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Abstract—In this work, we propose algorithms to perform
Blind Source Separation (BSS) for the linear-quadratic mixing
model. The linear-quadratic model is less studied in the literature
than the linear one. In this paper, we propose original methods
that are based on Non-negative Matrix Factorization (NMF).
This class of methods is well suited to many applications where
the data are non-negative. We are here particularly interested
in spectral unmixing (extracting reflectance spectra of materials
present in pixels and associated abundance fractions) for urban
hyperspectral images. The originality of our work is that we
developed extensions of NMF, which is initially suited to the
linear model, for the linear-quadratic model. The proposed algo-
rithms are tested with simulated hyperspectral images using real
reflectance spectra and the obtained results are very satisfactory.

Index Terms—blind source separation, linear-quadratic mixing
model, non-negative matrix factorization, hyperspectral images,
spectral unmixing.

I. INTRODUCTION

MANY applications involve observed signals that are

mixtures of original signals. Those mixtures generally

occur during the signal propagation to the sensors. Signals

received by the sensors are thus composed of the original sig-

nals, called “source” signals. Blind Source Separation (BSS)

[1], [2] aims at retrieving the “source” signals, with limited

prior information about the sources and the mixing model.

Generally the class of the mixing model (linear, post-linear,

linear-quadratic...) is known but not its parameters.

Most existing BSS methods rely on the linear instantaneous

mixing model, which assumes that the observed signals (mix-

tures) are linear combinations of the source signals. There

are four principal classes of methods for the linear model,

depending on the assumptions made on the sources and/or

mixing parameters. The first class, and the oldest one, is Inde-

pendent Component Analysis (ICA) [1]–[6]. It corresponds to

methods which are based on the statistical independence of the

sources, i.e. which can be used only if this condition is met by

the sources. There are then the methods based on the “joint”

sparsity properties of the sources, i.e. often on the possibility

of isolating each source in a certain zone of the signal. This

class is often called Sparse Component Analysis (SCA) [1],

[7]–[9]. The third class consists of methods based on Non-

negative Matrix Factorization (NMF) which needs the non-

negativity of the observations, mixing coefficients and sources

[10]–[12]. The last class corresponds to Bayesian methods,
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that can use different prior information about the observations,

sources or mixing coefficients and usually need to associate

probability laws with the involved components, so they need

to have enough prior information to do it [13], [14].

In this article, we are especially interested in the problem

of unmixing hyperspectral images, i.e. extracting reflectance

spectra1 of materials present in an image. Indeed, the resolu-

tion of hyperspectral images often results in pixels that are not

homogeneous but correspond to a ground zone with different

materials. The pixel spectra thus result from the contributions

of those different material reflectance spectra. In the reflective

domain (wavelengths from 0.4 to 2.5 µm), a linear mixing

model of reflectances is generally used. In this model, if the

reflectance spectra are considered as the “sources”, the mixing

coefficients thus correspond to the proportions of the materials

in each pixel (see e.g [15]–[17]). Such a model is essentially

valid when the scene is flat.

In this paper, we aim at unmixing reflectances in urban

images and the involved model is then linear-quadratic. This

is due to the 3D structures that induce multiple scattering of

light between surfaces in urban environments [18], [19].

There exist much less BSS methods for the linear-quadratic

model than for the linear one. Most approaches are based

on ICA [20]–[23]. But there are also some methods using

sparsity as [24], [25]. Some Bayesian approaches have also

been proposed, as [26], but using the statistical independence

of sources as ICA methods. Existing BSS approaches for the

linear-quadratic model, to our knowledge, are thus based at

least on sparsity or statistical independence. We stress this

point since, in our studied problem of unmixing urban images,

we know that the spectra are often very correlated (which ex-

cludes methods using the statistical independence assumption)

and that the sparsity can hardly be used. Concerning sparsity,

on the one hand, this is due to the fact that the large variability

in urban environment makes the use of methods exploiting the

spatial “joint” sparsity difficult. On the other hand, we also

know that our spectra are not sparse.

Considering all this, we chose to take advantage of the non-

negativity of observations, sources and mixing coefficients.

In this paper, we propose non-negativity-based BSS methods

dedicated to the linear-quadratic model, also applicable when

sources are correlated. Our approach consists in extending

the principles of several NMF methods, initially intended for

linear models, to our non-linear model.

1Each material is characterized by a reflectance spectrum which corresponds
to the proportion of light power reflected by this material, for each wavelength
(values between 0 and 1).
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In Section II, we first present the considered mixing model

and the associated constraints. We then show how this model

is adapted to the use of NMF and present the criterion that we

aim to minimise. In Section III, the first approach using NMF

for our problem is presented. Section IV describes our second

proposed NMF method suited to the linear-quadratic model,

based on a projected gradient descent algorithm. In Section

V, this gradient method is extended with a Newton update

for the mixing matrix. Section VI then presents our fourth

proposed method, which is a multiplicative NMF algorithm.

All these methods are then compared and evaluated in Section

VII, where results obtained with simulated images of real

reflectance spectra are presented.

II. PROBLEM STATEMENT AND HOW TO EXTEND NMF

A. Linear-Quadratic Model

In this work, we aim at extracting the material spectra

composing an urban hyperspectral image. In this case, each

pixel spectrum is a linear-quadratic mixture of reflectance

spectra (sources) of different materials. The justification and

validation of this mixing model as well as the constraints

related to the mixing coefficients have been presented in [18],

[19]. The spectrum of a given pixel i (i = 1...P , where P is

the number of pixels) thus reads:

xi =

M∑

j=1

aj(i)sj +

M∑

j=1

M∑

ℓ=j

aj,ℓ(i)sj ⊙ sℓ , (1)

with





sj ≥ 0, j = 1...M∑M
j=1 aj(i) = 1

aj(i) ≥ 0, j = 1...M
0 ≤ aj,ℓ(i) ≤ 0.5, 1 ≤ j ≤ ℓ ≤M

where

• xi: observed signal i, which is the reflectance spectrum

of pixel i.
• sj : source j, which is the reflectance spectrum of material

j (⊙ corresponds to an element-wise multiplication).

