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Abstract

In this paper, we propose a new blind source separation (BSS)
method called TIFROM (for TIme-Frequency Ratio Of Mixtures) which
uses time-frequency (TF) information to cancel source signal contri-
butions from a set of linear instantaneous mixtures of these sources.
Unlike previously reported TF BSS methods, the proposed approach
only requires slight differences in the TF' distributions of the considered
signals: it mainly requests the sources to be cancelled to be ”visible”,
i.e. to occur alone in a tiny area of the TF plane, while they may
overlap in all the remainder of this plane. By using TF ratios of mixed
signals, it automatically determines these single-source TF' areas and
identifies the corresponding parts of the mixing matrix. This approach
sets no conditions on the stationarity, independence or non-Gaussianity
of the sources, unlike classical Independent Component Analysis meth-
ods. It achieves complete or partial BSS, depending on the numbers
N and P of sources and observations and on the number of visible
sources. It is therefore of interest for underdetermined mixtures (i.e.
N > P), which cannot be processed with classical methods. Detailed
results concerning mixtures of speech and music signals are presented
and show that this approach yields very good performance.

Keywords: blind source separation, gaussianity, non-stationary signals, par-

tial separation, single-source area, statistically dependent signals, time-frequency
analysis, short-time Fourier transform, sparsity, TIFROM, underdetermined
mixtures.
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1 Introduction

Blind source separation (BSS) consists in estimating N unknown sources
from P observations resulting from the mixture of these sources through un-
known propagation channels. Denoting A the mixing operator, the relation-
ship between the sources and observations reads z = As, where the vector

s =[s1, 82, --., sn]T contains the unknown sources while z = [z, 2, ..., Tp]
represents the observations. We here only consider linear instantaneous mix-
tures, so that the operator A corresponds to a scalar matrix. Our investi-
gation includes the so-called ”"underdetermined case”, i.e. the configuration
involving more sources than observations (N > P).

Linear instantaneous mixtures have been extensively studied since the
first papers by J. Herault and C. Jutten [12]--[14]. One can find a review of
most classical methods in [5]. These approaches basically aim at separating
the sources by combining the observations by means of a matrix adapted
so that the output signals are independent. The fundamental assumption
of these techniques, known as Independent Component Analysis (ICA), is
that the sources must be independent. Moreover, most of these approaches
can only separate stationary non-Gaussian signals. Due to these limita-
tions, poor performance is often obtained when dealing with real sources,
like audio signals, which do not match those requirements. Some authors
[8],]9],[17],[23],[24] have proposed different approaches which take advantage
of the non-stationarity of such sources in order to achieve better performance
than classical methods for this type of signals. However, the approaches pre-
sented in [17],[23],[24] do not apply to the underdetermined case, as they
then yield signals which are still mixtures of all source signals. To overcome
the latter restriction, we proposed an original concept for the underdeter-
mined case [8],[9]. This method is efficient but requires the sources to have
specific stationarity properties. Audio signals, for example, are not well
suited to this approach. [19] addresses the separation of several (speech)
sources from a single observation, but requires prior knowledge about the
sources in order to select basis functions.

We here propose a less specific method, which requires at least two obser-
vations however. We start from an approach based on the difference between
sources in the time domain, and then extend this principle by exploiting the
time and frequency variations of these signals. A few time-frequency (TF)
BSS methods have previously been reported. The first one [3] provided
limited performance despite its complexity. Good separation was obtained
even for underdetermined mixtures [4],[27] with another type of methods,
which require the sources to be sparse e.g. in the TF domain and which
resynthesize them. A TF method called DUET was also developed for delay
and attenuation mixtures [20] and tested with convolutive mixtures, using
real-time computation [25]. This method ideally requires the sources to be
W-disjoint orthogonal in the TF' plane (i.e. only one source should occur
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in each TF window) which is quite restrictive, even if it has been shown
that approximate W-disjoint orthogonality is sufficient for most speech sig-
nal [2],[26]. In the underdetermined case, this approach performs an inac-
curate reconstruction of the sources, by applying an inverse transform to
each source restricted to TF areas where it occurs alone, like the somewhat
similar SAFTA algorithm [1].

Unlike the above approaches, our TF method applies to sources which
almost fully overlap in the TF plane and it avoids artificial source recon-
struction. More precisely, it almost only requires each source to occur alone
in a tiny set of adjacent TF windows, while several sources may coexist
everywhere else in the TF plane. It automatically determines such a single-
source area and derives from it ”cancelling coefficient” values which allow it
to remove the contributions of this source from all observations. Note that
recent works also show interest in the detection of single-source areas in the
time frequency plane [10]. Our method leads to a complete BSS in a single
step in simple configurations, or to a partial source separation [8] in more
difficult cases, e.g. when N > P. This new approach also removes the main
restrictions of classical ICA methods [5], as it applies to various dependent
and/or Gaussian sources, which may be stationary or not.

