both mixtures have the same density operator,
ρ = I/2. Zeh observed that the description with ρ should not tell the whole story for these
mixtures, since it forgets the initial preparation process of these mixtures. We have (1)



Information 2025, 16, 75 8 of 11

decided to ignore the von Neumann postulate (cf. Section 3); and (2) kept the RV used
by von Neumann, considered a well-chosen observable (sx, not sz), and calculated not
only its mean (or expectation) value m1,sx , but the collection of its moments mn,sx . We
then established that the even moments have different values in mixture 1 and mixture
2. This result allows us to say that, contrary to what is claimed when accepting the von
Neumann postulate, the two Zeh mixtures should be distinguished. Their associated
density operator, certainly an important tool, does not contain the whole information
contained in the mixture {| φi⟩, pi}, which confirms an intuition from Zeh.

In our discussion of the Zeh problem, we did use the fact that, when ∑ is in the pure
(normed) state | Ψ⟩, the mean value of an observable O is the quantity ⟨Ψ | Ô | Ψ⟩. What
we did not use is the von Neumann postulate itself (as called by Peres), and its consequence
that ρ should contain all the information contained in the definition of a statistical mixture
as the {| φi⟩, pi} collection. This giving up of the von Neumann postulate does not affect the
use of ρ and its importance, e.g., in quantum statistical mechanics. von Neumann proposed
the quantity S = −kB⟨lnρ⟩ = −kBTr{ρlnρ} (kB: Boltzmann constant) as a definition of the
entropy and, similarly, this is not affected by the giving up of the von Neumann postulate.
And, the use of the von Neumann entropy, moreover, helps us to identify a consequence of
the introduction of the von Neumann postulate. In [14], when examining the question of
the quantum analog of the classical entropy, von Neumann first established that all pure
states have the same entropy, which he took as the origin of entropy. In an interpretation
of the entropy as a measure of disorder, this entropic behavior is understood as the fact
that all pure states present the same quantity of disorder. We have shown that the two
neutron mixtures introduced by Zeh should be distinguished and, since they do possess
the same density operator ρ, they have the same value of their entropy and, therefore, the
same degree of disorder. Introducing the von Neumann postulate and, therefore, claiming
that they are the same mixture introduces a confusion between degree of disorder and
true existence.

When manipulating mixed states in numerical simulations in the context of QIP,
the use of moments with n > 1 may be limited by the efficiency of the computation
software and/or the quantity of available data. In the context of an experiment, if, e.g., a
system at thermal equilibrium is described by the quantum version of the Gibbs law, ρ

∝ exp(−H/kT), it is not presently suggested to give up the use of ρ. It is just suggested
to accept the idea that when manipulating ρ, one manipulates the mean value, or first
moment, of the RV introduced by von Neumann, i.e., to answer a specific question asked
by Zeh, when he stressed that the ρ tool was unable to describe the difference between the
distinct mixtures he had prepared.

It is important to identify the reason that led von Neumann to introduce his postulate.
In the preface of [14], von Neumann wrote that, at the time of its writing, “the relation of
quantum mechanics to statistics and to the classical statistical mechanics” was “of special
importance”. And, 25 years later, Fano [25] stressed that “the name density matrix itself
relates to the correspondence between ρ and the distribution function ρ(p, q) in the phase
space of classical statistical mechanics”, and noted that, in that time interval, “States with
less than maximum information, represented by density matrices ρ, have been considered
primarily in statistical mechanics and their discussion has been influenced by the historical
background in this field”. In the previous development of classical statistical mechanics,
Gibbs had introduced a probability density (within the phase space), denoted as ρ(p, q),
used for the calculations of mean values. In contrast, what corresponds to what is now
called higher-order moments (see, e.g., their use in [5]) had not been explicitly considered in
physics. Therefore, when von Neumann introduced his postulate, this he could implicitly
consider not to be responsible for a loss of information, as compared with that contained
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in the definition of a statistical mixture through the explicit consideration of the {|φi⟩,
pi} collection. And, more importantly, in the context of a building of quantum statistical
mechanics, the indiscernability of identical particles had already been identified, which
led to distinguishing between their mathematical Hilbert space and a subspace built from
either symmetrical states in the exchange of two particles (bosons) or antisymmetrical
states (fermions) and, moreover, to build the quantum Maxwell–Boltzmann statistics for
independent but distinguishable particles, e.g., electron spins diluted in ionic solids (cf.
more generally Chapter X of [26]).