• xi and sj : column vectors of size L, with L the number

of spectral bands in the image.

• M : number of materials present in the image.

• aj(i) and aj,ℓ(i): mixing coefficients respectively corre-

sponding to the linear and quadratic parts of the model.

We aim at performing blind source separation, i.e. at esti-

mating both sources (spectra) and mixing coefficients in an

unsupervised way. Note that our final goal is to accurately

estimate the linear part of the model since it corresponds to

the real ground pixel composition, whereas quadratic terms

correspond to reflections [18], [19]. Taking into account the

quadratic part only aims at improving the estimation of the

linear part.

As in many BSS methods, we assume the number of

materials M is known.

B. Non-negative Matrix Factorization (NMF)

Principle of NMF: Given a non-negative matrix V , Non-

negative Matrix Factorization consists in finding non-negative

matrix factors W and H that verify V ≈WH .

Different NMF methods have been proposed in the literature

for linear mixtures [10], based on different criteria, without

or with constraints, and several updating rules for the matrix

factors (NMF algorithms are iterative) have been used [10],

[12], [27]–[29].

C. Rewriting the linear-quadratic model for NMF

To use NMF with the above linear-quadratic model, we first

write the observed data as the product of two matrices. We thus

write the model (1) in matrix form as follows (for P pixels,

P ≥ 2):

X = AS = AaSa +AbSb (2)

with:

• X = [x1 · · ·xP ]
T

.

• A =
[
Aa Ab

]
: mixing matrix,

with Aa =




a1(1) · · · aM (1)
...

...

a1(P ) · · · aM (P )




and Ab =




a1,1(1) a1,2(1) · · · aM,M (1)
...

...

a1,1(P ) a1,2(P ) · · · aM,M (P )


.

• S =

[
Sa

Sb

]
: source matrix,

with Sa =
[
s1 · · · sM

]T

and Sb =
[
s1 ⊙ s1 s1 ⊙ s2 · · · sM ⊙ sM

]T
.

The way we wrote our model in Eq. (2), first introduced in

[30] in the case of only two sources, permits us to extend the

principle of NMF methods, which are originally dedicated to

linear models, to the case of linear-quadratic models.

The criterion we aim at minimising is:

J =
1

2
‖X −AS‖2F =

1

2
‖X −AaSa −AbSb‖

2
F . (3)

We here chose the classical criterion of Frobenius norm for

simplicity reasons and propose four algorithms to optimise it.

The algorithm initialisation is discussed in Section VII-B.

III. FIRST ALGORITHM: EXTENSION OF MULTIPLICATIVE

LINEAR NMF

Our first approach to minimise the criterion (3) is to apply

a linear NMF method from the literature without using the

structure of matrix S, but with an extended number of sources:

the quadratic terms (terms of matrix Sb) are considered

as additional “pseudo-sources”, without taking into account

the link between these “pseudo-sources” and the real ones

(those of matrix Sa). We chose to apply Lee and Seung’s

multiplicative algorithm [11] to our problem.

Our proposed extended algorithm will here be denoted

Linear ext (“ext” for “extended”). It is iterative, and the

matrix updates read as follows for a given iteration:

Linear ext algorithm

1) Update of matrix S:

S ← S ⊙ ((AT
X)⊘ (AT

AS + ε)).
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2) Update of matrix A:

A← A⊙ ((XS
T )⊘ (ASS

T + ε)).

3) Constraints on matrix A:

[a1(i) · · ·aM (i)] ← [a1(i) · · · aM (i)] /

M∑

j=1

aj(i)

aj,ℓ(i) ← min {aj,ℓ(i), 0.5} .

The notation ⊘ corresponds to element-wise division. The

term ε in the denominator is chosen to be very small and

positive and aims at avoiding possible divisions by zero.

Step 3 in the algorithm aims at satisfying the constraints

related to the mixing coefficients in (1). This step is not present

in the original Lee and Seung method [11] and was not used

in our previous work [18] since we had not yet performed

the physical analysis [19] which proved the validity of these

constraints (especially the sum-to-one condition).

IV. SECOND ALGORITHM: GRADIENT LQ NMF

We now propose an NMF algorithm really adapted to the

linear-quadratic (LQ) model: this algorithm takes into account

that the quadratic terms are products of the real sources present

in the mixing model. For the sake of simplicity, we here

start with a projected gradient descent algorithm with a fixed

learning rate. The principle is to take into account the quadratic

terms in the gradient calculation corresponding to the criterion

(3). The algorithm proposed in this section has already been

presented in our conference paper [30], but only in the case of

2 sources. We here extend it to a general case of M sources

and add the new constraints related to the mixing coefficients

(essentially the sum-to-one condition).

A. Gradient calculations

Our mixing model does not induce any modifications in

gradient calculation with respect to the mixing matrix, com-

pared to the linear case [10]. Indeed, our criterion has the

same dependence with respect to the mixing matrix A as in

the linear case. Writing the criterion (3) as follows

J =
1

2
Tr((X −AS)(X −AS)T )

=
1

2
Tr(XX

T −XS
T
A

T −ASX
T +ASS

T
A

T )

permits us to easily derive the gradient expression (using the

properties in [31]):

∂J

∂A
=

1

2
(−XS

T −XS
T + 2ASS

T )

= −(X −AS)ST . (4)

However, the gradient calculation with respect to the sources

changes as compared with the linear case, since each source

here also yields quadratic terms in the mixing model. To

perform this calculation, we write our criterion J in (3) in

scalar form:

J =
1

2

∑

i,n

[Xin−
M∑

j=1

aj(i)Sjn−
M∑

j=1

M∑

ℓ=j

aj,ℓ(i)SjnSℓn]
2 (5)

where n is the index for the spectra components, i.e. the wave-

lengths. Sjn is element (j, n) of matrix S, with j = 1..M ;

more precisely, the terms Sjn are the elements of matrix Sa,

since they correspond to the real sources.