This paper is organized as follows. In Section 2, we start from a temporal
analysis of the simple configuration involving two mixtures of two sources to
then introduce our TIme Frequency Ratio Of Miztures (TIFROM) method.
Section 3 shows that this approach applies to dependent and/or Gaussian
signals, provided they match the assumptions introduced in Section 2. We
then extend our method to the case of N sources and P observations in
Section 4. The influence of background noise is studied in Section 5. We
then provide several experimental results in Section 6 and draw various
conclusions from this investigation in Section 7.

2 Basic case: Two mixtures of two sources

2.1 Preliminary approach: Temporal analysis
We here consider the following linear instantaneous mixture! of two real-
valued sources:

{ xl(t) = ansl(t) =+ a1232(t) (1)
.Tg(t) = a2181(t) + a2232(t)

where the coefficients a;; of the mixing matrix A are real, constant and
different from zero.

BSS may be seen as a method for finding an estimate A1 of the inverse
of A, so that the output vector y = A1z is equal to the source vector s.

!The mixtures are assumed to be non-degenerate throughout this paper. In this section,
this means a11/a21 # ai12/a2e.



Due to classical indeterminacies, this separation can only be performed up
to a scale factor and a permutation [5]. As an alternative, BSS may also
be achieved by means of successive source cancellations by considering the
linear combinations of the observations:

y(t) = z1(t) — cxa(t). (2)

Combining (1) and (2) shows that the cancelling coefficient values ¢; and co
which respectively make it possible to cancel s;(t) or sa(¢) and therefore to
extract so(t) or s1(t) are:

)
V]

— a —
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1
2

(3)

A simple BSS method may then be derived from the following principle: if
we can find some locations in the time domain when z;(¢) and z2(t) contain
only the contribution of one source, the above cancelling coefficient values c;
are easy to compute. Considering for example a time ¢, such that s1(¢,) # 0
and sa(t,) = 0, (1) yields:

i)
)
N

z1(tn) = a1181(tn)
{ lt alll (4)

J:l(tn) _ a1
zo(tn) — a21?
(3) which cancels source s1(t) using (2). This means that we theoretically

only need a source to disappear at time %, to find the corresponding can-
celling coefficient value, i.e. to identify the associated information in the
mixing matrix A. Note that if we can determine both ¢; and cg, then we
can easily invert A, achieving BSS up to a scale factor, by considering the

inverse matrix:
T
s
4 - [ 1/61 1/02 ] (5)

y(t) = A7 z(t) = [a1151(t), ar2s2(t)]" . (6)

Unfortunately, this time ¢, may hardly be determined in practical situ-
ations, since both sources are simultaneously active. Even if the situation
when the value of one source crosses the zero frontier is really common for
zero-mean signals, the time duration of such events is too short to allow one
to detect them.

This approach based on temporal analysis is therefore restricted to the
very special case when each source occurs alone in large enough time inter-
vals. Similar BSS methods, which also consider temporally sparse sources,
have by the way already been reported, e.g. in [16],[21]. Beyond this pre-
liminary temporal approach, this paper mainly aims at introducing our TF
extension of the above method, thus yielding much less restrictive sparsity
requirements.

By computing the ratio we directly obtain the value ¢; of equ.

which yields



2.2 Time-frequency analysis

2.2.1 Definition of the time-frequency tool

During the last fifty years, many powerful TF methods have been developed
and applied to various fields. One can find most of them with detailed refer-
ences in [6],[7],[11][15]. Among these methods, we here restrict ourselves to
the simple Short-Time Fourier Transform (STFT) [7] which avoids interfer-
ence terms and benefits from powerful FFT algorithms. So, we first multiply
each mixed signal z;(7) by a shifted real-valued window function h(7 — t),
centered at time ¢, which produces the windowed signal z;(7)h(7 — t). The
latter signal depends on two time variables, i.e. the selected time ¢ when
the local spectrum of z;(7) is analyzed, and the running time 7. The STFT
of z; is then given by:

o0
Xi(t,w) = \/% / ; zi(1)h(r — t)e HTdr. (7)
X;(t,w) is the contribution of signal z; in the short time and frequency
windows respectively centered on ¢ and w.

It should be noted that the STFT is initially defined for deterministic
signals and is indeed applied in such a framework in this paper: even if the
considered sources and observations are random processes, the STFTs used
hereafter only concern a single, and therefore deterministic, realization of
these signals (which is requested to satisfy the assumptions defined below).

2.2.2 Exploiting time-frequency information

We will now show that extending the idea presented in Subsection 2.1 to the
TF plane allows one to identify the cancelling coefficient values correspond-
ing to the sources. We will then propose an automatic method for finding
the appropriate TF areas. To this end, we request the following assump-
tions to find all the cancelling coefficient values and to achieve a complete
source separation:

Assumption 1
e The mizing matriz A is such that a;; # 0, Vi, j.

o The power of each source is non negligible at least at some times t.

