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Abstract: This paper concerns the blind separation of P complex convolutive mixtures of
N statistically independent complex sources, with underdetermined or noisy mixtures i.e.
P < N . Our approach exploits the assumed distinct statistical properties of the sources:
P sources are non-stationary, while the others are stationary. Our method achieves the
”partial separation” of the P non-stationary sources. It uses a deflation procedure includ-
ing extraction and coloration stages. The original criteria introduced in these stages use
our differential source separation concept. They consist in optimizing the differential nor-
malized kurtosis and differential power that we introduce. To optimize these criteria, we
propose Netwon-like algorithms. Experimental results prove the efficiency of our method.
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1 Introduction

Blind source separation (BSS) methods aim at restoring a set of N unknown source signals
sj(n) from a set of P observed signals xp(n), which are mixtures of these source signals
[12]. The mixed signals xp(n) are often provided by a set of sensors, and the mixing phe-
nomenon then results from the simultaneous propagation of all source signals from their
emission locations to all sensors. Provided mixing remains linear, it may be represented
by a convolutive model, where each propagation channel from source j to sensor p is
defined by a transfer function Apj(z). These transfer functions may account for propaga-
tion attenuations and delays, and multipath propagation. The overall source-observation
relationship then reads in the Z domain

X(z) = A(z)S(z), (1)

where S(z) = [S1(z) . . . SN (z)]T and X(z) = [X1(z) . . . XP (z)]T are the Z transforms
of the source and observation vectors, and where the mixing matrix A(z) consists of the
above-defined transfer functions Apj(z). This general convolutive model especially includes
linear instantaneous mixtures, which have been mainly considered in the literature and
which correspond to the situation when all transfer functions Apj(z) are restricted to scalar
coefficients.

Most BSS investigations have been performed in the case when: (i) the mixture is de-
termined, i.e. the number P of observed signals is equal to the number N of source signals,
so that the considered mixing matrix A(z) is square, and (ii) this matrix is invertible. The
BSS problem then consists in estimating the inverse of this mixing matrix, up to some in-
determinacies [12]. Various methods have been proposed to this end. They are especially
based on the assumed statistical independence or uncorrelation of the source signals [12].
Many of these methods consist in optimizing statistical parameters of the output signals
of a BSS system, such as their second-order or higher-order moments or cumulants, which
are classical parameters in the higher-order statistics field [14],[16].

In many practical situations however, only a limited number of sensors is acceptable,
due e.g. to cost constraints or physical configuration, whereas these sensors receive a
larger number of sources (possibly including ”noise sources”). In this paper, we consider
this underdetermined situation corresponding to P < N , and we require that P ≥ 2.
Some analyses and statistical BSS methods have been reported for this case (see e.g.
[4],[5],[6],[10],[18]), mainly for linear instantaneous mixtures. However, they set major
restrictions on the source properties (discrete sources are especially considered) and/or on
the mixing conditions. Other reported approaches set various sparsity requirements on the
source signals, especially in the time-frequency domain (see e.g. [1],[2],[9],[17],[20],[21]).
In this paper, we aim at avoiding all above constraints, at the expense of only achieving
”partial BSS” as explained hereafter.

In [8], we introduced a general differential BSS concept for processing underdetermined
mixtures. In its standard version, this approach uses a statistical framework and takes
advantage of the distinct properties that the sources are assumed to have from the point
of view of stationarity. More precisely, we investigate the situation when (at most) P
of the N mixed sources are non-stationary, while the other N − P sources (at least) are
stationary. The P non-stationary sources are the signals of interest in this approach, while
the N − P stationary sources are considered as disturbance, i.e. ”noise sources”. This
may e.g. correspond to the situation when P microphones provide mixtures of P speech
signals superimposed with N − P stationary noise signals. The differential BSS concept
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that we proposed in [8] then makes it possible to derive output signals which each contain
only one of the P sources of interest, still superimposed with some residual components
from the N −P noise sources. This optimum case [8], when each output is still a mixture
of (N −P +1) sources, is called ”partial BSS” (for the P sources of interest). The features
thus obtained were described in [8].

Although we first defined this differential BSS concept in a quite general framework in
[8], we then only applied it to a specific BSS system and to associated separation criterion
and algorithms, based on second-order statistics. We focused on that specific version of our
approach because of its simplicity. However, the resulting BSS method is thus limited to
the situation when: (i) only P = 2 mixtures are considered, (ii) the mixing filters include
no instantaneous nor non-causal parts and (iii) the mixing matrix is minimum-phase. In
the current paper, we therefore aim at deriving differential BSS criteria and associated
algorithms which apply to much more general conditions, i.e. to an arbitrary number
of observed signals and to arbitrary mixing filters. To this end, we especially resort to
higher-order statistical signal parameters, namely to the differential normalized kurtosis
that we introduce to this end hereafter.

The remainder of this paper is organized as follows. In Section 2, we derive the two cri-
teria used in the extraction and coloration stages of the proposed differential BSS method
and we define its overall structure, based on a deflation procedure. Practical algorithms
for optimizing the above two criteria are introduced in Section 3. The experimental per-
formance achieved by the proposed method is presented in Section 4 and conclusions are
drawn from this investigation in Section 5.

2 Proposed differential BSS criteria and overall method

2.1 A new extraction method based on differential normalized kurtosis

In this paper, we consider the general case of underdetermined convolutive mixtures of
complex-valued signals. We aim at introducing a new partial BSS method for this con-
figuration. To this end, we use our general differential BSS concept, which is described
in detail in Section 2 of [8], and which may be applied to various statistical parameters.
We here propose a new application of this concept, where the considered parameter is
the normalized kurtosis. This classical higher-order statistical parameter has been used
by J.K. Tugnait [19] as a criterion for achieving blind source extraction in the case when
P = N , assuming statistically independent sources. We here aim at developing a differ-
ential extension of that BSS method.

2.1.1 Mixing and extraction stages

We consider the configuration involving N source signals sj(n) and P observed signals
xp(n), with P < N . The mixing stage is assumed to be complex and convolutive: each
entry of the mixing matrix A(z) is a complex-valued, possibly non-causal, Moving Av-
erage (MA) filter. Each propagation channel from source j to observation p is therefore
represented by the transfer function

Apj(z) =
L2∑

l=−L1

apj(l)z
−l, (2)
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where the coefficients apj(l) are complex-valued. The parameters L1 ≥ 0 and L2 ≥ 0
define the highest allowed order for all these filters.

Each output signal y(n) of the extraction stage of our BSS method is computed by a
feedforward structure, with P inputs and thus P extraction filters, whose transfer functions
are denoted Bp(z), with p = 1, . . . , P . These filters are possibly non-causal and MA2, i.e.

Bp(z) =

L′

2∑

l=−L′

1

bp(l)z
−l (3)

with complex-valued coefficients bp(l), and with L′
1 ≥ 0 and L′

2 ≥ 0. This structure allows
us to extract one signal at once. The ideal values of the filters Bp(z) are such that this
signal then consists of a contribution of one and only one of the P sources of interest,
added with contributions of the stationary sources.

For any filters Bp(z), the considered output y(n) of the extraction stage reads

y(n) =
P∑

p=1

[Bp(z)]xp(n) (4)

=
P∑

p=1

N∑

j=1

[Bp(z)Apj(z)]sj(n) (5)

=
N∑

j=1

[Cj(z)]sj(n) (6)

where3

Cj(z) =
P∑

p=1

Bp(z)Apj(z) (7)

=

L′′

2∑

l=−L′′

1

cj(l)z
−l (8)

with L′′
1 = L1 + L′

1 and L′′
2 = L2 + L′

2. Eq. (6) and (8) yield

y(n) =
N∑

j=1

L′′

2∑

l=−L′′

1

cj(l)sj(n − l). (9)

The set of filters Cj(z), with j = 1 . . . N , represents the combined effects of propagation
and extraction for y(n). These filters may be defined either in terms of their transfer
functions Cj(z) or impulse response coefficients cj(l), as shown by (8).

2For the sake of simplicity, we only consider Finite Impulse Response (FIR) mixing and separating
filters in this paper. Infinite Impulse Response (IIR) filters e.g. correspond to setting L′

1 → +∞ and
L′

2 → +∞. Conversely, FIR filters may be considered as approximations of IIR filters. They therefore only
make it possible to approximately reach separating points, except in specific cases [19]. The approximation
thus introduced can be made negligible by e.g. choosing L′

1 and L′

2 to be high enough. This phenomenon
is therefore ignored hereafter. For more details on this topic, the reader may refer to [19].