Note that a given pair of sources {j, ℓ} = {ℓ, j} only

appears once in our model (1) and in the following equations,

so the corresponding coefficient is hereafter denoted equally

as aj,ℓ or aℓ,j .

Using (5), the elements of the gradient of J with respect to

source sp can be computed as follows:

∂J

∂Spn

=

P∑

i=1


Xin −

M∑

j=1

aj(i)Sjn −
M∑

j=1

M∑

ℓ=j

aj,ℓ(i)SjnSℓn




×


−ap(i)−

M∑

j=1,j 6=p

aj,p(i)Sjn − 2ap,p(i)Spn


 (6)

= −
P∑

i=1

ap(i)


Xin −

M∑

j=1

aj(i)Sjn −
M∑

j=1

M∑

ℓ=j

aj,ℓ(i)SjnSℓn




−
M∑

j=1,j 6=p


Sjn

P∑

i=1

aj,p(i)


Xin −

M∑

j=1

aj(i)Sjn

−
M∑

j=1

M∑

ℓ=j

aj,ℓ(i)SjnSℓn






−2Spn

P∑

i=1

ap,p(i)


Xin −

M∑

j=1

aj(i)Sjn

−
M∑

j=1

M∑

ℓ=j

aj,ℓ(i)SjnSℓn


 . (7)

Since the Sjn correspond to the elements of matrix Sa they

can also be denoted [Sa]jn. Replacing the scalar expressions

in (7) by matrix products, we obtain the following matrix form:
[
∂J

∂Sa

]

pn

= −[AT
a (X −AS)]pn

−
M∑

j=1,j 6=p

[Sa]jn × [AT
b (X −AS)](jp)n

−2[Sa]pn × [AT
b (X −AS)](pp)n (8)

where (jp) is the index of the column of matrix Ab corre-

sponding to coefficients ajp(i). It is, of course, also the index

of the row containing sj ⊙ sp in matrix Sb (it is e.g. equal to

one for j = p = 1).

The algorithm proposed here supposes that we impose the

quadratic term positions in matrix Sb. Indeed, these terms are

computed using the M sources of the linear part, as we will

show in Section IV-B.

Note that the calculation here is presented in a general case

of a linear-quadratic model. If one faces a bilinear model,

i.e. without squared terms, the presented result can easily be

adapted by removing the last term (3rd line) in expression (8),

which is the one due to the squared terms.
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B. Update rules

Now applying the gradient descent algorithm with a fixed

learning rate [10], we obtain the following update rule for the

mixing matrix (for the (m+ 1)th iteration):

A
(m+1) ← A

(m) − αA

∂J

∂A
(9)

where αA is a small positive learning rate. In the same

way, we obtain for the linear part of the source matrix, Sa,

the following update rule (keeping in mind that the gradient

expression, given in (8), is different from that in the linear

case):

[Sa]
(m+1)
pn ← [Sa]

(m)
pn − αS

[
∂J

∂Sa

]

pn

(10)

where αS is the learning rate corresponding to matrix S. The

learning rates can indeed be different for update rules of the

two matrices A and S [10].

Concerning updating rules in Equations (9) and (10), apply-

ing the gradient descent algorithm in this way is not sufficient

because it does not guarantee non-negativity. To enforce the

non-negativity constraint, we chose a solution proposed in the

literature (see [10], [12]) which consists in comparing, at each

iteration, each updated matrix with a very small positive value

ǫ, keeping the maximum between them as follows

A
(m+1) ← max{A(m+1), ǫ} (11)

S
(m+1)
a ← max{S(m+1)

a , ǫ}. (12)

This must be understood as a comparison of each element of

the matrix with ǫ, and we only replace the negative elements by

ǫ. We thus eliminate all negative matrix entries and guarantee

the non-negativity needed in NMF algorithms. This is why the

algorithm is called a “projected” gradient descent [10], [12],

since comparing each estimated value to ǫ is like projecting

the solution in the interval [ǫ,+∞].
For the quadratic terms, i.e. for each row of matrix Sb,

we just copy the element-wise product of the two rows

corresponding to the two real concerned sources. We thus force

the elements of matrix Sb to be in keeping with the reality in

our mixtures:

[Sb]
(m+1)
(jp)n ← [Sa]

(m+1)
jn [Sa]

(m+1)
pn . (13)

C. Final algorithm

To complete the algorithm, we have to add the constraints

related to the mixing coefficient, as in the Linear ext algorithm

in Section III. We thus have, for each iteration:

Grd LQ algorithm

1) Update of matrix Sa:

[Sa]pn ← [Sa]pn + αS [AT
a (X −AS)]pn

+αS

M∑

j=1,j 6=p

[Sa]jn × [AT
b (X −AS)](jp)n

+2 αS [Sa]pn × [AT
b (X −AS)](pp)n

Sa ← max{Sa, ǫ}.

2) Update of matrix Sb using Sa:

[Sb](jp)n ← [Sa]jn × [Sa]pn.

3) Update of matrix A:

A ← A+ αA (X −AS)ST

A ← max{A, ǫ}.

4) Constraints on matrix A:

[a1(i) · · · aM (i)] ← [a1(i) · · · aM (i)] /
M∑

j=1

aj(i)

aj,ℓ(i) ← min {aj,ℓ(i), 0.5} .

We thus here proposed an NMF algorithm suited to the

linear-quadratic mixing model, when the data, i.e. the ob-

servations, sources and mixing coefficients, are non-negative.

However, this algorithm has the disadvantage of depending

on two learning rates that are manually fixed. This can reduce

performance if they are not well chosen, and its convergence

can be very long. In Sections V and VI, we then propose two

extensions of this algorithm that aim at reducing these effects.