The first item of this assumption implies that if a source occurs in one ob-
servation for a TF window (t;,wy), i.e. if its TF transform in non-negligible
in this window, then it also occurs in all the other observations for this



window. The second item is implicitly required in most BSS methods to
prevent them from failing: it avoids the situation when some sources have
very low dynamics as compared to other ones.

Assumption 2 For each source s;, there exist some adjacent TF windows
(tj,wg) centered on time t; and angular frequency wy where only s; occurs,
i.e. where?: Sy(tj,wy) < Si(tj,wk), V1 # .

Our method is then based on the complex ratio of mixtures independently
used in the DUET [20] or SAFIA [1] algorithms:

Xl (t]a wk)
oftj,wg) = 77—, 8
( J ) X2 (tj; w]c) ( )
which is computed for each TF window. Taking into account Equ. (1) and
(7), this ratio may be written as:

alt;,wp) = a1151(tj, wg) + a1252(t;, w)
7ok a2151(tj, wk) + ag2Sa(t;, wk)

(9)

Therefore, if one source occurs alone in the TF window (t;, wg), then a(t;, wy)
is equal to the cancelling coefficient value, among ¢; and ¢y defined in (3),
which makes it possible to cancel this source and thus to extract the other
one. This situation when sources only disappear in some areas of the TF
plane is much more frequent than the case when they disappear at all fre-
quencies during a whole time period. The TF BSS method that we thus
introduce therefore applies to a much wider class of signals than the pre-
liminary temporal approach that we described in Subsection 2.1. Note that
the latter approach is a specific case of this TF BSS method, obtained by
using a one-sample discrete-time STFT window.

Now the remaining question is: how can we define a method which
automatically finds these single-source TF areas 7 The following assumption
is required to this end:

Assumption 3 When several sources occur in a given set of adjacent TF
windows they should vary so that a(t,w) does not take the same value in all
these windows. Especially, i) at least one of the sources must take signifi-
cantly different TF values in these windows® and ii) the sources should not
vary proportionally.

If only source s;(t) occurs in several time-adjacent windows? (t;,wy),
then a(tj,wy) is constant and equal to ¢; over these successive windows,

2This is e.g. common for speech or music: some formants of speakers or instruments
are located in TF areas which do not overlap completely.

3Due to statistical fluctuations, each realization of theoretically stationary (e.g. white
noise) signals satisfies this condition for short time windows in practice.

4The same concept may be applied to frequency-adjacent windows.



whereas it takes different values over these windows if both sources are
present and if Assumption 3 is met. To exploit this phenomenon, we com-
pute the sample variance of the complex ratio «(t,w) on series I'; of M
short half-overlapping time windows corresponding to adjacent ¢;, applying
this approach to each frequency wy. Figure 1 shows how we build two such
(also half-overlapping) series I'y and I'y1; in the TF plane. We respectively
define the sample mean and variance of «(t,w) on I'y and wy, by:

Sia
M=

a(Pq"*"lc) = a(tjawk) (10)

<
Il
—

|eu(tj, wi) —@(anwk)F (11)

Sis
M=

var[a)(Tg,wg) =

<
Il
—

If e.g. Sa(tj,wy) = 0 for these M windows, then (9) shows that a(t;,wy) is
constant over them, so that its variance var[a|(T'y, wy) is equal to zero. Con-
versely, under Assumption 3, if both Si(¢j,wy) and So(t;,wy) are different
from zero, then var[a](T'y,wy) is significantly different from zero.

This shows the importance of Assumption 3, which guarantees that (in
the noiseless case considered at this stage) var[a](I'y,wy) = 0 if and only if
only one source occurs, which then makes it possible to take advantage of
the fact that the ratio a(t;,wy) is then exactly equal to one of the cancelling
coefficients values. On the contrary, if Assumption 3 was not met, obtaining
var[a|(T'q,wg) = 0 would not guarantee that only one source occurs in the
considered area (I'y,wy). To illustrate this phenomenon, consider the case
when the two sources Si(tj,wy) and Sa(t;,ws) would be proportional over
(Tg,wg), ie. such that Sa(t;,wy) = BS1(tj,wk) - The ratio a(t;, wy) would
then be constant, as shown by (9), and its variance would be zero, although
two sources would occur in this area.

So, under Assumption 3, by searching the lowest value of var[a](T'q, wk)
vs all the available series of windows (T, wy), we directly find a TF domain
(T, wg) with only one source. The corresponding value ¢; which cancels this
source is then estimated by the mean @(I'y,wy). We find the second can-
celling coeflicient value c; by searching the next lowest value of var[a](T'y, wi)
vs ([, wy) associated to a significantly different value of @(I'y, wy), using a
threshold set to the minimum difference that we request between the two
values in (3). We thus obtain estimates of the two cancelling coefficient
values defined in (3). The separated signals are then derived from these
values by using i) successive source cancellations (2) or ii) the global matrix
inversion (6).