3The brackets ”[ ]” around each filter transfer function Bp(z) in (4) mean that we here consider the
operator defined by this filter and y(n) is the result obtained when applying this operator to the corre-
sponding signal xp(n) and summing over p. This compact notation stands for the actual time-domain
convolution of xp(n) by the impulse response of the considered filter. The same notation is used in the
next two equations.
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We here assume that the source signals are zero-mean, temporally and mutually inde-
pendent. Moreover, based on our above-defined differential BSS concept, the overall set
of N sources is assumed to consist of4:

1. P sources of interest sj(n), with j = 1, . . . , P . Their assumed properties with respect
to stationarity may be defined as follows. In the theoretical analysis provided below,
we consider two time domains D1 and D2. Each of these domains Di consists of a
bounded time interval around a time ni: we e.g. take into account the set of adjacent
times (ni − l), with l = −L′′

1 . . . L′′
2, when considering the values of sj associated to

y(ni) in (9). Each source signal is assumed to have the same statistical properties
over all these times around ni. This corresponds to short-term stationarity. We
select the gap between the times ni to be significantly larger than L′′

1 + L′′
2 . Each

source signal of interest is then assumed to have different statistical properties in the
resulting time domains D1 and D2. This corresponds to long-term non-stationarity.

2. N−P noise sources sj(n), with j = P+1, . . . , N . Each of these sources is supposed to
have the same statistical properties for any time n, thus exhibiting both short-term
and long-term stationarity.

2.1.2 Differential cumulants

Since each source is zero-mean, (9) yields E[y(n)] = 0, where E[.] stands for expectation.
We now derive the expressions of the 2nd and 4th-order zero-lag output cumulants with
respect to the source cumulants, for any given time n. Denoting complex conjugates with
the superscript ∗, the 2nd-order zero-lag cumulant (or power) of the zero-mean signal y(n)
reads

CUM2(y, n) = E[y(n)y∗(n)] (10)

= E





N∑

j=1

L′′

2∑

l=−L′′

1

cj(l)sj(n − l)
N∑

k=1

L′′

2∑

m=−L′′

1

c∗k(m)s∗k(n − m)



 (11)

=
N∑

j=1

L′′

2∑

l=−L′′

1

N∑

k=1

L′′

2∑

m=−L′′

1

cj(l)c
∗
k(m)E [sj(n − l)s∗k(n − m)] . (12)

Since the sources sj are zero-mean, temporally and mutually independent, (12) becomes

CUM2(y, n) =
N∑

j=1

L′′

2∑

l=−L′′

1

cj(l)c
∗
j (l)E

[

sj(n − l)s∗j (n − l)
]

(13)

=
N∑

j=1

L′′

2∑

l=−L′′

1

cj(l)c
∗
j (l)CUM2(sj, n − l). (14)

Let n be equal to the time ni associated to one of the considered time domains Di.
Then, due to the above-mentioned stationarity properties of the sources sj, the term
CUM2(sj , n − l) in (14) takes the same value for all time indices (n − l) inside Di. It

4The indices here resp. assigned to the stationary and non-stationary sources are only selected for the
sake of simplicity: the relevance of our method does not depend on these indices.
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is therefore denoted as CUM2(sj,Di) hereafter. Consequently, CUM2(y, ni) can also be
denoted as CUM2(y,Di) and reads

CUM2(y,Di) =
N∑

j=1

CUM2(sj,Di)

L′′

2∑

l=−L′′

1

cj(l)c
∗
j (l). (15)

Now consider the 4th-order zero-lag cumulant (or non-normalized kurtosis) of y(n), with
two conjugate terms, i.e. [13]

CUM4(y, n) = CUM(y(n), y(n), y∗(n), y∗(n)). (16)

Using the multilinearity properties of cumulants and their nullity for independent random
variables, one derives in the same way as above

CUM4(y,Di) =
N∑

j=1

CUM4(sj ,Di)

L′′

2∑

l=−L′′

1

c2
j (l)[c

∗
j (l)]

2. (17)

We now introduce the 2nd-order zero-lag differential cumulant (or differential power) of
y(n) associated to the two time domains D1 and D2, that we define as5

∆CUM2(y) = CUM2(y,D2) − CUM2(y,D1). (18)

Eq. (15) then yields

∆CUM2(y) =
N∑

j=1

∆CUM2(sj)

L′′

2∑

l=−L′′

1

cj(l)c
∗
j (l), (19)

where ∆CUM2(sj) is defined in the same way as in (18). The 4th-order zero-lag differential
cumulant (or differential non-normalized kurtosis) of y(n) associated to D1 and D2 is
defined by using the same approach and (17) yields

∆CUM4(y) = CUM4(y,D2) − CUM4(y,D1) (20)

=
N∑

j=1

∆CUM4(sj)

L′′

2∑

l=−L′′

1

c2
j (l)[c

∗
j (l)]

2. (21)

Let us now take into account that sP+1(n) to sN (n) are long-term stationary. The standard
2nd-order cumulant CUM2(sj ,Di) of each of the sources sj(n) with j = P +1, . . . , N then
takes the same values for Di = D1 and Di = D2, so that ∆CUM2(sj) = 0. The same
phenomenon occurs for 4th-order cumulants.

On the contrary, s1(n) to sP (n) are long-term non-stationary. More precisely, we
assume that they have non-zero 2nd and 4th-order differential cumulants for the considered
time domains D1 and D2, i.e. that the following conditions are met: 6

5∆CUM2(y) depends on the selected time domains D1 and D2. We omit these domains in the notation
∆CUM2(y) and in subsequent expressions, for the sake of readability and because a single application of
our differential method only uses a single couple of domains D1 and D2.

6Note that, similarly, the stationarity constraints on sources sj(n) with j = P + 1, . . . , N in fact only
concern their 2nd and 4th-order differential cumulants.
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Assumption 1 ∆CUM2(sj) 6= 0, ∀ j = 1, . . . , P .

Assumption 2 ∆CUM4(sj) 6= 0, ∀ j = 1, . . . , P .

Eq. (19) and (21) then reduce to

∆CUM2(y) =
P∑

j=1

∆CUM2(sj)

L′′

2∑

l=−L′′

1

cj(l)c
∗
j (l) (22)

∆CUM4(y) =
P∑

j=1

∆CUM4(sj)

L′′

2∑

l=−L′′

1

c2
j (l)[c

∗
j (l)]

2. (23)

This shows explicitly that the 2nd and 4th-order differential cumulants of the output signal
y(n) only depend on the non-stationary sources.

2.1.3 Differential normalized kurtosis: definition and global maximum

Given two time domains D1 and D2, we define the corresponding differential normalized
kurtosis of any signal y as

kD(y) =
∆CUM4(y)

[∆CUM2(y)]2
. (24)

We here consider the above-defined extracted signal y(n) and we investigate the global
maximum of the absolute value of its differential normalized kurtosis kD(y), with respect
to the filters Cj(z). To this end, we derive from (22) and (23)

|∆CUM2(y)| =

∣
∣
∣
∣
∣
∣

P∑

j=1

∆CUM2(sj)

L′′

2∑

l=−L′′

1

cj(l)c
∗
j (l)

∣
∣
∣
∣
∣
∣

(25)

and

|∆CUM4(y)| =

∣
∣
∣
∣
∣
∣

P∑

j=1

∆CUM4(sj)

L′′

2∑

l=−L′′

1

[cj(l)]
2[c∗j (l)]

2

∣
∣
∣
∣
∣
∣

(26)

=

∣
∣
∣
∣
∣
∣

P∑

j=1

∆CUM4(sj)

L′′

2∑

l=−L′′

1

|cj(l)|4
|∆CUM2(sj)|2
|∆CUM2(sj)|2

∣
∣
∣
∣
∣
∣

(27)

≤
P∑

j=1

|kD(sj)|
L′′

2∑

l=−L′′

1

|cj(l)|4 |∆CUM2(sj)|2. (28)

We also have

P∑

j=1

|kD(sj)|
L′′

2∑

l=−L′′

1

|cj(l)|4 |∆CUM2(sj)|2 (29)

= |kD(sj)|max

P∑

j=1

|kD(sj)|
|kD(sj)|max

L′′

2∑

l=−L′′

1

|cj(l)|4 |∆CUM2(sj)|2 (30)
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with |kD(sj)|max
= max1≤j≤P |kD(sj)|. We thus have

|kD(sj)|
|kD(sj)|max

≤ 1 ∀ j = 1, . . . , P. (31)

Combining this with (28) and (30) then yields

|∆CUM4(y)| ≤ |kD(sj)|max

P∑

j=1

L′′

2∑

l=−L′′

1

|cj(l)|4 |∆CUM2(sj)|2. (32)

Using (25), we get

|∆CUM4(y)|
|∆CUM2(y)|2

≤ |kD(sj)|max

∑P
j=1

∑L′′

2

l=−L′′

1
|cj(l)|4 |∆CUM2(sj)|2

∣
∣
∣
∑P

j=1

∑L′′

2

l=−L′′

1
|cj(l)|2 ∆CUM2(sj)

∣
∣
∣

2 . (33)

The 2nd-order differential cumulants of the sources of interest are supposed to meet As-
sumption 1. In addition, we consider the following case hereafter (at the end of this section,
we provide a method for selecting time domains D1 and D2 such that this assumption is
met):

Assumption 3 The 2nd-order differential source cumulants ∆CUM2(sj), with j =
1, . . . , P , have the same sign.