V. THIRD ALGORITHM: GRADIENT-NEWTON LQ NMF

In the general case of optimisation based on gradient descent

[32], [33], there exist different algorithms permitting one to

derive an adequate learning rate at each iteration. However,

these methods do not guarantee an optimal learning rate

and can slow down the algorithm. We thus here prefer to

apply a Newton update, which is better suited if the Hessian

calculation is not too difficult and if it doesn’t increase the

overall computational cost.

However, we here only apply the Newton update to the

mixing matrix A, since it yields a simple expression, as shown

in Section V-A. The Newton matrix update is much less easily

applicable to matrix S, as discussed in Section V-B.

A. Hessian for matrix A

We here show how the Newton update of matrix A can be

derived. In [10], a less detailed demonstration is given.

We first rewrite the gradient expression with respect to A,

given in (4), in scalar form:

∂J

∂Apk

=
[
−(X −AS)ST

]
pk

= −
∑

n


Xpn −

K∑

j=1

ApjSjn


Skn

(14)

where K is the total number of columns of A, i.e. the overall

number of real sources and quadratic terms.

The calculation of the second derivative gives:

∂2J

∂Apk∂Amℓ

=

{ ∑
n SℓnSkn =

[
SST

]
kℓ

if p = m, ∀p
0 if p 6= m.

(15)

Note that SST ∈ R
K×K
+ , and that the gradient matrix,

∂J

∂A
∈ R

P×K , has the same dimension as A.

A Hessian is generally defined with respect to a vector. Let’s

then vectorise A row by row. We obtain a vector whose size is



IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

1×KP that can be denoted by vec(A). We then can consider

the total Hessian matrix associated with vec(A) (denoted by
∂2J

∂A2
) and whose size is KP ×KP .

We can notice from (15) that:

- The second derivative of J is equal to zero if p 6= m, so

the total Hessian matrix associated with vec(A) is block-

diagonal.

- It doesn’t depend on the value of p, i.e. it doesn’t depend on

the row index in the matrix. In
∂2J

∂A2
, the same block is thus

repeated.

Therefore, the result in (15) permits us to write the total

Hessian matrix
∂2J

∂A2
as follows:

∂2J

∂A2
=




SST 0 · · · 0

0 SST
. . .

...
...

. . .
. . . 0

0 · · · 0 SST



. (16)

This shows that there are no interferences between rows of

A and we can reason as follows.

Let Ap be the p-th row of A,

[
∂J

∂A

]

p

be the p-th row

of the gradient matrix and H be the matrix defined as

Hkℓ =
∂2J

∂Apk∂Apℓ

(i.e. H = SST ). The matrix H is thus the

Hessian corresponding to the vector Ap. We then obtain the

following update rule for this row vector, applying the usual

Newton expression [32], [33]:

A
T
p ← A

T
p −H

−1

[
∂J

∂A

]T

p

. (17)

Since H is symmetric, expression (17) can also be written as

follows (we switch from column vectors to row vectors):

Ap ← Ap −

[
∂J

∂A

]

p

H
−1. (18)

The matrix H is the same for each row of A. The Newton

update of A thus reads:

A ← A−
∂J

∂A
H

−1

= A−
∂J

∂A
(SST )−1

= A+ (X −AS)ST (SST )−1

= A+XS
T (SST )−1 −ASS

T (SST )−1

= XS
T (SST )−1. (19)

We obtain a very simple expression for the update of A,

thanks to the particular structure of the Hessian.

B. Hessian for matrix S

The Hessian expression for matrix S is far less simple.

Because of the complex expression of the gradient with respect

to S, we can not obtain such a convenient structure for the

Hessian (see Appendix A). As we are here dealing with matrix

and not vector updates, applying Newton algorithm is quite

complicated if the Hessian does not have a special structure

as it is the case for the mixing matrix.

Indeed, we obtain a Hessian that is block-diagonal, but (see

results and conclusions in Appendix A):

- the expression for each block is complicated, it is not a

simple matrix product, since there are several terms involved,

- the blocks are different from one column of matrix Sa to

another, which implies an inversion of the Hessian for each

column separately. The number of matrix inversions to be

performed at each iteration is thus equal to the number of

wavelengths. As a comparison, the Newton update rule of

matrix A only requires one matrix inversion at each iteration.

This means that applying a Newton update rule for matrix

S can considerably slow down the algorithm and the gain

in performance could not be worth it because of the heavy

computational cost.

The algorithm considered below thus uses Newton update

only for matrix A. We will see in Section VII that this already

improves results.

C. Final algorithm

As compared with our Grd LQ algorithm presented in

Section IV-C, the extended Grd-Newt LQ algorithm obtained

here only has one modified step, namely the 3rd step. It reads:

Grd-Newt LQ Algorithm

1) Update of matrix Sa:

same as Grd LQ algorithm

2) Update of matrix Sb using Sa:

same as Grd LQ algorithm

3) Update of matrix A:

A ← XS
T (SST )−1

A ← max{A, ǫ}.

4) Constraints on matrix A:

same as Grd LQ algorithm

VI. FOURTH ALGORITHM: MULTIPLICATIVE LQ NMF

Another way to get rid of the learning rates in the Grd LQ

algorithm (Section IV) is to develop a multiplicative version

of this NMF algorithm. This multiplicative algorithm can be

derived from the gradient-based algorithm by expressing the

learning rates as functions of the matrices A and S (see e.g.

[27] for the linear model). This is detailed hereafter for the

case of the linear-quadratic model considered in this paper.

The update of matrix A is the same as in the linear

case (same as in [27]), since A is not concerned by the

quadratic terms. Its update is thus the same as in step 2 of

our multiplicative Linear ext algorithm (Section III).

We now detail the update calculation for matrix Sa. We

use the gradient update expression corresponding to the first

step of the Grd LQ algorithm (Section IV-C), and replace the

fixed learning rate αS by φpn which depends on p and n. This

gives, for source p:

[Sa]pn ← [Sa]pn − φpn

[
∂J

∂Sa

]

pn

(20)
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with

[
∂J

∂Sa

]

pn

= −[AT
a (X−AS)]pn−

∑M

j=1,j 6=p[Sa]jn×

[AT
b (X −AS)](jp)n − 2[Sa]pn × [AT

b (X −AS)](pp)n.