As suggested in Section 1, this method for estimating the cancelling
coefficient values does not set the same constraints as the approach inde-
pendently proposed in the DUET algorithm: we just need a source to occur



alone in a single tiny set of M adjacent TF windows in order to cancel
its contributions, whereas DUET requires the sources to be W-disjoint or-
thogonal (or at least approximate W-disjoint orthogonal) which is a much
stronger assumption. On the contrary, we use adjacent single-source TF
windows, but this is not a major constraint since we need very few of them,
as illustrated in Section 6. Also, since our approach first focuses on TF ar-
eas where only one source occurs and then computes the mean @(I'y, wy) in
such supposedly single-source areas, @(I'y,wy) is a suitable estimator of ;.
This should be contrasted with DUET, which operates in the complete TF
plane, so that plain histogram-based methods yield limitations and more
sophisticated versions should be preferred, as shown in [2] (an alternative
approach may also be found in [22]).

3 Dependent and/or Gaussian signals

As stated above, our method applies to various dependent and/or Gaussian
sources, unlike classical ICA-based BSS approaches. The latter methods are
statistical approaches, which require the sources to be statistically indepen-
dent and which consist in forcing the output signals to become independent,
so that they get equal to the sources. Our approach is totally different, as it
is based on the sample statistics of a single signal realization, which allows
it to determine some domains in the TF plane where a single source occurs.
It therefore almost only requires such domains to exist and applies to (re-
alizations of) various dependent and/or Gaussian sources which meet this
condition. This is illustrated hereafter by means of two typical examples.
It should be noted that other TF BSS methods yield similar properties, as
suggested e.g. in [27].

3.1 Dependent signals

Consider the two source signals s1(t) = u(t) + v(t) and sa(t) = v(t) + w(?),
where u(t), v(t) and w(t) are three stationary independent zero-mean signals
and where:

a) v(t) only has components in the frequency band [f1, f2], and u(¢) and/or
w(t) also have components at the frequencies where v(t) occurs,

b) u(t) only has components in the frequency band [0, fa,

¢) w(t) only has components above fi.

The cross-correlation of s1(t) and sq(t) is non-zero, due to their common
component v(t). These two source signals are therefore dependent. However,
it may be checked easily that they match all the assumptions required in
our method. We can then separate (realizations of) these signals with our
approach, despite their dependence, thanks to the differences in their TF
representations. This is an important case as traditional BSS methods, like
kurtosis maximization, cannot separate this kind of signals.



3.2 Gaussian signals

We now consider two zero-mean Gaussian i.i.d signals vy (¢) and vo(¢) that we
transfer through two stop-band filters hq(t) and he(¢) which have disjoint
stop-bands. The resulting source signals s1(t) = hq(t) x v1(t) and s9(t) =
ha(t) xv2(t) are also Gaussian but (their realizations) can be separated with
our method in the same way as above.

The approaches of Subsections 3.1 and 3.2 may also be combined so as
to define sources which are both dependent and Gaussian but which may be
separated by our method.

4 Extension to P mixtures of N sources

4.1 N > 2 sources, P = 2 observations

4.1.1 Definition of the time-frequency method

The observations here become:

z1(t) = Yot @imsm(t)
{ zo(t) = SN | aomsm(t) (12)

The complex ratio a(t,w) of (8) then reads:

Zan:1 a1mSm (t, w)
Zr]\n],:1 a2 Sm (ta w) .
Under the same assumptions as above, consider a TF window (t;, wy) where
only source s; occurs. The complex ratio in (13) then becomes:

aig

a(tj,wk) = (14)
a2;

a(t,w) = (13)

This is exactly the value ¢; of the coefficient ¢ of (2) required for cancelling
the contribution of source s;(t) from the observations by using (2). The BSS
method defined in Subsection 2.2 is therefore straightforwardly extended to
the current case, but then leads to a partial separation, i.e. to the cancella-
tion of only one of the existing sources in each output signal. This is of high
practical interest in signal enhancement applications anyway, as this method
gives an efficient solution for removing the contribution of an undesirable
source.

This method is also useful in karaoke-like applications. In usual audio
recordings, all instruments are recorded one by one and then artificially
mixed in studios using linear instantaneous mixing devices. Using the stereo
observation of such recorded songs, we are able under Assumptions 1 to 3
to cancel the contribution of any singer or instrument?.

SStereo filtering, like stereo reverberation, is sometimes added in such recordings. The
mixture then becomes convolutive. However, when no delays are added, a major part of the
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4.1.2 Estimation of the number of sources

The above method may also be used to derive an estimate N of the number
of sources contained in the observations: we set N to the number of sig-
nificantly different values of @(T'y,wy) obtained in areas (I'y,wy) where the
variance of a(t,w) is low. Under Assumption 2, N is equal to N.