Under the above assumptions, we have

P∑

j=1

L′′

2∑

l=−L′′

1

|cj(l)|4 |∆CUM2(sj)|2 ≤

∣
∣
∣
∣
∣
∣

P∑

j=1

L′′

2∑

l=−L′′

1

|cj(l)|2 ∆CUM2(sj)

∣
∣
∣
∣
∣
∣

2

(34)

with equality if and only if

there exist j0 ∈ {1, . . . , P} and l0 ∈ {−L′′
1 , . . . , L′′

2} such that cj(l) = dδ(j−j0)δ(l−l0),
(35)

where: (i) d is an arbitrary complex constant, (ii) δ(j − j0) = 1 if j = j0, and δ(j − j0) = 0
otherwise and (iii) δ(l − l0) is defined in the same way as δ(j − j0).

Using Eq. (24), (33) and (34), we get

|kD(y)| =
|∆CUM4(y)|
|∆CUM2(y)|2

≤ |kD(sj)|max
(36)

with equality if and only if (35) is met and under the condition that the value j0 be such
that |kD(sj0)| = |kD(sj)|max

. When these conditions are met, (9) shows that the output
of the extraction stage reads

y(n) = dsj0(n − l0) +
N∑

j=P+1

cj(n) ∗ sj(n). (37)

This output signal then contains a contribution from only one of the P sources of interest,
added with a convolutive mixture of the N−P stationary sources. We thus exactly achieve
the above-defined partial source separation for one of the sources of interest.
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We thus showed, under the condition that the 2nd-order differential cumulants of the
sources of interest have the same sign, that when the global maximum of the function

|kD(y)| = kD(y).sign(kD(y)) (38)

is obtained, the output signal y(n) only contains one of the sources of interest (plus noise
sources), and that this source is one with the highest value of |kD(y)|. That suggests that
|kD(y)| might then used as a cost function to achieve partial BSS from the considered
underdetermined convolutive mixtures. The suitability of this cost function also depends
on its other extrema, however, as explained below in Section 2.1.4. Before proceeding to
this topic, it should be noted that if the 2nd-order differential cumulants of the sources of
interest do not have the same sign, Eq. (34) and thus (36) are no longer true. In that
case, the global maximum of |kD(y)| cannot be used as a BSS criterion, because it does
not guarantee anymore partial source separation. The signs of the 2nd-order differential
cumulants of the sources of interest are therefore essential for the validity of the approach
that we propose in this paper and they should be checked when using this approach. This
may be done by applying the method that we already used in [8]: that method makes
it possible to derive only from the observations the signs of the 2nd-order differential
cumulants of the sources of interest for any given time domains D1 and D2. This makes it
possible to test various domains and to select two domains, if any, such that the 2nd-order
differential cumulants of the sources of interest have the same sign.

2.1.4 Local extrema

In practice, the extraction filters Bp(z) are adapted by an optimization algorithm which
aims at maximizing |kD(y)|. We just showed that the global maximum of this cost function
corresponds to a valid point, i.e. to an output signal y(n) containing only one of the sources
of interest. However, optimization algorithms may converge towards local extrema of this
cost function, if any. We must therefore also determine whether the other extrema of this
cost function |kD(y)| also correspond to partial source separation. This important topic re-
quires detailed calculations and is therefore presented in Appendix A. Still under Assump-
tion 3, this yields the following result concerning the gradient of |kD(y)| with respect to the
(scaled) coefficients c̄j(l) of the global filters associated to the sources of interest: the only
points where this gradient is equal to zero and which are extrema of |kD(y)| correspond to
situations when only one coefficient c̄j(l) with j ∈ {1, . . . , P} and l ∈ {−L′′

1 , . . . , L′′
2}

is non-zero. These points are therefore all defined by Eq. (35), so that they also yield an
output signal defined by (37), i.e. a signal which contains a contribution from only one of
the P sources of interest, added with a mixture of the N −P stationary sources. At these
points, we therefore indeed exactly achieve the above-defined partial source separation for
one of the sources of interest.

2.1.5 Interpretation with respect to differences in source statistical properties

We showed above that the local maximization of |kD(y)| leads to global filters Cj(z) which
satisfy (35). The extracted signal (37) then contains only one of the P sources which have
different statistical properties between the considered two time domains D1 and D2 and a
combination of the N −P stationary sources, which have no influence on the identification
of the filters Cj(z) associated to the P non-stationary sources.

This can be compared to the classical results concerning Gaussian sources in higher-
order-statistic BSS methods for determined mixtures: Gaussian signals have zero 4th-order
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cumulants and they have no influence on the 4th-order cumulant of an output signal of
a linear BSS system, so that (i) Gaussian sources cannot be extracted using the 4th-
order cumulant as a BSS criterion and (ii) additive Gaussian noise contributions in the
observations do not have any (theoretical) impact on the identification of the mixing
system with that BSS criterion, but they yield corresponding noise contributions in the
outputs of the BSS system. Such classical higher-order BSS methods thus yield distinct
behaviors for sources which have different statistical properties from the point of view of
Gaussianity (more precisely, from the point of view of the nullity/non-nullity of their 4th-
order cumulants). Gaussian sources are thus inherently invisible in the identification stage
of such classical BSS methods. Our approach based on differential normalized kurtosis has
similar properties, but with respect to differential cumulants instead of classical cumulants.
Stationary sources are invisible in its identification stage, thus allowing extraction filters
to converge towards values which achieve the (partial) separation of all non-stationary
sources in the underdetermined configuration, under the above-mentioned assumptions.
Our differential BSS method thus yields distinct behaviors for sources which have different
statistical properties from the point of view of stationarity (more precisely, from the point
of view of the nullity/non-nullity of their 2nd and 4th-order differential cumulants).

2.2 New coloration stage and overall BSS method

The method that we introduced above covers the first stage of our overall BSS approach,
i.e. it yields a single output signal which extracts one of the sources of interest, with
added noise source contributions. We then aim at extracting the other sources of interest.
To this end, we use a deflation scheme. The resulting overall BSS method consists of the
following steps:

1. Extract one source of interest, as explained above i.e. by adapting the filters Bp(z)
so as to maximize |kD(y)| (a corresponding practical optimization algorithm is de-
scribed below in Section 3). This yields an output signal y(n).

2. Estimate the contributions of this extracted source in the observed signals. This is
achieved by a coloration stage, which consists in deriving a set of coloration filters
Hp(z). Each such filter corresponds to an observation xp(n) and to the considered
extracted signal y(n). It is applied to y(n), and the resulting signal hp(n)∗y(n) con-
tains a filtered version of the extracted source. We aim at making this contribution
equal to the contribution in xp(n) of the extracted source, by adequately selecting
hp(n). The coloration method used to this end is presented further in this section.

3. Cancel the contributions of the extracted source in the observed signals, by comput-
ing the modified observations

x′
p(n) = xp(n) − hp(n) ∗ y(n). (39)

We thus obtain a new BSS configuration, where the number of sources of interest
has been decreased by one.