The expression of the learning rate φpn is chosen so as

to yield a multiplicative update and to preserve the non-

negativity. The first point is verified if the learning rate con-

tains the term [Sa]pn in the numerator, to permit a factorisation

of [Sa]pn in the expression (20). To fulfil the second point,

we have to get rid, in the right-hand term of (20), of all terms

preceded by a minus sign, to obtain a sum of positive terms.

This is achieved by placing those terms in the denominator

of φpn (without the minus sign), which will permit us to

eliminate them when reducing the whole expression to the

same denominator.

Based on this principle, we chose the learning rate φpn as

follows:

φpn =
[Sa]pn
Dpn

(21)

with

Dpn = [AT
aAS]pn +

M∑

j=1,j 6=p

[Sa]jn × [AT
b AS](jp)n

+2[Sa]pn × [AT
b AS](pp)n. (22)

The update of source p is then computed by replacing, in

Equation (20), the learning rate φpn by its expression (21):

[Sa]pn ←
[Sa]pn[A

T
aAS]pn + 2[Sa]

2
pn[A

T
b AS](pp)n

Dpn

+

[Sa]pn ×




M∑

j=1,j 6=p

[Sa]jn × [AT
b AS](jp)n




Dpn

+
[Sa]pn[A

T
a (X −AS)]pn
Dpn

+
2[Sa]

2
pn × [AT

b (X −AS)](pp)n

Dpn

+

[Sa]pn




M∑

j=1,j 6=p

[Sa]jn[A
T
b (X −AS)](jp)n




Dpn

.

We thus finally obtain the following update rule:

[Sa]pn ← [Sa]pn

(
[AT

aX]pn + 2[Sa]pn[A
T
b X](pp)n

Dpn + ε

+

∑M

j=1,j 6=p[Sa]jn[A
T
b X](jp)n

Dpn + ε

)
. (23)

As in the linear case, ε (very small and positive) is added to

the denominator to avoid possible divisions by zero.

It is easy to verify that, in the update rule (23), if the

convergence is met (i.e. X = AS), the entire term in

parentheses is equal to one (disregarding the ε we added) and

the value in the right-hand side is equal to [Sa]pn.

This algorithm has the advantage of eliminating the learning

rate from the update rule. Besides, the multiplicative construc-

tion composed of only sums of non-negative terms, guarantees

the non-negativity at each iteration, if the initialisation is non-

negative. We thus do not need here the steps, in algorithms

Grd LQ and Grd-Newt LQ, which consist in forcing the non-

negativity at each iteration (Eq. (11-12)).

The final algorithm reads, for one iteration:

Mult LQ algorithm

1) Update of matrix Sa:

Apply update rule given by (23)

2) Update of matrix Sb using Sa:

[Sb](jp)n ← [Sa]jn × [Sa]pn.

3) Update of matrix A:

A← A⊙ ((XS
T )⊘ (ASS

T + ε)).

4) Constraints on matrix A:

[a1(i) · · · aM (i)] ← [a1(i) · · · aM (i)] /

M∑

j=1

aj(i)

aj,ℓ(i) ← min {aj,ℓ(i), 0.5} .

VII. TEST RESULTS

We here compare the performance of the different proposed

methods. We also compare them with the results obtained with

the classical linear method of Lee and Seung [11]. It will be

denoted Linear.

A. Performance criteria

Convergence criterion: To check the algorithm conver-

gence, the normalised RMSE (Root Mean Square Error) is

used:

Errtot =
‖X − ÂŜ‖F
‖X‖F

(24)

where the notation “ˆ” corresponds to the estimated matrix

or vector (hereafter).

Spectra estimation: To compare the real spectra to their

estimates, we use the SAM (Spectral Angle Mapper), in

radians, after taking into account the possible permutations

between the ŝj
2:

SAMOUT = meanj(SAMOUTj)

= meanj

(
arccos

(
< sj , ŝj >

‖ sj ‖‖ ŝj ‖

))
(25)

with j = 1...M .

2To this end, we select the sj and ŝk giving the smallest SAMOUTj , we
discard them and search for the next best couple, and so on for all sources.
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Coefficient estimation: The mixing coefficient estimation is

evaluated using the RMSE:

RMSE =

√
1

MP

∑

i,j

(aj(i)− âj(i))2 (26)

where j = 1...M and i = 1...P .

The SAM and RMSE are chosen because they are com-

monly used in spectral unmixing. Concerning the spectra and

coefficients, we only evaluate the estimation performance of

the linear part of the model.

B. Algorithm initialisation

It is well known that the convergence of NMF algorithms

often depends on the initialisation and that the NMF solution

is not unique [10], [34]. We here assume we have no prior

information about the spectra or coefficients (except the con-

straints in (1)). We thus chose to initialise our algorithms as

follows:

• matrix Â: randomly initialised with uniformly distributed

values between 0 and 1 for the linear part (0 and 0.5 for

the quadratic part), then the linear part is normalised to

fulfil the sum-to-one condition.

• matrix Ŝ, 2 cases:

- init 1: initialised with constant spectra equal to 0.5.

- init 2: initialised with the spectra resulting from the

N-FINDR extraction algorithm [35], used to extract K
spectra (K being the total number of spectra in matrix

S, including the quadratic terms).

C. Data presentation

The results presented here correspond to images created

by numerically mixing real reflectance spectra3. We simulate

little images involving two or three materials (a real complete

scene can be unmixed zone by zone), with contributions of

reflections. Squared terms are not considered here, but this

does not change the principle (we just assume there are no

reflections between surfaces of the same material).

1) Data construction: Each image X is computed as X =
AS, where:

• S contains K spectra: the M spectra of the involved

materials and their products (quadratic terms).