For the sake of generality, we also consider the case when Assumption 2
is not satisfied in the remainder of this paper. Some sources are then hidden
by the other ones in the T'F plane, i.e. there is no TF window where they
occur alone in the observations and thus no associated value of @(I'y, wy) in
low-variance areas. By computing N as explained above, we then only get
the number @) of visible, i.e. not hidden, sources.

4.2 General case: N sources, P observations

4.2.1 Coherence of the time-frequency maps

As already suggested above, due to Assumption 1, the areas (I'y, wy) where a
given source appears alone in observations are the same for all observations.
We call this phenomenon the ” coherence of the TF maps” and illustrate
it in Figure 2, where the time-frequency windows corresponding to only
one source are the same in both observations. Thanks to this coherence,
single-source areas may be detected for most mixing matrices by analyzing
the variance of the ratio a(t,w) = X;(t,w)/X;(t,w) associated to only one
arbitrary pair of observations: here again, this variance is low (only) in
single-source areas under Assumption 3.

An exception to this principle appears when P > 2 however: in areas
(T'y, wx) where several sources are active, a(t,w) may have a low variance
for some pairs of observations, because the corresponding subset of mixing
coeflicients results in proportional observations in these areas. However, for
a given area this phenonemon may not occur for all pairs of observations,
otherwise the mixing matrix would be degenerate. This case which only
concerns very specific mixing matrices is therefore handled by performing
variance analyses for all pairs of observations (z1(t),z;(t)). We skip this
specific case hereafter and therefore only consider a single variance analysis,
thus introducing a fast BSS method.

4.2.2 Fast BSS method for N =P

We now describe i) a global algorithm, that simultaneously provides several

interfering sources corresponds to their instantaneous contributions, and our experimental
tests show that our method succeeds in cancelling these major contributions.
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output signals and ii) another approach, which creates each output signal
by successively cancelling visible sources. The latter approach is of special
interest when only specific sources should be removed or when the number
Q of visible sources is equal to 1.

i) Global matriz inversion:

We first perform a single variance analysis with two observations, as ex-
plained in Subsection 4.2.1, and we again denote @ (with @ < N) the
number of visible sources thus obtained. If this yields ) > 2, we then apply
the procedure described here, whereas if () = 1 the successive source can-
cellation approach defined further in this section should preferably be used
as suggested above (and if Q = 0 no separation may be performed with our
approaches).

Denoting s1,... sg the visible sources for ease of presentation, we con-
sider ) TF areas where each of these visible source occurs without the others
in all the observations. We then adapt the approach of Subsection 4.1 to
each pair of observations (z1(t),z;(t)). We thus compute the mean of the
ratio Xi(¢,w)/X;(t,w) in one area where only s; exists, with 1 < i < Q.
This yields the value c;; = ai1;/aj; of the cancelling coefficient for removing
this source s;. This overall set of coefficients provides an estimate of the
part of the mixing matrix corresponding to the visible sources (again up to
a scale factor), i.e:

1 e 1

~ 1 C12 1/c 2

|V Vea | (15)
1/61]3 l/CQp

If @ = N, we use the inverse of this square matrix to achieve a global in-
version up to a scale factor, i.e: y(t) = A=z(t) = [a1151(2),. .. ,ainsn(t)]T.
This efficient method therefore leads to a complete BSS in one step when
no sources are initially hidden, i.e. when all the ¢;; may be derived directly
from the observations.

On the other hand, when Q < N this non-square matrix A misses the
coefficients c;; associated to the hidden sources and then cannot be used
directly to separate all sources by means of its inverse. However, we can
derive Q x () square sub-matrices from A by keeping its first line and @ — 1
arbitrary other lines. If we now multiply the inverse of any such sub-matrix
by the vector containing the mixed signals x;(¢) which correspond to the @
lines kept from A, we get a vector of Q "recombined signals”. Each such
signal with index j only consists of contributions from the visible source
with the same index j and from all N — () initially hidden sources. At this
preliminary stage, we thus perform a partial BSS [8], restricted to the visible
sources.

We can repeat this procedure by keeping different sets of lines from
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A and deriving corresponding sub-matrices and recombined signal vectors.
For any given index j, all recombined signals with index j thus obtained
are mixtures of source j and all initially hidden sources, as explained above.
Moreover, N — @ + 1 linear independent recombined signals may thus be
created for any given index j, depending on which lines are kept from A.

We thus reduced the initial BSS problem to ) independent BSS sub-
problems, each associated to a specific index j, and each only involving
N — @ + 1 linearly independent mixtures of the same N — ) + 1 sources.
Moreover, additional sources may now be visible in these new mixtures,
because they are no more hidden by other sources, which have been cancelled
when deriving these new mixtures. Each such sub-problem is then addressed
independently, by recursively calling again the approaches proposed in this
paper for the subset of sources considered in this sub-problem, in order to
further separate visible sources. A detailed pseudo-code corresponding to
this complete algorithm is provided in the appendix of this paper.