4. If the configuration obtained at this stage still involves more than one source of
interest, go to Step 1, i.e. apply this procedure again to the modified observations
(the number of observations may be decreased by one). Otherwise, end this deflation
procedure.
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Such deflation approaches have been used in the literature for determined mixtures, e.g.
in [7],[11],[19]. They require modifications in our underdetermined context, not only in the
extraction stage that we presented above, but also in the coloration stage, which is the last
building block that we have to develop in order to obtain our overall deflation-based BSS
method. As explained above, this stage aims at identifying the filters Hp(z). The methods
used to this end in the literature are based on the second-order statistics of the extracted
signal y(n) and/or of each observation xp(n), such as their cross-correlation (see e.g.
[19]). They cannot be used directly here, because these signals contain contributions from
all noise sources, which yield unacceptable second-order terms. We therefore introduce
a modified, differential, coloration method. Our differential extraction stage yields the
extracted signal y(n) defined by (37), where d and l0 are arbitrary constants. In the
following calculations, we set

d = 1 and l0 = 0. (40)

This case is considered without loss of generality, since it only consists in redefining Hp(z)
so that it includes the scale factor d and time shift l0 of sj0 in (37) when taking into account
the signal hp(n) ∗ y(n) hereafter. Under the assumption that the sources are independent
and zero-mean, the 2nd-order zero-lag cumulants (or powers) of the signals x′

p(n) in the
time domains Di read

E

[∣
∣
∣x′

p(n)
∣
∣
∣

2
]

Di

= E
[

|xp(n) − hp(n) ∗ y(n)|2
]

Di

(41)

= E[|(apj0(n) − hp(n)) ∗ sj0(n)|2|]Di

+
∑

j ≤ P
j 6= j0

E[|apj(n) ∗ sj(n)|2]Di

+
N∑

j=P+1

E[|(apj(n) − hp(n) ∗ cj(n)) ∗ sj(n)|2]Di
. (42)

We then introduce the 2nd-order zero-lag differential cumulants (or differential powers) of
these signals between the domains D1 and D2, which are denoted ∆Wp below, i.e.

∆Wp = ∆CUM2(x
′
p) (43)

= E

[∣
∣
∣x′

p(n)
∣
∣
∣

2
]

D2

− E

[∣
∣
∣x′

p(n)
∣
∣
∣

2
]

D1

. (44)

The differential cumulants of sources sP+1 to sN are equal to zero. Therefore, we have

∆Wp = E[|(apj0(n) − hp(n)) ∗ sj0(n)|2|]D2 − E[|(apj0(n) − hp(n)) ∗ sj0(n)|2|]D1

+
∑

j ≤ P
j 6= j0

E[|apj(n) ∗ sj(n)|2]D2 −
∑

j ≤ P
j 6= j0

E[|apj(n) ∗ sj(n)|2]D1 . (45)

∆Wp is therefore independent from stationary sources. We now analyze the extrema of
this differential cumulant. Let us consider possibly non-causal MA filters Hp(z) defined
by7

Hp(z) =

L′′′

2∑

l=−L′′′

1

hp(l)z
−l (46)

7Remember that the lags l in hp(l) here include the time shift l0. The orders L′′′

1 and L′′′

2 should be set
to high enough values in order to ensure (47) when the highest accepted time shift l0 is taken into account.
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with complex coefficients hp(l) and

L′′′
1 ≥ L1 and L′′′

2 ≥ L2. (47)

Using the same approach as in Section 2.1.2, Eq. (45) becomes

∆Wp = ∆CUM2(sj0)
∑L′′′

2

l=−L′′′

1
|(apj0(l) − hp(l))|2

+
∑

j ≤ P
j 6= j0

E[|apj(n) ∗ sj(n)|2]D2 −
∑

j ≤ P
j 6= j0

E[|apj(n) ∗ sj(n)|2]D1 . (48)

Considering that the only variable here is the filter Hp(z) that we are adapting, we can
rewrite this expression as

∆Wp = ∆CUM2(sj0)
∑L′′′

2

l=−L′′′

1
|(apj0(l) − hp(l))|2 + Ct, (49)

where Ct is a constant value. The cost function ∆Wp is therefore quadratic with respect to
the coefficients hp(l) and then only has one extremum, which is a maximum or a minimum
depending on the sign of ∆CUM2(sj0). This extremum is reached when

hp(l) = apj0(l), ∀ l ∈ {−L′′′
1 , . . . , L′′′

2 }. (50)

Combining this condition with (37) and (40) shows that the contribution of the extracted
source sj0(n) in the colored output signal hp(n) ∗ y(n) is then equal to the contribution of
this source in observation xp(n). This proves that a method for performing the coloration
operation required in our underdetermined configuration consists in looking for the only
extremum of the cost function which consists of the above-defined 2nd-order differential
cumulant, or differential power, ∆Wp.

Eq. (41) shows that the power of x′
p(n) may also be interpreted as the mean square error

between the signals xp(n) and hp(n)∗y(n). Due to Eq. (44), the differential power of x′
p(n)

is then the differential mean square error between these signals xp(n) and hp(n) ∗ y(n).
The criterion used in our coloration stage, i.e. the optimization of ∆Wp, may therefore
also be interpreted as the optimization of the differential mean square error between the
above signals.

2.3 Extension to colored sources

For the sake of simplicity, we only considered temporally independent sources in the above
description of all stages of our BSS method. More generally speaking, the proposed ap-
proach is directly applicable to sources Sj(z) which are filtered versions of temporally
independent processes Uj(z), i.e.

Sj(z) = Fj(z)Uj(z) (51)

where Fj(z) are MA filters with complex, possibly non-causal, impulse responses. The
same extraction stage as above is then used and, in its analysis, the source filters Fj(z)
are combined with the mixing filters, so that we get back to the same configuration as
above but with respect to the temporally independent processes Uj(z) instead of the source
signals. Thus, when partial separation is reached, the extracted signal y(n) restores the
temporally independent process Uj(z) associated to one of the sources of interest (again
with added noise source contributions). The above-defined coloration stage is then used
in this general case too. It still yields the contributions in all observations of the source
whose process Uj(z) was extracted. These contributions may then be subtracted from all
observations in the framework of the same deflation approach as above.
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3 Optimization algorithms

The differential BSS method proposed in this paper is based on the above-defined deflation
procedure. We here describe the algorithms that we use to optimize the two cost functions
resp. involved in the extraction and coloration stages of this procedure. The corresponding
tools are defined in Appendix B.

3.1 Extraction stage

3.1.1 Cost function

The cost function to be maximized in the extraction stage of our BSS method is the
absolute value of the differential kurtosis of the signal y(n), which may be expressed as
follows, based on (24),

|kD(y)| =

∣
∣
∣
∣

∆CUM4(y)

[∆CUM2(y)]2

∣
∣
∣
∣

= sign(∆CUM4(y)).
∆CUM4(y)

[∆CUM2(y)]2
. (52)

We then derive, from (18), (20) and the expression of the 4th-order cumulant of a complex
zero-mean random variable [12],[19],

∆CUM2(y) = E [y(k)y∗(k)]D2
− E [y(k)y∗(k)]D1

(53)

∆CUM4(y) = E
[

y2(k).[y∗(k)]2
]

D2

− 2E [y(k).y∗(k)]2D2

−E
[

y2(k)
]

D2

E
[

y2(k)
]∗

D2

−E
[

y2(k).[y∗(k)]2
]

D1

+ 2E [y(k).y∗(k)]2D1

+E
[

y2(k)
]

D1

E
[

y2(k)
]∗

D2

. (54)

3.1.2 Derivatives of kD(y)

In order to simplify the equations, we use the following notations

A = ∇bp(l)CUM2(y)

= E [y∗(k)xp(k − l)] (55)

B = ∇bp(l)CUM4(y)

= 2E
[

xp(k − l)y∗(k).|y(k)|2
]

− 4E
[

|y(k)|2
]

E [y∗(k).xp(k − l)]

−2E
[

y∗2(k)
]

E [xp(k − l)y(k)] (56)

C = ∇bp(l)bp(l)CUM2(y) = 0 (57)

D = ∇bp(l)b∗p(l)CUM2(y)

= E[|xp(k − l)|2] (58)
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= D∗

E = ∇bp(l)bp(l)CUM4(y)

= 2E[x2
p(k − l)y∗2(k)] − 4E[y∗(k)xp(k − l)]2

−2E[y∗(k)]E[x2
p(k − l)] (59)

F = ∇bp(l)b∗p(l)CUM4(y)

= 4E[|x∗
p(k − l)y∗(k)|2] − 4|E[xp(k − l)y∗(k)]|2

−4E[|y(k)|2]E[|xp(k − l)|2] − 4|E[xp(k − l)y(k)]|2. (60)