Within a given theory, postulates generally play an essential function in its building,
i.e., their suppression would threaten the whole building. The situation is quite different
with the present von Neumann postulate. In this paper, it was explained that its elimination
does not affect the use of the density operator. The postulate has to just be replaced by
acknowledging the fact that the density operator is introduced for the calculation of mean
values, and, if desired and possible in the considered context, by using the information
content present in a statistical mixture {|φi⟩, pi}, but not in its density operator.

5. Conclusions
In his 1970 paper, Zeh considered neutron spins prepared in two different statistical

mixtures described by the same density operator ρ. Zeh stressed that ρ could not tell the
whole story, as it ignored the result of the preparation step. This situation, which we call
the Zeh problem, arises as a consequence of a postulate introduced by von Neumann in his
treatment of statistical mixtures, and identified by Peres. That postulate says that, in the
presence of a statistical mixture {| φi⟩, pi}, because the mean value of an observable O
is ∑i pi⟨φi | Ô | φi⟩, the whole information contained in the mixture is also contained
in its associated density operator ρ = ∑i pi | φi⟩⟨φi |. The contents of the 1932 book by
von Neumann indicates that its author, in the presence of a statistical mixture {| φi⟩, pi},
when interested in an observable O, chooses as the RV of interest the mean value of the
observable O when the system is in a given pure state. He then focuses on the expectation
value of that RV in the considered mixed state, i.e., its first moment. Disregarding that von
Neumann postulate, we have calculated the value of the different moments mn,sx of the
RV chosen by von Neumann, for the sx spin component, for both Zeh mixtures, and thus
established that at least one of these moments does not have the same value in both Zeh
mixtures. It was then shown that the two Zeh mixtures have the same degree of order.
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Appendix A. For a Reader of the 1970 Paper by Zeh
Any reader of the 1970 paper by Zeh should avoid confusion between the following:

- What Peres called a fundamental postulate [20], a postulate which was given up in the
present paper,

- What Zeh called the measurement axiom, which stipulates that when Σ is in a pure
state, namely | Ψ⟩, then if O is measured [21,24]: (A) the result is necessarily one of the
eigenvalues of Ô; (B) | Ψ⟩ being developed over the eigenstates of Ô, | Ψ⟩ = Σici | φi⟩
(in the simple case with no degeneracy), the probability of obtaining the eigenvalue
λi associated with eigenket | φi⟩ is | ci |2; and (C) if the result of the measurement is
λi, then, at the end of the measurement, Σ is in the pure state | φi⟩. Speaking of that
axiom, Zeh wrote that it leads to a circular argument. From Section 1, we stressed that
the question of the meaning of this measurement axiom, as called by Zeh, which is
a part of the discussions about the foundations of QM, is strictly outside the scope
in this paper, which accepts (A) and (B) of this measurement axiom, and does not
address the question of the relevance of (C).

For that reason, we have chosen not to even cite the passages from the canonical von
Neumann 1932 book where this major question is discussed. Just in contrast, we focused
on its passages where von Neumann introduces the concept of a mixed state.

References
1. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423+623–656. [CrossRef]
2. Feynman, R.P. Feynman Lectures on Computation; Perseus Publishing: Berkeley, CA, USA, 1996.
3. Nielsen, M.A.; Chuang, I.L. Quantum Information and Quantum Computation; Eighth Printing; Cambridge University Press:

Cambridge, UK, 2005.
4. Zeh, H.D. On the Interpretation of Measurement in Quantum Theory. Found. Phys. 1970, 1, 69–76. [CrossRef]
5. Wootters, W.K. Random quantum states. Found. Phys. 1990, 20, 1365–1378. [CrossRef]
6. Brody, D.C.; Hughston, L.P. Geometrization of statistical mechanics. Proc. R. Soc. Lond. 1999, A 455, 1683–1715. [CrossRef]
7. Deville, Y.; Deville, A. Quantum process tomography with unknown single-preparation input states: Concepts and application to

the qubit pair with internal exchange coupling. Phys. Rev. A 2020, 101, 042332. [CrossRef]
8. Deville, Y.; Deville, A. Exploiting the higher-order statistics of random-coefficient pure states for quantum information processing.