• The mixing matrix A, of size P ×K (with P number of

pixels), is generated randomly as follows. For each pixel:

– The coefficients of the linear part are generated

following uniformly distributed values between 0 and

1, then normalised to fulfil the sum-to-one condition.

– The coefficients of the quadratic part follow a Gaus-

sian distribution centred on 0.1, with a standard de-

viation 0.15, N (0.1, 0.15) (to approximately follow

the distribution of values encountered in [19]), then

are projected on the interval [0, 0.5] (i.e. if a value is

outside this interval, it is reset to the nearest limit).

500 1000 1500 2000 2500
0

0.5

1
ground materials

 

 

500 1000 1500 2000 2500
0

0.5

1

wavelength (nm)

wall materials

 

 

asphalt
grass
bare soil

concrete
brick
aluminium

Fig. 1. Reflectance spectra of used materials

2) Used materials: Figure 1 shows the reflectance spectra

of the materials used to generate our images, with 126 bands

in the spectral domain [0.4, 2.5 µm]. The chosen materials are

representative of what can be encountered in urban environ-

ments.

It can be seen that, except for the vegetation spectrum, the

spectra are very similar. The correlation coefficients measured

between them (except those involving the vegetation) are

higher than 0.65.

3) Studied cases: The studied images contain two or three

materials.

• Case 1: 2 materials

The pixels correspond to a part of a wall and a part of

the ground. The resulting three contributions correspond

to these two materials and reflections between them.

For each image, we thus here use a couple of spectra

involving a ground spectrum and a wall spectrum, which

yields 9 possible couples.

• Case 2: 3 materials

Each pixel corresponds to two ground materials and one

wall material, which also yields 9 possible combinations.

For each combination of spectra (involving 2 or 3 materials),

we generate 20 different mixing matrices. This set of matrices

is the same for all spectra combinations. We thus obtain 9x20

different images in case 1, and also 9x20 images in case 2.

All generated images contain 16 pixels (4x4).

D. Performance of the algorithms

As stated above, NMF results can depend on algorithm ini-

tialisation. However, in a blind context, it is hard to tell which

initialisation gives the best results, since a low reconstruction

error Errtot is not a sufficient condition to have the right

solution, even if it is a necessary condition (the NMF solution

is not unique). We thus propose, for each processed image, to

run each algorithm with 30 different initialisations of matrix Â

(see Section VII-B) and we present results obtained following

two protocols:

• Protocol 1: in this case, each run (one initialisation) leads

to one final result Ŝ and Â. The 30 obtained results

3The used spectra are from the MEMOIRES data base
(http://www.onera.fr/dota/memoires).



IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

for each image are used to compute statistics of the

performance criteria.

• Protocol 2: for each image, we use the 30 obtained

results to derive only one final estimate. Since it is

well known that estimation in BSS methods is up to a

permutation indeterminacy, we propose to handle that by

performing a clustering over the sources estimated in the

30 runs. We here choose to use the K-means method [36]

performed over 5 extracted parameters representing each

estimated source: its mean, its variance, its kurtosis, the

maximum and variance of its derivative4. The medians of

the estimated sources associated with these clusters then

represent the final estimated sources.

Here are the detailed protocols for the presented tests:

Protocol 1

• For each combination of spectra (2 or 3 spectra):

◦ For each of the 20 mixing matrices:

→ A hyperspectral image is created (1 combination

of spectra mixed with the mixing matrix)

→ The algorithm is applied using 30 different initial-

isations of Â

→ The algorithm performance is evaluated for each

of these 30 cases

• Mean and standard deviation of the performance criteria

are computed over the 9x20x30 obtained results

Protocol 2

• For each combination of spectra (2 or 3 spectra):

◦ For each of the 20 mixing matrices:

→ A hyperspectral image is created (1 combination

of spectra mixed with the mixing matrix)

→ The algorithm is applied using 30 different initial-

isations of Â

→ One result (Ŝm,Âm) is estimated, using the 30

obtained results as follows:

· A clustering is performed over the 30 obtained

matrices Ŝ (applying the clustering algorithm to

the associated extracted parameters)

· The median of each source cluster is computed

to obtain one new matrix Ŝm

· An estimation of Âm is obtained using least

squares with non-negativity and sum-to-one (for

the linear mixing coefficients) constraints5.

→ The algorithm performance is evaluated using the

new matrices Âm and Ŝm

• Mean and standard deviation of the performance criteria

are computed over the 9x20 obtained results

1) Case of 2 materials: Tables I and II show, for each

configuration (one algorithm with one kind of initialisation for

Ŝ), the mean and standard deviation of the results obtained

respectively with Protocols 1 and 2. Table III permits to

4What we here call derivative calculation of the spectra is made using the
diff function of Matlab.

5The ’lsqnonneg’ Matlab function is used here.

evaluate the convergence precision and speed (mean CPU

time)6, following Protocol 1.

The Grd LQ algorithm gives almost the lowest mean per-

formance here, which is coherent with its high mean total

error (Table III), as compared with all other methods. This

value represents the error computed at the “convergence point”

(when the stop condition is reached). The used stop condition

here corresponds to the iteration when the matrices Â and Ŝ

and the criterion (3) become almost constant (with a precision

of 10−6 for the criterion and of 10−5 for the matrices). This

means the algorithm had not completely converged towards a

minimum when it stopped evolving, and this is a disadvantage

of using a fixed learning rate. This algorithm has thus just been

a starting point for our methods Grd-Newt LQ and Mult LQ

which are preferable. Indeed, it can be seen that these two

algorithms give the best results and their mean performance

is about twice better than that of the Linear and Linear ext

algorithms. This means that we can not here neglect the

presence of the quadratic terms and that the linear method

is not suited. Then, this shows that taking into account the

presence of the quadratic terms in gradient calculation presents

a non negligible gain.