The differential versions of the derivatives (55) to (60) may then be expressed as follows,
where the subscripts D1 and D2 refer to the time domains where the expectations are
considered,

∆A = ∇bp(l)∆CUM2(y)

= AD2 − AD1 (61)

∆B = ∇bp(l)∆CUM4(y)

= BD2 − BD1 (62)

∆C = ∇bp(l)bp(l)∆CUM2(y) = 0 (63)

∆D = ∇bp(l)b∗p(l)∆CUM2(y)

= DD2 − DD1

∆E = ∇bp(l)bp(l)∆CUM4(y)

= ED2 − ED1 (64)

∆F = ∇bp(l)b∗p(l)∆CUM4(y)

= FD2 − FD1 . (65)

First-order derivative k′
D(y)

Considering the first-order derivative of kD(y) with respect to a single complex extraction
coefficient bp(l), Eq. (130) here yields

k′
D(y) = 2∇b∗p(l)kD(y). (66)

Detailed calculations then show that, using the above-defined notations, we have

∇b∗p(l)kD(y) =
∆CUM2

2 (y)∆B∗ − 2∆CUM4(y)∆CUM2(y)∆A∗

[∆CUM2(y)]4
. (67)

Second-order derivative k′′
D(y)

In order to use the Newton-like algorithm defined in Appendix B, we also need the second-
order derivative of kD(y) with respect to a single complex extraction coefficient bp(l). Eq.
(135) here yields

k′′
D(y) = 2Re{∇2

bp(l)b∗p(l)kD(y) + ∇2
bp(l)bp(l)kD(y)}

+2iRe{∇2
bp(l)b∗p(l)kD(y) −∇2

bp(l)bp(l)kD(y)}. (68)
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Additional calculations then yield

∇2
bp(l)b∗p(l)kD(y) = {[−2∆A∆B∗ + ∆CUM2(y)∆F ∗ − 2∆B∆A∗

−2∆CUM4(y)∆D∗]∆CUM2(y)

+6∆CUM4(y)|∆A|2
}

[∆CUM2(y)]−4

= {[−2Re{∆A∆B∗} + ∆CUM2(y)∆F ∗

−2∆CUM4(y)∆D] ∆CUM2(y)

+6∆CUM4(y)|∆A|2
}

[∆CUM2(y)]−4

∇2
b∗p(l)b∗p(l)kD(y) = {[−4∆A∗∆B∗ + ∆CUM2(y)∆E∗] ∆CUM2(y)

+6∆CUM4(y)∆A∗2
}

[∆CUM2(y)]−4 . (69)

The extraction stage therefore operates as follows:

1. Initialize all extraction coefficients bp(l) according to

bp(l) = δ(l) (70)

as in [19]. This is a reasonable choice, since it corresponds to

y(n) =
P∑

p=1

xp(n). (71)

2. Independently adapt each of these complex coefficients bp(l) according to the modi-
fied Newton algorithm (141), applied to |kD(y)|, using the above expressions. 8

3.2 Coloration stage

As shown above, the coloration filters Hp(z) are updated so as to reach the only extremum
of the cost function ∆Wp defined in (43). This extremum is searched using the complex
version of Newton’s algorithm once again. Since this extremum may be a minimum or
maximum, we use the original form (137) of this algorithm, for each coloration coefficient
hp(k). The derivatives to be used in (137) are expressed in the same way as above with
respect to the corresponding complex gradient terms, which may here be shown to read
as follows

∇h∗

p(k)∆Wp = −E[y∗(n − k)(xp(n) − hp(n) ∗ y(n))]D2

+E[y∗(n − k)(xp(n) − hp(n) ∗ y(n))]D1 (72)

∇2
hp(l)h∗

p(l)∆Wp = E[|y(n − k)|]D2 − E[|y(n − k)|]D1 (73)

∇2
hp(l)hp(l)∆Wp = 0. (74)

These filters are also initialized according to hp(k) = δ(k), which corresponds to initially
applying no coloration to y(n).

8Note that we thus consider each variable bp(l) separately. Therefore, instead of using the exact Hessian
matrix of the cost function, we approximate it by its diagonal. We thus in fact obtain an approximate
Newton-like algorithm. The same comment applies to the coloration stage presented below.
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4 Experimental results

We ran various tests using different source signals and mixing matrices in a 3-source
to 2-observation configuration. In the first set of tests, sources 1 and 2 have different
cumulant values in the selected two time domains, whereas source 3 is stationary over
these domains. In domain D1, Source 1 consist of an artificial binary-valued signal, while
Source 2 is the sum of such an artificial binary-valued signal and of a Gaussian signal.
In domain D2, Sources 1 and 2 are artificial MSK communication signals. Source 3 is
an artificial binary-valued signal in both domains. Each domain contains 30000 samples.
Each test is performed with randomly generated mixing filters, and their orders are set to
L1 = 0 and L2 = 2. Our differential BSS method is here applied as follows:

1. Starting from observations x1(n) and x2(n), the extraction stage yields a signal y(n),
which only contains one of the sources of interest9 (plus the noise source, and some
residuals from the other source of interest in practice, due to estimation errors).

2. The coloration stage is then applied to y(n) and to observation x1(n). This yields
an output signal denoted z1(n) hereafter, which contains the contribution of the
extracted source in x1(n) (plus the noise source ...).

3. The signal z1(n) is subtracted from x1(n). This directly yields an output signal de-
noted z2(n) hereafter, which contains the contribution of the other source of interest
in x1(n) (plus the noise source ...) and completes our BSS method in this simple
setup.

We apply this method with extraction filters Bp(z) and coloration filters Hp(z) containing
4 coefficients, i.e. 3 for their causal part and 1 for their non-causal part. We use 50
iterations in Newton’s algorithms for both the extraction and coloration stages.

Performance is here measured as follows. The Signal-to-Interference Ratios (SIR) avail-
able from the observations are first used to measure the quality of the inputs of our BSS
system. More precisely, we define two types of input SIRs:

1. The ”global input SIRs” are defined for each source sj(n) and each observation xi(n)
as the ratios of the ”Signal power” and ”Interference power”, when the contribution
of sj(n) in xi(n) is considered as the ”Signal” and the contributions of the other two
sources in xi(n) are considered as ”Interferences”, i.e.

SIRglob
in (xi, sj) =

E{|aij(n) ∗ sj(n)|2}
E{|xi(n) − aij(n) ∗ sj(n)|2} , i = 1, 2, j = 1, . . . , 3

(75)

=
E{|aij(n) ∗ s(j)|2}

E{|
∑

k∈{1,...,3}, k 6=j

aik(n) ∗ sk(n)|2}
. (76)

2. The ”partial input SIRs” are defined in the same way as the above global input SIRs,
except that all contributions of the stationary source s3(n) are removed, in order to
only consider the two non-stationary sources that we aim at separating one from the

9As explained above, we obtain a time-shifted and scaled version of that source.
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other. i.e.

SIRpart
in (xi, sj) =

E{|aij(n) ∗ s(j)|2}
E{|aik(n) ∗ sk(n)|2}

, i = 1, 2, j = 1, 2,

k = 1, 2, k 6= j. (77)

The performance improvement achieved by our BSS method is then measured by com-
paring the above input SIRs to the output SIRs measured from the outputs of our BSS
system. We here consider two types of output SIRs. Again, both of them are computed
with signals where all contributions of the stationary source s3(n) are removed, in order
to only take into account the two non-stationary sources that we aim at separating one
from the other. It should be clear that s3(n) is only removed when computing these per-
formance figures, but is indeed present when we first apply our differential BSS method
to identify the mixing filters. The considered output SIRs are:

1. The ”estimation output SIRs” associated to each source sj(n) and each colored out-
put z′i(n), where z′i(n) consists of the above-defined signal zi(n) without its contri-
bution associated to s3(n). These SIRs are again defined as the ratios of the ”Signal
power” and ”Interference power”, where (i) the ”Signal” is the ideal value of the out-
put signal z′i(n) if this signal extracts source sj(n), which is equal to a1j(n) ∗ sj(n)
as explained above, and (ii) the ”Interference” is the difference between this ideal
value and the actual signal z ′i(n). These SIRs therefore read

SIRest
out(z

′
i, sj) =

E{|a1j(n) ∗ sj(n)|2}
E{|z′i(n) − a1j(n) ∗ sj(n)|2} , i = 1, 2, j = 1, 2. (78)

These SIRs take into account two types of deviations in z ′
i(n), i.e. (i) the undesired

components in z′i(n) associated to the other source of interest, which really concern
the separation of one of these sources from the other, (ii) the differences between
the filters applied to source sj(n) in z′i(n) and in its ideal value a1j(n) ∗ sj(n). This
type of SIR therefore completely measures with which accuracy z ′

i(n) estimates the
specific filtered version a1j(n) ∗ sj(n) of sj(n). This criterion is relevant in applica-
tions where any additional filter applied to an extracted source should be considered
as performance degradation (e.g. in speech enhancement applications). On the con-
trary, in other fields only the contribution from the other source of interest should
be regarded as degradation, i.e. only the separation aspect of the above criterion
should be taken into account in performance criteria (this e.g. concerns communi-
cation applications where filtered versions of the extracted source are acceptable,
because the output of a BSS system is then applied to an equalizer anyway). To
handle the latter case, we therefore introduce an alternative output SIR hereafter.