Note that i) if the sources which form the subset considered in one such
sub-problem are all visible, they are totally separated by our method and ii)
if all N sources eventually become visible in sub-problems thus introduced,
we achieve a complete separation of the overall set of N sources, although
some of these sources may be initially hidden.

i1) Successive source cancellations

Instead of (2), the basic step of the approach described here creates "new
observations” x1(t) —c;jx;(t), where ¢;; are again the coefficient values which
cancel the contributions of the selected source s; in these new observations.
This basic step is recursively applied to these new observations which replace
the initial observations, for various selected sources. If ) = N, applying
this step N — 1 times yields a signal in which N — 1 selected sources s; are
cancelled and the N** source is therefore extracted (this is then repeated
so as to extract each source). If @ < N, performing this step @ times first
cancels all initially visible sources. Other sources may thus become visible
in the resulting new observations (another variance analysis is performed to
detect it). This procedure is then applied again recursively so as to cancel
other sources.

4.2.3 Fast BSS method for N > P

The above-defined two methods can easily be extended to the underdeter-
mined case: the previous algorithms then just end when there remains only
one new observation or when as many sources as possible have been can-
celled (note that the basic version of this case has been detailed in Subsection
4.1.1). Whatever algorithm we choose, we thus succeed in achieving partial
source separation [8]. On the contrary, classical methods fail for underde-
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termined mixtures, i.e. their outputs are still mixtures of all sources.

5 Influence of background noise

In the previous sections, we considered noise-free mixtures. But in real cases,
the observations z;(¢) contain additive wide-band background noise signals
ni(t). The basic configuration then becomes:

.’L'1(t) = a1131(t) + a1232(t) + nl(t) (16)
332(t) = aglsl(t) + a2232(t) + ng(t)
The complex ratio (8) then reads:
a(t,w — allsl(taw) +a1252(t7w) +N1(t7w) (17)

a2 S1(t,w) + agSs(t,w) + Na(t,w)’

with N;(t,w) # 0 for all considered windows (¢, wy). Thanks to this back-
ground noise, the special case when both S;(¢,w) and Ss(t,w) are locally
equal to zero does not cause any singularity, i.e. it does not result in a 0/0
indeterminacy in the ratio a(t,w) over a complete domain (I'y, wy). More-

over, due to independent statistical fluctuations of Ni(¢,w) and Na(t,w),
Ny(tw)
N;(t,w)

the variance of a(t,w) over areas where only N7 and Ny occur is significant,
so that our algorithm does not mistakenly focus on such areas when looking
for single-source areas.

Assuming that the mixing matrix A does not have very low entries, a
reasonable condition to estimate accurately the cancelling coefficient values
for source s; is:

the value is not constant in TF windows (t,w). This implies that

Assumption 4 There exists a TF area (I'y,wy) where only source s; occurs
and, V (tj,wr) € (Lg,wg), [N1(tj, wi)| K [Si(tj,wi)| and [Na(tj, wi)| < [Si(tj, wp)l-

It should be noted that this is not a stringent condition, since it only requires
the noise level to be low with respect to the level of the considered source
in one tiny TF area.

6 Experimental results

6.1 Configuration with two mixtures of two sources

The first test was performed with source signals from two speakers, sampled
at 22 kHz, and with the mixing matrix

all ai2 . 1 0.9
[ as1 a2 ] - [ 08 1 ] ) (18)
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The two theoretical cancelling coefficient values are, according to Equ. (3):
c1 = 1.25 and ¢ = 0.9. Combining the source powers and the above mixing
matrix, we found respective Signal-to-Interference Ratios (SIRs) of 2.38 dB
and —2.38 dB for sources s; and s, in the first observation and —0.47 dB and
0.47 dB in the second observation. Figures 7 and 8 show the SIRs obtained
for s1 and s2 in the output signals y1 and yo depending on the size Ngppr
of the STFT windows® and the number M of windows used to estimate the
variance of a(t,w).

This shows that these SIRs are very good, i.e. almost always higher than
45 dB, whatever Ngppr ranging from 32 to 512 and M from 4 to 12.

As an example, we detail the case when Ngrpr = 128 and M = 8. In
order to cancel a source, our method then only requests it to occur alone in
a single frequency window during 8 (half-overlapping) time windows. This
represents both a very short time period, i.e. 26.2 ms, and a tiny part of the
TF plane, i.e. 0.01 % of this plane for the considered 2.7 s speech signals.
This illustrates that the proposed approach applies to almost fully overlap-
ping sources, whereas various others methods cited above need each source
to occur alone in a very much larger number of TF windows to achieve an
acceptable degree of signal separation. The two coefficient values provided
by our method for extracting so and s; are then ¢; = 1.2516 and co = 0.9004,
and the associated output SIRs are 49 dB and 58 dB. On listening to out-
put signals, the difference between the original and estimated sources is not
perceptible. Figures 3 and 4 show that, although both sources are active
everywhere in the time domain (which makes the temporal algorithm of
Section 2.1 fail), their TF representations are somewhat different, which
confirms the relevance of our approach for such signals and is in agreement
with [26]. For better legibility, we plotted the inverse of the variance of
a(t,w) in Figure 5. This representation enhances the domains where the
variance is low and in the same range. This shows in which TF domains
the cancelling coefficient values are obtained.