What can seem weird here, is that the Linear algorithm

gives better performance than the Linear ext one, concerning

coefficient estimation (mean RMSE). This can be due to the

fact that only one quadratic term is involved here (model with

only two sources), so it seems not to disturb much the two-

component Linear method, which converges with a reasonable

precision. This interpretation is verified below in the 3 material

case. The Linear ext algorithm, which estimates the quadratic

term as a third “pseudo-source”, can be disturbed by the

possible correlation between this term and the real sources,

and this can degrade the coefficient estimation.

These first results show the advantage of Grd-Newt LQ and

Mult LQ compared with Linear ext or Linear.

Comparing results of Tables I and II, it can be seen that

Protocol 2 permits us to obtain lower RMSE with our linear-

quadratic methods. But the differences are not very important

in this case.

Finally, the methods are here almost insensitive to the kind

of initialisation chosen for the spectra (constant or N-FINDR).

2) Case of 3 materials: Tables IV and V present, as above,

performance obtained using respectively Protocols 1 and 2.

The best mean performance is obtained with Grd-Newt LQ

and Mult LQ algorithms, and especially the latter. The total

error obtained with Mult LQ is among the lowest ones (see

Table VI).

Figure 2 shows an example of estimated spectra (for one

image among the 9x20 ones) obtained with Linear ext and

Mult LQ, compared to the real spectra. It can be seen that Mult

LQ gives globally the best estimation, essentially for sources

2 and 3. Note that this example corresponds to values of SAM

close to the mean performance in Table V.

The less satisfying method is Linear and, in this case, its

performance is lower than that of Linear ext. This confirms

6Computation has been performed with Matlab, on a computer with a
double core processor, with a frequency of 2.8 GHz and a RAM of 4 GB.
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Fig. 2. Example of estimated spectra with Linear ext (SAM = 0.12) and
Mult LQ (SAM = 0.09)

SNR (dB) SAM RMSE Errtot (in %)
mean std mean std mean

40 0.03 0.03 0.07 0.06 1.2

30 0.04 0.03 0.07 0.05 3.0

25 0.05 0.03 0.08 0.05 5.4

20 0.08 0.03 0.12 0.09 9.8

TABLE VII
CASE M = 2 MATERIALS - PERFORMANCE FUNCTION OF THE SNR - Mult

LQ METHOD, WITH INITIALIZATION OF TYPE INIT 1 - PROTOCOL 2

the interpretation made about the results in the case of two

materials: We here have three quadratic terms, the linear model

is not sufficient at all to model the mixtures and to give an

acceptable estimation. Indeed, it can be seen that the total error

is high for the Linear algorithm (see Table VI).

SAM results obtained using Protocol 2 (Table V) are here

much better than those obtained using Protocol 1 (Table IV).

Mean SAM values obtained with our Grd LQ and Mult LQ

methods are almost 30 % lower with Protocol 2, with an

increased reliability (lower std). The RMSE are almost the

same for both protocols. Using Protocol 2 can thus be a good

solution to alleviate the problem of NMF dependence on the

initialisation. Besides, this solution is unsupervised.

As in the previous case, the methods have low sensitivity

to the choice of initialisation for Ŝ.

The convergence of our algorithms, especially the final one,

i.e. Mult LQ, has not been proved theoretically in this paper.

However, in all our tests, the proposed algorithms made the

considered criterion J monotonically decrease. Besides the

criterion seems to converge towards a local minimum since

the obtained final total errors are very low. A theoretical

convergence analysis could be the subject of future work.

The last tests presented in this paper concern the robustness

of our Mult LQ method to the presence of noise in data. Tables

VII and VIII show results obtained following Protocol 2, for

SNR (dB) SAM RMSE Errtot (in %)
mean std mean std mean

40 0.09 0.04 0.16 0.08 1.0

30 0.10 0.04 0.17 0.09 2.8

25 0.16 0.07 0.22 0.09 5.0

20 0.33 0.11 0.33 0.10 8.7

TABLE VIII
CASE M = 3 MATERIALS - PERFORMANCE FUNCTION OF THE SNR - Mult

LQ METHOD, WITH INITIALIZATION OF TYPE INIT 1 - PROTOCOL 2

different SNR (Signal to Noise Ratio) values. With each of

our 9x20 previous images, we generated 10 noisy images7 for

each SNR value (10 runs for each SNR). Protocol 2 has thus

been applied to 9x20x10 images this time (instead of 9x20). In

both cases, the results are almost unchanged for a 40 dB SNR,

as compared to the noiseless case, and performance remains

very good down to a 30 dB SNR. In the case of two materials,

the results are good even for 20 dB, which is a quite low

SNR, since it corresponds to noise representing 10% of the

signal magnitude. In [37], for example, where different linear

unmixing methods are compared, the lowest considered SNR

is of 30 dB. Further, in all cases here, it can be noticed that

the mean value of the total error8 almost corresponds to the

ratio of noise vs. signal magnitudes (1, 3, 5 and 10%), which

means that the residual error essentially corresponds to the

noise. It thus can be concluded that the proposed method is

quite robust to noise.

VIII. CONCLUSION

In this work, we proposed NMF methods for the linear-

quadratic model. The proposed algorithms, especially Grd-

Newt LQ and Mult LQ (Grd LQ algorithm has essentially

been a starting point for the other two proposed ones), gave

very satisfactory results. Mean SAM are mostly not above 0.1

radian with our NMF methods using the multiple initialisation

procedure (Protocol 2). Note that we here address a difficult

configuration since we face correlated sources (spectra), and

even NMF is sensitive to this problem.

The proposed algorithms have here been specially developed

for our problem related to hyperspectral unmixing for urban

images, using the corresponding constraints on the mixing

coefficients. However, one can easily adapt them to another

application (with a linear-quadratic model and non-negative

data), by removing these constraints from the method. We

can also imagine adding other constraints to the criterion,

depending on the application.