2. Denoting [z′i]sj
(n) the component of sj(n) in z′i(n), we define the ”separation output

SIRs” associated to each source sj(n) and each colored output z ′i(n) as

SIRsep
out(z

′
i, sj) =

E{|[z′i]sj
(n)|2}

E{|[z′i]sk
(n)|2} , i = 1, 2, j = 1, 2,

k = 1, 2, k 6= j. (79)

In addition to the differential kurtotic method suited to underdetermined mixtures
that we proposed in this paper, we also apply the classical, i.e. non-differential, kurtotic
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method only intended for determined mixtures which was introduced in [19]. The results
obtained with both methods for three mixing matrices are provided as Tests no. 1 to 3 of
Tables 1 to 5. The following conclusions may especially be drawn from these tests. The
classical method fails to achieve partial source separation: it yields estimation output SIRs
which are most often lower, sometimes slightly higher, than the partial input SIRs (here
and below, we take into account the best SIR among the two values associated to both
sources, for each observation or output signal). On the contrary, our differential method
yields significant performance improvement:

1. It yields estimation output SIRs which range from about 10 to 17 dB, while the
partial SIRs of the processed mixed signals range from 2 to 7 dB. This therefore
typically corresponds to a 10 dB SIR improvement.

2. The output performance is of course even better if only considering the separation
aspect measured by separation output SIRs, which range from 11 to 22 dB.

In order to further analyze the performance of our method, we ran two additional tests.
In Test no. 4, we used the same mixing configuration as in Test no. 1, except that the
length parameter L2 of the mixing filters was set to 4 (more precisely, the same mixing
filter coefficient values as in Test no. 1 were used for lags 0 to 2, and additional non-zero
values were added for lags 3 and 4). Tables 1 to 5 show that our differential method still
yields good output SIRs for that higher filter length, while the non-differential method
does not. Eventually, in Test no. 5, we used the same configuration as in Test no. 1,
except that the stationary Source 3 had a Laplacian distribution. Again, Tables 1 to 5
show that only our differential method yields high output SIRs in this configuration.

5 Conclusion

In this paper, we introduced new criteria and associated algorithms for the Blind Source
Separation problem. The proposed approach is designed to handle the difficult case when
the source signals are complex-valued and their mixtures are complex-valued, convolutive,
and underdetermined (i.e. N sources and P < N observations). It makes it possible to
achieve the partial separation of P sources, by taking advantage of the assumed distinct
statistical properties of the sources: the P sources of interest should be non-stationary,
while the other (N − P ) ”noise sources” should be stationary. This method is based on
the differential BSS concept that we introduced in [8]. It may be seen as a differential
extension of the approach proposed by J.K. Tugnait in [19] and it is especially based on
the differential normalized kurtosis that we introduce in this paper. We therefore call this
BSS method ”DNKurt”.

More precisely, we considered P convolutive mixtures of a set of N sources, composed (i)
of P sources whose 2nd and 4th-order cumulants take different values in two time domains,
and which are therefore non-stationary and (ii) of (N − P ) sources which are stationary
from the point of view of these cumulants. We studied the absolute value |kD(y)| of the
differential normalized kurtosis, considered between these two time domains, of a signal
extracted by our BSS system. We demonstrated that all maxima of |kD(y)| are obtained
for filter values which achieve the partial separation of the P non-stationary sources, i.e.
which yield an output signal containing contributions from only one of these P sources of
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interest plus a mixture of the (N − P ) noise sources10. We therefore introduced a new
extraction stage, based on the maximization of |kD(y)|. We then proposed a new coloration
stage, which relies on differential power optimization (or, equivalently, differential mean
square error optimization). This stage yields the contributions of the extracted source in all
observations. The other sources are then derived using a traditional deflation procedure.

In order to optimize the cost functions that we proposed in the above extraction and
coloration stages, we introduced Newton-like algorithms, for real functions of complex
variables.

Experimental tests in a 3-source to 2-observation configuration clearly show the effi-
ciency of the proposed method: while the classical, i.e. non-differential, kurtotic method
fails to achieve partial source separation, our approach typically yields a 10 dB improve-
ment in terms of estimation SIR (en even more in terms of separation SIR).

Our future investigations will especially concern (i) the application of the proposed
method to real-world signals exhibiting the required short-term stationarity and long-
term non-stationarity, and (ii) the development of modified versions of this approach
which reduce its computational load.

A Local extrema

In this appendix, we show that all the extrema of the cost function |kD(y)| are obtained for
filters Cp(z) satisfying (35) 11. To this end, we analyze the global filters Cj(z) associated to
the sources of interest, i.e. with j = 1, . . . , P , in the situation when the gradient of the cost
function |kD(y)| is equal to zero. The approach that we develop in this appendix is similar
to the method which was previously used by J. K. Tugnait [19] to analyze the variations
of the classical normalized kurtosis with respect to the filters associated to all sources in
the case of determined mixtures. Here, we precisely aim at proving that a differential
extension of this type of approach may be developed for underdetermined mixtures.

To simplify the notations, we make use of the complex gradient operator [3] that we
denote ∇. Let νr and νi be the real and imaginary parts of a complex scalar variable ν
and J(ν) a real function of that variable ν. The complex gradient of J(ν) with respect to
ν has the following properties:

∇νJ(ν) = 1
2

(
∂J(ν)
∂νr

− i∂J(ν)
∂νi

)

(80)

∇ν∗J(ν) = 1
2

(
∂J(ν)
∂νr

+ i∂J(ν)
∂νi

)

. (81)

This operator follows the same rules as the classical real gradient operator except that:
(i) the derivative must be computed with respect to the complex variable ν ∗ and (ii) the
variable ν∗ must be considered as independent from ν in this derivation.

We now consider the cost function (38). We study the complex gradient of this cost
function with respect to each coefficient of the global filters Cj(z). For given indices j and
l, we have

∇c∗
j
(l)|kD(y)| = ∇c∗

j
(l)kD(y).sign(kD(y)). (82)

10This result holds only if the differential 2nd-order cumulants of the sources of interest have the same
sign. This is a not a problem however, since the considered time domains may be selected accordingly, as
explained above in this paper.

11Note that the source which is partially separated for such a set of filters is not necessarily the one with
the highest differential kurtosis value.
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We first consider the term ∇c∗
j
(l)kD(y) in (82). Eq. (24) yields

∇c∗
j
(l)kD(y) =

[∆CUM2(y)]2∇c∗
j
(l)∆CUM4(y) − 2∆CUM2(y)∆CUM4(y)∇c∗

j
(l)∆CUM2(y)

[∆CUM2(y)]4
.

(83)
Due to (22), (23) and (24), the differential normalized kurtosis kD(y) does not depend
on the coefficients cj(l) with j > P . Therefore, the corresponding first and second-order
derivatives of kD(y) are equal to zero. Thus, the stationary sources do not have any effect
on the extrema of kD(y) and are therefore no longer considered hereafter.

For the remaining sources, i.e. those with 1 ≤ j ≤ P , the first derivative of the 4th-order
cumulant expressed in (23) is

∇c∗
j
(l)∆CUM4(y) = ∇c∗

j
(l)





P∑

m=1

∆CUM4(sm)

L′′

2∑

k=−L′′

1

[cm(k)]2[c∗m(k)]2





= 2∆CUM4(sj)[cj(l)]
2c∗j (l). (84)

Similarly, (22) leads to

∇c∗
j
(l)∆CUM2(y) = ∆CUM2(sj)cj(l). (85)

Using (83), (84) and (85), we can rewrite Eq. (82) as

∇c∗
j
(l)|kD(y)| =

2cj(l)[∆CUM4(sj)|cj(l)|2∆CUM2(y) − ∆CUM4(y)∆CUM2(sj)]sign(kD(y))

[∆CUM2(y)]3
.