Quantum Inf. Process. 2023, 22, 216. [CrossRef]
9. Weinberg, S. Lectures on Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2013.
10. Ballentine, L. The Statistical Interpretation of Quantum Mechanics. Rev. Mod. Phys. 1970, 42, 358–381. [CrossRef]
11. Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995; Volume 1.
12. Dirac, P.A.M. A new notation for quantum mechanics. Math. Proc. Camb. Philos. Soc. 1939, 35, 416–418. [CrossRef]
13. Freire, O., Jr. The Quantum Dissidents. Rebuilding the Foundations of Quantum Mechanics (1950–1990); Springer: Berlin, Germany, 2015.
14. von Neumann, J. Mathematische Grundlagen der Quantenmechanik; Springer: Berlin, Germany, 1932; For English translation see

Mathematical Foundations of Quantum Mechanics. Princeton University Press: Princeton, NJ, USA, 1955.
15. von Neumann, J. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nachr. Ges. Wiss. Göttingen 1927, 1927, 245–272.
16. Fratini, F.; Hayrapetyan, A.G. Underlining some limitations of the statistical formalism in quantum mechanics. Phys. Scr. 2011,

84, 035008. [CrossRef]
17. Bodor, A.; Di

,
osi, L. Comment on “Underlining some limitations of the statistical formalism in quantum mechanics” by Fratini

and Hayrapetyan. arXiv 2012, arXiv:1110.4549v1.
18. Fratini, F.; Hayrapetyan, A.G. Underlining some limitations of the statistical formalism in quantum mechanics: Reply to the

Comment of Bodor and Di
,
osi. arXiv 2012, arXiv:1204.1071v1.

19. Deville, A.; Deville, Y. Quantum information: Systems, their states, and the use of variances. Information 2024, 15, 247. [CrossRef]
20. Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995.
21. Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics, 2nd ed.; English Version; Wiley: Weinheim, Germany, 2020; Volume 1.
22. Stacey, B.C. Von Neumann was not a Quantum Bayesian. Phil. Trans. R. Soc. A 2016, 374, 150235. [CrossRef]
23. Papoulis, A. Probability, Random Variables and Stochastic Processes, 3rd ed.; Mc Graw Hill: New York, NY, USA, 1991.
24. Messiah, A. Quantum Mechanics, English Version; North-Holland: Amsterdam, The Netherlands, 1961; Volume 1.

http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/BF00708656
http://dx.doi.org/10.1007/BF01883491
http://dx.doi.org/10.1098/rspa.1999.0376
http://dx.doi.org/10.1103/PhysRevA.101.042332
http://dx.doi.org/10.1007/s11128-023-03970-x
http://dx.doi.org/10.1103/RevModPhys.42.358
http://dx.doi.org/10.1017/S0305004100021162
http://dx.doi.org/10.1088/0031-8949/84/03/035008
http://dx.doi.org/10.3390/info15050247
http://dx.doi.org/10.1098/rsta.2015.0235


Information 2025, 16, 75 11 of 11

25. Fano, U. Description of States in Quantum Mechanics by Density and Operator Techniques. Rev. Mod. Phys. 1957, 29, 74–93.
[CrossRef]

26. Tolman, R.C. The Principles of Statistical Mechanics; Oxford University Press: Oxford, UK, 1938.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/RevModPhys.29.74

	Introduction
	von Neumann Statistical Mixture and Postulate
	The Zeh Problem and the Use of Higher-Order Moments
	Discussion
	Conclusions
	For a Reader of the 1970 Paper by Zeh
	References