We then compared the performance of our approach and of several clas-
sical methods, using the Matlab toolbox ICALAB 2.2 available at [18]. One
can find links towards references concerning the considered algorithms in the
Help included in this package. Figure 9 shows the output SIRs obtained for
the above-defined source signals and mixing matrix. Case A shows results
derived by applying these methods to the entire signals (2.7 s). Case B and
Case C correspond to results respectively obtained with two short windows
(45 ms). These windows were manually selected because the corresponding
source signal parts exhibit good stationarity and independence (the mag-

nitudes of their zero-lag cross-correlation coefficients |E[s1s9]|/+/ E[s?]E[s3]

are equal to 0.0153 in window B and 0.0155 in window C). These signal
parts are thus expected to be better suited to classical algorithms than the

5No zero-padding is used when computing FFTs.
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configuration considered in Case A.

Several of these classical methods yield good output SIRs, i.e. up to
about 40 dB. However, the SIRs obtained in configurations A, B and C are
often quite different for a given method, and some of them are very low.
This means that the user should choose very carefully a correct signal part
to obtain good separation. On the contrary, our method first automatically
determines the best area associated to the above-defined criterion and then
computes the cancelling coefficient values. It thus yields significantly better
SIRs than classical approaches, i.e. about 50 to 70 dB for most considered
sizes and numbers of STFT windows.

We performed additional tests (not detailed in this paper) using highly
correlated sources which match the assumptions required by our method,
for example guitar and voice playing the same score, i.e. D chord (D F# A)
for the guitar and D for the voice. Our experimental results show that such
sources can easily be separated by our method, with comparable SIRs even
if their zero-lag cross-correlation coefficient is around 0.9.

6.2 Configuration with two mixtures of three sources

We recorded a stereo song with two guitars s; and s playing nearly the same
instrumental part and continuous voice s3. Guitar s; is hidden by sy which
contains more high-frequency harmonics. We here aim at showing the ability
of the proposed approach to cancel the voice from the mixtures, although
the guitars are continuously playing. All these sources were recorded one by
one on a 4-track tape recorder with a SNR around 60 dB and sampled at
44100 kHz. Like in most commercial songs, we chose to put the voice in the
middle of the stereo mix, whereas guitars s; and s, are respectively situated
more on the left and right sides using the following mixing matrix:

[ ai;] aiz a3 ] _ [ 0.7 04 0.8 ] (19)
az1 a2 as3 0.3 0.8 0.8

The theoretical cancelling coefficient values, defined by (14), are equal to
c1 = 2.33 for the first guitar, co = 0.5 for the second guitar and c3 = 1 for
the voice.

As this configuration involving 3 sources for 2 observations is underdeter-
mined, we obtain partial source separation on the 2 outputs. Let us consider
the output signals given by y(t) = z1(t) — ¢;z2(t) with ¢; corresponding to
the cancelling coefficient value associated with source s;. The contribution
of each source s; in y is (a1 —c;az;)s; whereas its contribution in observation
x1 is a15s;. We therefore define the (opposite) attenuation Att of the source
s;j in the obtained output as compared to its contribution in reference z; by:

E{(a1555)"}
E{((a1; — ciaz;)s;)}

alj
G,lj - CZ'G,Qj

Att = 10l0910

= 20[0910 (20)
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This parameter takes a very high value when the considered source is
almost cancelled in the considered output. The results in Figure 10 therefore
show that we are able to cancel the voice s3 on one output, then giving a
nearly perfect karaoke playback. Similar results are obtained on the other
output for the guitar so. Guitar s; is hidden by s, so that it cannot be
cancelled with these two observations. It should be noted however that with
3 observations its contribution may be cancelled by using the procedure
defined in Subsection 4.2.2. We can see on the inverse variance graph in
Fig. 6 that most low-variance points are in the frequency band between 7
and 15 kHz, where only voice is present. No low-variance points exist for
frequencies higher than 15 kHz, i.e. where only noise occurs.

We here showed that TF information allows one to achieve nearly perfect
source cancellation.

7 Conclusion

In this paper, we proposed a simple and efficient method for solving the
linear instantaneous BSS problem with IV sources and P observations. This
approach is based on the TIme-Frequency version of Ratios Of Mixtures of
source signals, and is therefore called ”TIFROM”. It mainly relies on the
assumption that a source is ”visible”, i.e. that it occurs alone (as opposed to
the other sources) in at least one tiny area in the TF plane. It automatically
determines such an area and then derives coefficients which e.g. allow one to
cancel the contributions of this source from the observed signals. This makes
it possible to separate all sources in various situations, esp. when N = P
and all sources are visible. This method is still of interest in other cases,
esp. for underdetermined mixtures: it then separates part of the sources,
whereas the methods proposed in [8],[9] set more restrictive constraints on
the sources to achieve such partial BSS and classical methods then yield still
completely mixed signals.