(86)
We now analyze the local extrema of this cost function. Thanks to Assumption 3, the
2nd-order differential cumulants of all sources of interest have the same sign. As explained
above, this sign may be derived from the observations Xi(z). Moreover, if these differential
cumulants are negative, they can be changed into positive values just by permuting the
selected time domains D1 and D2. Therefore, without any loss of generality, we consider
from now the 2nd-order differential cumulants of all sources of interest to be positive. We
then define

c̄j(k) =
√

∆CUM2(sj)cj(k), j = 1, . . . , N. (87)

We therefore have
c̄j(k) = 0 ∀ j > P, ∀ k. (88)

Moreover, (22) yields

∆CUM2(y) =
P∑

j=1

L′′

2∑

k=−L′′

1

c̄j(k)c̄∗j (k) (89)

and (23) and (24) result in

∆CUM4(y) =
P∑

j=1

kD(sj)

L′′

2∑

k=−L′′

1

[c̄j(k)]2[c̄∗j (k)]2. (90)
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Dividing Eq. (86) by
√

∆CUM2(sj), we obtain

∇c̄∗
j
(l)|kD(y)|

√

∆CUM2(sj)
=

2c̄j(l)[kD(sj)|c̄j(l)|2∆CUM2(y) − ∆CUM4(y)]sign(kD(y))

[∆CUM2(y)]3
. (91)

All the points where the gradient of the cost function |kD(y)| with respect to the global
filters c̄j(l) becomes equal to zero are the solutions of

∇c̄∗
j
(l)|kD(y)| = 0 ∀ j = 1, . . . , P and ∀ l = −L′′

1, . . . , L′′
2. (92)

For given j and l, the latter equation combined with (91) leads to

either c̄j(l) = 0 (93)

or kD(sj)|c̄j(l)|2 =
∆CUM4(y)

∆CUM2(y)
. (94)

We define

c(M) = [. . . , c̄1(−1) . . . c̄P (−1)
︸ ︷︷ ︸

l=−1

, c̄1(0) . . . c̄P (0)
︸ ︷︷ ︸

l=0

, c̄1(1) . . . c̄P (1)
︸ ︷︷ ︸

l=1

, . . .]T

and we set its entries so that (92) holds. M is the number of non-zero entries of c(M) .
Therefore, M is also the number of possibly time-shifted contributions of different or
identical sources of interest in the extracted signal, as shown by (9). Since the extraction
process provides a result up to an arbitrary scale factor, we can set c(M) so that

‖c(M)‖2 =
P∑

j=1

L′′

2∑

k=−L′′

1

|c̄j(k)|2 = 1. (95)

Combined with (89), the latter equation implies

∆CUM2(y)|c=c(M) = 1. (96)

Eq. (94) then becomes

|c̄(M)
j (l)|2 =

βM

kD(sj)
(97)

with
βM = ∆CUM4(y)|c=c(M) . (98)

Thus for a given M , the solutions of (92) are the vectors c(M) which are such that

|c̄(M)
j (l)|2 =

{

βM/kD(sj) if (j, l) ∈ IM

0 otherwise
(99)

where IM is a M -element subset of couples (j, l), with j ∈ {1, . . . , P}, l ∈ {−L′′
1 , . . . , L

′′
2}

and (j, l) such that c̄j(l) 6= 0.
We now prove that all the vectors c(M) with M ≥ 2 and ‖c(M)‖2 = 1 are saddle points

of the cost function |kD(y)|. We first show these points are not local maxima. For any
c(M), with an associated set IM and M ≥ 2, we define

B(c(M)) = {c / ‖c‖2 = ‖c(M)‖2 = 1, cj(l) = 0 for (j, l) /∈ IM

and cj(l) unspecified for (j, l) ∈ IM}. (100)
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Let (j1, l1) and (j2, l2) be two distinct couples from IM and consider c ∈ B(c(M)) such
that, for ε > 0 (ε small) and x real-valued,

c̄j1(l1) = (1 − ε)c̄
(M)
j1

(l1) (101)

c̄j2(l2) = xc̄
(M)
j2

(l2) (102)

c̄j(l) = c̄
(M)
j (l) if (j, l) 6= (j1, l1) and (j, l) 6= (j2, l2) (103)

Since c ∈ B(c(M)) and c(M) ∈ B(c(M)), we have

||c||2 = ||cM ||2. (104)

Therefore
|(1 − ε)c̄

(M)
j1

(l1)|2 + |xc̄
(M)
j2

(l2)|2 = |c̄(M)
j1

(l1)|2 + |c̄(M)
j2

(l2)|2. (105)

The latter equation can be rewritten as

x2 = 1 + ν(2ε − ε2) (106)

with

ν =

∣
∣
∣
∣
∣
∣

c̄
(M)
j1

(l1)

c̄
(M)
j2

(l2)

∣
∣
∣
∣
∣
∣

2

. (107)

Eq. (24), (89) and (90) yield

kD(y)c(M) =
∆CUM4(y)c=c(M)

[

∆CUM2(y)c=c(M)

]2 (108)

=

∑P
j=1 kD(sj)

∑L′′

2

l=−L′′

1
|c̄(M)

j (l)|4
[
∑P

j=1

∑L′′

2

l=−L′′

1
|c̄(M)

j (l)|2
]2 (109)

and

kD(y)c =

∑P
j=1 kD(sj)

∑L′′

2

l=−L′′

1
|c̄j(l)|4

[
∑P

j=1

∑L′′

2

l=−L′′

1
|c̄j(l)|2

]2 . (110)

Moreover c ∈ B(c(M)). Therefore ||c||2 = ||c(M)||2 = 1. The denominators of (109) and
(110) are thus both equal to 1. These equations then become

kD(y)c(M) =
P∑

j=1

kD(sj)

L′′

2∑

l=−L′′

1

|c̄(M)
j (l)|4 (111)

kD(y)c =
P∑

j=1

kD(sj)

L′′

2∑

l=−L′′

1

|c̄j(l)|4. (112)

Let us introduce
ΓM = kD(y)c − kD(y)c(M) . (113)
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Eq. (101), (102), (103), (111) and (112), lead to

ΓM = kD(sj1)|c̄
(M)
j1

(l1)|4[(1 − ε)4 − 1] + kD(sj2)|c̄
(M)
j2

(l2)|4[x4 − 1]. (114)

In order to remove x from this expression, we first derive from (106)

x4 − 1 = [1 + ν(2ε − ε2)]2 − 1
= 4νε + 2ε2[−ν + 2ν2] + O(ε3).

(115)

In addition, we have
(1 − ε)4 − 1 = −4ε + 6ε2 + O(ε3). (116)

We then simplify (114), using (99),(107),(115) and (116). This yields

ΓM = βM |c̄(M)
j1

(l1)|24ε2(1 + ν) + O(ε3). (117)

Eq. (24) and (98) result in

kD(y)c(M) =
βM

[

∆CUM2(y)|c=c(M)

]2 . (118)

Also taking into account (96), we obtain kD(y)c(M) = βM . Moreover, for c in a neighbor-

hood of c(M), we have

sign(kD(y)c) = sign(kD(y)c(M)) = sign(βM ). (119)

Therefore, using (113) and (117) and for ε sufficiently small, we deduce that in a neigh-
borhood of c(M), the following conditions hold

• if βM > 0 then kD(y)c
︸ ︷︷ ︸

>0

= kD(y)c(M)

︸ ︷︷ ︸

>0

+ ΓM
︸︷︷︸

>0

• if βM < 0 then kD(y)c
︸ ︷︷ ︸

<0

= kD(y)c(M)

︸ ︷︷ ︸

<0

+ ΓM
︸︷︷︸

<0

.