As future work, it would be interesting to test other kinds

of initialisations and other constraints (as smoothness). Trying

the Grd LQ algorithm with a varying learning rate could also

give a useful comparison with Grd-Newt LQ. Finally, beyond

the development and validation of the methods reported in this

paper, their practical application to the remote sensing field

will consist in applying them to real data, but their evaluation

then necessitates information about the real scene composition.

7We added a Normal centred noise, whose magnitude corresponds to a
percentage of the signal magnitude depending on the desired SNR value.

8The total error is computed following Protocol 1, as in Tables III and VI,
to evaluate the algorithm convergence for each run.
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APPENDIX A

HESSIAN CALCULATION FOR MATRIX S

We use the scalar expression of the gradient of J with

respect to Spn, given in Eq. (6).

This first entails that, for m 6= n:

∂2J

∂Skm∂Spn

= 0. (27)

We then obtain, for k 6= p:

∂2J

∂Skn∂Spn

=

P∑

i=1


Xin −

M∑

j=1

aj(i)Sjn

−
M∑

j=1

M∑

ℓ=j

aj,ℓ(i)SjnSℓn


× (−ak,p(i))

+

P∑

i=1


−ak(i)−

M∑

j=1,j 6=k

aj,k(i)Sjn−2ak,k(i)Skn




×


−ap(i)−

M∑

j=1,j 6=p

aj,p(i)Sjn − 2ap,p(i)Spn


 .

(28)

And finally, for k = p:

∂2J

∂Spn∂Spn

=

P∑

i=1


Xin −

M∑

j=1

aj(i)Sjn

−
M∑

j=1

M∑

ℓ=j

aj,ℓ(i)SjnSℓn


 × (−2ap,p(i))

+

P∑

i=1


−ap(i)−

M∑

j=1,j 6=p

aj,p(i)Sjn−2ap,p(i)Spn




2

.

(29)

We can thus here reason on the columns of matrix Sa and

vectorise this matrix column by column. This permits us to

conclude that the total Hessian associated with vec(Sa)
9 has

the following properties:

- It is block-diagonal, because of result given by Eq. (27).

- The elements of the nth block are given by Equations (28)

and (29).

- The blocks are all different, since results in Equations (28)

and (29) depend on n.
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Methods Linear Linear ext Grd LQ Grd-Newt LQ Mult LQ
init 1 init 2 init 1 init 2 init 1 init 2 init 1 init 2 init 1 init 2

SAMOUT mean 0.07 0.07 0.09 0.08 0.10 0.10 0.04 0.04 0.03 0.03
(rad) std 0.09 0.09 0.06 0.06 0.07 0.07 0.04 0.05 0.03 0.03

mean 0.14 0.14 0.19 0.19 0.28 0.28 0.09 0.09 0.09 0.09
RMSE std 0.13 0.12 0.11 0.11 0.09 0.09 0.05 0.07 0.06 0.06

TABLE I
CASE M = 2 MATERIALS - PERFORMANCE - PROTOCOL 1

Methods Linear Linear ext Grd LQ Grd-Newt LQ Mult LQ
init 1 init 2 init 1 init 2 init 1 init 2 init 1 init 2 init 1 init 2

SAMOUT mean 0.07 0.07 0.08 0.07 0.10 0.10 0.04 0.04 0.03 0.03
(rad) std 0.10 0.09 0.06 0.05 0.06 0.05 0.04 0.05 0.03 0.03

mean 0.13 0.13 0.37 0.34 0.25 0.25 0.08 0.09 0.07 0.07
RMSE std 0.13 0.13 0.22 0.20 0.08 0.08 0.05 0.07 0.06 0.06

TABLE II
CASE M = 2 MATERIALS - PERFORMANCE - PROTOCOL 2

Methods Linear Linear ext Grd LQ Grd-Newt LQ Mult LQ

Errtot (in %) mean 4.9 4.9 0.2 0.2 8.7 8.6 0.7 0.9 0.5 0.5

CPU time (s) mean 2.6 2.6 1.7 1.7 4.3 4.4 1.7 1.2 1.3 1.3

TABLE III
CASE M = 2 MATERIALS - CONVERGENCE PRECISION AND SPEED

Methods Linear Linear ext Grd LQ Grd-Newt LQ Mult LQ
init 1 init 2 init 1 init 2 init 1 init 2 init 1 init 2 init 1 init 2

SAMOUT mean 0.19 0.19 0.15 0.15 0.14 0.14 0.16 0.13 0.12 0.12
(rad) std 0.11 0.11 0.06 0.06 0.06 0.06 0.12 0.09 0.06 0.06

mean 0.20 0.20 0.20 0.20 0.23 0.23 0.17 0.16 0.15 0.15
RMSE std 0.07 0.06 0.05 0.05 0.05 0.05 0.11 0.08 0.07 0.07

TABLE IV
CASE M = 3 MATERIALS - PERFORMANCE - PROTOCOL 1

Methods Linear Linear ext Grd LQ Grd-Newt LQ Mult LQ
init 1 init 2 init 1 init 2 init 1 init 2 init 1 init 2 init 1 init 2

SAMOUT mean 0.18 0.18 0.14 0.14 0.12 0.12 0.11 0.10 0.09 0.09
(rad) std 0.11 0.10 0.05 0.05 0.04 0.04 0.07 0.06 0.04 0.04

mean 0.23 0.23 0.43 0.43 0.26 0.25 0.18 0.17 0.16 0.16
RMSE std 0.09 0.09 0.11 0.10 0.07 0.07 0.10 0.08 0.09 0.08

TABLE V
CASE M = 3 MATERIALS - PERFORMANCE - PROTOCOL 2

Methods Linear Linear ext Grd LQ Grd-Newt LQ Mult LQ

Errtot (in %) mean 6.0 6.0 0.3 0.3 4.7 4.6 3.1 2.0 0.4 0.4

CPU time (s) mean 6.4 6.2 1.1 1.2 5.6 5.5 6.6 4.3 2.6 2.6

TABLE VI
CASE M = 3 MATERIALS - CONVERGENCE PRECISION AND SPEED