Some previously reported TF BSS methods also apply to underdeter-
mined mixtures, but they set much more restrictive constraints on the TF
distributions of the sources, i.e. they require them to be (approximately)
W-disjoint orthogonal or sparse, while we allow them to almost fully over-
lap (and therefore to be multicomponent). Our approach also provides other
major advantages over classical ICA-based methods, i.e. it applies to sta-
tionary and non-stationary signals and to various dependent and/or Gaus-
sian sources, provided their TF representations satisfy the above-defined
assumptions.

Some restrictions may appear when applying this method to a large
number of sources, as their chance to be visible then decreases. However,
experimental tests performed with commercial CDs showed that we are e.g.
able to cancel some instruments from only 2 observations of more than 5
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sources. Our future investigations will especially concern this case involving
many sources and the extension of the proposed approach to convolutive
mixtures, which is a significantly more complex problem.
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A Pseudo-code of the proposed TF BSS algorithm

We here provide the pseudo-code of the algorithm based on global matrix
inversion that we introduced in Subsection 4.2.2 for the case when N = P
and when some sources may be initially hidden.

e Step 1: compute the STFT X;(t;,wy) of each source z;(t), i = 1...N.

e Step 2: compute the ratio a(tj,wy) = X1(tj,wr)/Xi(tj, ws) for a single
couple (X1, X;), with ¢ # 1, for example ¢ = 2.

e Step 3: select the number M of successive time windows included in
the series of windows I'; and then compute var|a|(I'y,wy) for all the
available series of windows (T'y, wy).

e Step 4: sort the values var[a](I'y,w;) in ascending order. Only use
the TF areas (I'y,wy) associated to the first values in this ordered
list, i.e. the areas such that var[a](T'y,wy) is below a user-defined
threshold. The first and subsequent areas in this beginning of the list
are successively used as follows. Each considered area is kept, as the
j-th area, only if all distances between i) the column of values ¢; ;, with
i =1,..., N (defined in Subsection 4.2.2) corresponding to this TF area
and ii) the columns of values corresponding to the previously kept TF
areas in this procedure are higher than a user-defined threshold. This
yields @ columns of values, with ) < N, where @ is the number of
initially visible sources. These columns are gathered in the matrix

defined as
1 e 1
O @)
i/clN i/CQN
e Step 5:
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— if Q = N, use the inverse of this square matrix A

to achieve
a global inversion up to a scale factor, ie: y(t) = A-lg(t) =
[a1181(t), - .-, anvsn(t)]T.
if @ < N then derive the N — ) + 1 square sub-matrices with
size @ X Q:

1 e 1
1/012 1/CQ2
Ap=|: : (22)
lerg1 -+ 1/cqe-
ey -+ 1/cqp
with p = @, ..., N and compute the "recombined signals”:
y (1) = A, [z (D), - - w1 (8), 7p(2)] " (23)

Then create Q new independent subsystems = (t), i = 1,...,Q.
Each of them consists of N — () +1 linearly independent mixtures
of the same N — ) + 1 sources :

subsystem 1: z(V)(¢) = [y§Q)(t),y§Q+1), ...,y§N)]T, where y%p) rep-
resents the first element of vector y®)(¢). All the signals in the
vector z(1)(t) only contain sources §1,5g+1,---, Sy (still denoting
81, .. S@ the @ initially visible sources).

subsystem 2: z(?)(t) = [yéQ)(t),ngH),...,yéN)]T, where all the
signals in this vector only contain sources sg,5Q+1, ..., SN

subsystem Q: z(@)(¢) = [yg?) (t),ySHl), ...,ygv)]T, where all the
signals in this vector only contain sources sg,SQ+1,...; SN-

Then recursively apply the whole process (from Step 1) indepen-
dently to each of the ) subsystems thus introduced ... and so on,
until complete (or maximum) source separation.
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Frequency window Time domain

Figure 5: Time-Frequency representation of m Axes units: Time

window indices, corresponding to [0 s, 2.7 s]. Frequency window indices,
corresponding to [0 Hz, 11050 Hz].
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Figure 6: Time-Frequency representation of m Axes units: Time

window indices, corresponding to [0 s, 4.3 s]. Frequency window indices,
corresponding to [0 Hz, 22.05 kHz].
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Figure 7: Output SIRs (in dB) for source s; vs number Ngrpr of samples
in STFT windows and number M of windows in domains T';.
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in STFT windows and number M of windows in domains T';.

26



Output SIR vs method
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Figure 9: Output SIRs (in dB) for sources s; and sy obtained with classical

algorithms and with our TIFROM method.
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Figure 10: Attenuation (dB) of source s3 in output y; vs number Ngppp of
samples in STFT windows and number M of windows in domains I';.
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