Therefore, whatever βM

|kD(y)c| > |kD(y)c(M) |. (120)

Thus, any point c(M) with M ≥ 2 cannot be a local maximum of |kD(y)|.
The same analysis must be carried out to show that a point c(M) with M ≥ 2 cannot

be a local minimum of |kD(y)|. To this end, we choose the vector c so that

c̄j(l) =







√
1 − εc̄

(M)
j (l), ∀(j, l) ∈ IM√

ε for a single couple (j, l) = (j1, l1) with (j1, l1) /∈ IM

0 otherwise

(121)

with a small positive ε. It may be shown easily that, since ||c(M) || = 1, we have ‖c‖ = 1.
Therefore, (111) and (112) also apply here. The latter equation yields

kD(y)c = (1 − ε)2
P∑

j=1

kD(sj)

L′′

2∑

l=−L′′

1

|c̄(M)
j (l)|4 + kD(sj1)ε

2. (122)
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Combining the latter equation with (98),(108),(111) and ||c(M)|| = 1 yields

kD(y)c = (1 − ε)2βM + kD(sj1)ε
2 (123)

= βM (1 − 2ε) + O(ε2). (124)

Thus, for ε sufficiently small

|kD(y)c| ' |βM |(1 − 2ε)
= |kD(y)c(M) |(1 − 2ε)

< |kD(y)c(M) |.
(125)

Therefore, a point c(M) with M ≥ 2 cannot be a local minimum of |kD(y)|. As an overall
result, it can only be a saddle point.

Therefore, the only points where the gradient of |kD(y)|, with respect to the coefficients
c̄j(l) of the global filters associated to the sources of interest, is equal to zero and which
are extrema of |kD(y)| are obtained for M = 1. In other words, they are such that only
one coefficient c̄j(l) with j ∈ {1, . . . , P} and l ∈ {−L′′

1 , . . . , L′′
2} is non-zero. They are

therefore all defined by Eq. (35).

B Tools for optimization algorithms

We here define the tools required in Section 3.

B.1 Complex derivatives

B.1.1 First-order complex derivative

Let f(θ) be a real scalar function of a complex scalar variable θ. We here define its
first-order complex derivative with respect to θ, denoted f ′(θ). This derivative describes
the evolution of f(θ) along the real and imaginary axes. This operation is achieved by
considering separately the real and imaginary parts of θ and then defining

f ′(θ) =
∂

∂Re{θ}f + i
∂

∂Im{θ}f. (126)

To simplify the notations, we rewrite this expression as

f ′(θ) = ∇Re{θ}f + i∇Im{θ}f. (127)

We here use the complex derivative operator defined in [3]. This operator, denoted ∇,
yields

∇θ∗f = 1
2

(
∂f

∂Re{θ} + i ∂f
∂Im{θ}

)

(128)

i.e., using the above-defined notations,

∇θ∗f =
1

2

(

∇Re{θ}f + i∇Im{θ}f
)

. (129)

Comparing this expression to (127), we obtain

f ′(θ) = 2∇θ∗f. (130)

Note that deriving f(θ) with respect to θ instead of θ∗ leads to

∇θf = 1
2

(

∇Re{θ}f − i∇Im{θ}f
)

= (∇θ∗f)∗ .
(131)

26



B.1.2 Second-order complex derivative

We now define the second-order complex derivative of f(θ) with respect to θ as

f ′′(θ) = ∇2
Re{θ}Re{θ}f + i∇2

Im{θ}Im{θ}f. (132)

The calculations presented in [3] then yield

∇2
Re{θ}Re{θ}f = ∇2

θθ∗f + ∇2
θ∗θ∗f + ∇2

θθf + ∇2
θ∗θf

= 2Re{∇2
θθ∗f + ∇2

θθf} (133)

∇2
Im{θ}Im{θ}f = ∇2

θθ∗f −∇2
θ∗θ∗f −∇2

θθf + ∇2
θ∗θf

= 2Re{∇2
θθ∗f −∇2

θθf}. (134)

We thus eventually obtain

f ′′(θ) = 2Re{∇2
θθ∗f + ∇2

θθf} + 2iRe{∇2
θθ∗f −∇2

θθf}. (135)

B.2 Newton-like algorithms

B.2.1 Newton’s classical algorithm

The classical version of Newton’s algorithm applies to a real scalar function f(θ) of a real
vector θ. For a scalar variable θ, a slightly extended form [15] of this algorithm reads

θn+1 = θn + µ

∂f
∂θ

∣
∣
∣
θn

∂2f
∂θ2

∣
∣
∣
θn

, (136)

where θn is the value of θ for the nth iteration and µ is the adaptation gain. This gain is
equal to −1 in Newton’s most classical algorithm, and this algorithm may then converge
towards a maximum or a minimum of the function f(θ). The gain µ is assigned as explained
below in modified versions of this method considered in this paper.

B.2.2 Complex version of Newton’s algorithm

Now consider a real scalar function f(θ) of a complex scalar variable θ. Using the complex
derivatives defined in Section B.1, the above algorithm becomes

θn+1 = θn + µ
(

Re{f ′(θ)}
Re{f ′′(θ)} + i. Im{f ′(θ)}

Im{f ′′(θ)}

)∣
∣
∣
θn

. (137)

B.2.3 Modified Newton algorithms for maximum search

In the extraction stage of our BSS method, we need an algorithm which is guaranteed to
only converge towards a maximum, since this stage aims at maximizing a cost function.
On the contrary, Newton’s classical algorithm may converge towards a maximum or a
minimum of f(θ), as mentioned above. It may be checked easily that this behavior is
related to the dependence of its update term with respect to the second-order derivative
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of f(θ), and that this problem may therefore be avoided by using the modified form of
algorithm (136) that we propose, i.e.

θn+1 = θn + µ

∂f
∂θ

∣
∣
∣
θn∣

∣
∣
∣

∂2f
∂θ2

∣
∣
∣
θn

∣
∣
∣
∣

, (138)

where µ is a positive adaptation gain: the modified algorithm (138) may only converge
towards local maxima of f(θ), not towards its minima. Similarly, for a complex scalar
variable θ, the modified form of (137) for finding a maximum of f(θ) reads

θn+1 = θn + µ.
(

Re{f ′(θ)}
|Re{f ′′(θ)}| + i. Im{f ′(θ)}

|Im{f ′′(θ)}|

)∣
∣
∣
θn

. (139)

Now consider the situation encountered in this paper, i.e. the maximization of a function
g defined with respect to another function f as

g = |f | = sign(f)f. (140)

The corresponding maximization algorithm reads

θn+1 = θn + µ.sign(f(θ)).
(

Re{f ′(θ)}
|Re{f ′′(θ)}| + i. Im{f ′(θ)}

|Im{f ′′(θ)}|

)∣
∣
∣
θn

. (141)
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Table 1: Global input SIR (dB).

Source index

Test no. Observation index 1 2 3

1 1 -9.3 -12.92 7.42
2 -13.40 -9.46 7.70

2 1 -8.32 -16.00 7.44
2 -16.00 -9.35 8.32

3 1 -8.43 -13.02 6.81
2 -11.83 -9.54 7.17

4 1 -6.86 -11.35 5.03
2 -11.11 -6.76 4.86

5 1 -3.95 -8.13 1.43
2 -8.60 -4.02 1.70

Table 2: Partial input SIR (dB).

Source index

Test no. Observation index 1 2

1 1 3.33 -3.33
2 -3.70 3.70

2 1 7.17 -7.17
2 -6.29 6.29

3 1 4.20 -4.20
2 -2.13 2.13

4 1 3.96 -3.96
2 -3.88 3.88

5 1 3.33 -3.33
2 -3.70 3.70
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Table 3: Estimation output SIR (dB) of non-differential BSS method.

Source index

Test no. Output index 1 2

1 1 1.41 -0.76
2 2.57 -1.92

2 1 1.40 -2.45
2 4.73 -5.77

3 1 5.23 -4.01
2 0.18 1.03

4 1 1.35 0.02
2 3.98 -2.61

5 1 1.57 1.81
2 5.13 -1.76

Table 4: Estimation output SIR (dB) of differential BSS method.

Source index

Test no. Output index 1 2

1 1 13.50 -5.30
2 -1.98 10.17

2 1 16.73 -8.10
2 -0.91 9.55

3 1 14.61 -5.50
2 -1.30 10.42

4 2 12.83 -5.64
1 -1.68 8.88

5 1 13.94 -5.21
2 -1.89 10.61
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Table 5: Separation output SIR (dB) of differential BSS method.

Source index

Test no. Output index 1 2

1 1 21.84 -21.84
2 -11.25 11.25

2 1 18.87 -18.87
2 -14.07 14.07

3 1 16.13 -16.13
2 -15.25 15.25

4 1 13.41 -13.41
2 -15.07 15.07

5 1 19.68 -19.68
2 -12.20 12.20
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