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Abstract: Ultrasound signals involved in non-destructive testing (NDT) typically consist of two echos which have
the same waveform up to a time delay and a scale factor, or more generally up to a filter. NDT then requires
to estimate this delay or filter. We show that this may be achieved by resp. using high-resolution time-delay
estimation methods and a frequency-domain FIR filter identication technique. The good performance of these ap-
proaches is demonstrated by means of various experimental tests, using e.g. polystyrene and Titanium Aluminide
(TiAl) samples.

Résumé: Les signaux ultrasonores mis en jeu dans le domaine du Contréle Non Destructif (CND) sont typ-
iquement constitués de deux échos qui ont la méme forme & un retard temporel et un facteur d’échelle prés, ou
plus généralement & un filtre prés. Le CND nécessite alors d’estimer ce retard ou ce filtre. Nous montrons que
cela peut étre réalisé en utilisant resp. des méthodes d’estimation de temps de retard & haute résolution et une
technique d’identification de filtre RIF opérant dans le domaine fréquentiel. Les bonnes performances de ces ap-
proches sont prouvées a ’aide de divers tests expérimentaux, utilisant par exemple des échantillons de polystyrene
et d’aluminures de titane (TiAl).

1 Problem statement

Ultrasound non-destructive testing (NDT) aims at analyzing the defects in a material sample. To this end, an
acoustic pulse is applied to the considered sample and its response is measured by a transducer, which thus provides
a so-called A-SCAN signal. This signal typically consists of a series of echos, corresponding to the reflections of
the emitted pulse on the front side of the sample, on the defects that it contains if any, and possibly on the back
side of the sample. Analyzing the presence, time delays and shapes of these echos respectively make it possible
to detect the existence of defects, to estimate their positions (i.e. their depths in the sample) and to characterize
them. Although these principles may be defined in a simple way, practical application of classical NDT methods,
such as Hilbert transform based techniques or cepstral analysis, often yields limited performance, due e.g. to the
sensitivity of these methods to noise.

In Section 2, we first analyze how high-resolution methods, which have mainly been developed for array
processing problems and spectral analysis, may be adapted to time-delay estimation (TDE). The latter problem
is faced in ultrasound NDT applications when only considering simple propagation/diffraction phenomena: the
basic model for the A-SCAN signal s(n) reads

s(n) = w(n) + aw(n — ng) (1)

where w(n) is the signal reflected by the front side of the analyzed material sample and aw(n — ng) is the signal
reflected by the defect: this basic model assumes that a single defect exists and that the reflected signal that it
yields is an attenuated and time-delayed version of the signal reflected by the front side. In Section 3, we then
consider a more complex model, where the signal reflected by the defect is a filtered version of the waveform w(n)
associated to front side reflection, so that

s(n) = w(n) +w(n) * h(n) (2)

where h(n) is the impulse response associated to the defect. We then describe a frequency-domain method which
makes it possible to estimate h(n). The application of both types of methods to NDT is presented in Section 4,
together with corresponding conclusions.



2 High-resolution time-delay estimation methods

As stated above, high-resolution methods, such as the minimum variance approach (also referred to as Capon’s
method) and MUSIC, have especially been investigated in two domains. Several of them were initially introduced
in the frame of array signal processing [1]-[3]. In that case, a set of sensors provide signals typically resulting from
the propagation of plane waves (e.g. associated to an acoustic or electromagnetic field), with additive noise. These
methods then especially aim at estimating;:

o the angles which define the directions of propagation of the considered waves, thus making it possible to
localize the sources which emit these waves,

e or the frequency-wavenumber power spectral density associated to the considered field.

High-resolution methods were also applied to the spectral analysis of a single signal [4],[5]. This signal may be
a sum of complex sinusoids and of complex noise, and one may then aim at estimating unknown parameters of
these sinusoids. More generally, one may consider a wide-sense stationary random process and estimate its power
spectral density.

We now summarize the principles of two popular high-resolution spectral analysis methods, because we will
then show that they have a direct relationship with the problem that we address in this paper. The minimum
variance (MV) method provides an estimate of the (non-normalized) power spectral density, defined at normalized
frequency f as [4],[5]
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where R, is the estimated autocorrelation matrix of the analyzed signal z(n), ¥ stands for complex conjugate
transpose and

e=[1 exp(j2nf) ... exp(j2n(L—-1)f)]" (4)

where L is the order the optimum FIR filters associated to this approach and T denotes transpose. If the considered
signal z(n) consists of a sum of complex sinusoids with unknown frequencies f; and of noise, one may therefore
try to estimate these parameters f; as the frequencies f where the spectral estimator Ppy (f) defined in (3) has
maxima. Indeed, for a single complex sinusoid with frequency f; and complex white noise, the peak of Pyry (f)
occurs at f = f; [4]. However, even with only two complex sinusoids in white noise, in general the peaks of
Pyry (f) are not situated exactly at the frequencies of these sinusoids [4].

Similarly, for a signal z(n) consisting of a sum of @ complex sinusoids with unknown frequencies f; and of
complex white noise, the MUSIC method [4] estimates the frequencies f; as the @ largest peaks of
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where e is again defined by (4) and 9; with ¢ = 1... L are the eigenvectors, corresponding to the eigenvalues in
decreasing order, of the L % L estimated autocorrelation matrix R, of the analyzed signal z(n).

Now consider the TDE problem, which corresponds to our goal in this paper. For the sake of generality, we
here start with an extended signal model, as compared to the single-defect NDT model (1) that we eventually
aim at analyzing in the first part of this paper: we assume that the available signal s(n) is a sum of @ scaled and
time-delayed versions of the same waveform, with additive noise u(n), i.e

Q
s(n) = w(n) + Z a;w(n —n;) + u(n). (6)
i=2
In the specific framework of ultrasound NDT, the first term of s(n), i.e. w(n), corresponds to front side reflection,
while the (Q — 1) subsequent terms are associated to reflections on defects. This model applies when, as compared
to the front side echo, the defect echos have the same shape and are attenuated by factors defined by a; and delayed
by n; samples. Moreover, provided the defects are situated deeply enough in the considered material sample, the
associated (@ —1) terms in (6) have no temporal overlap with the term w(n) corresponding to front side reflection.
Therefore, when measuring s(n), the signal w(n) is also available: it is extracted as the beginning of the overall
recorded signal s(n), and then zero padded so that both signals have the same number N of samples. We then
consider the Fourier Transforms (FT) of these signals, at discrete frequencies
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where k is an integer. These FT values may be considered as values of functions of k£ and are therefore denoted
W (k) and S(k) hereafter. Taking the FT of (6) then yields

Q
S(k) =W (k) + Y aie™ ™ KW (k) + U(k). (8)
Let us then define the signall
X (k) = % ~1. (9)
Eq. (8) yields
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As shown by (10), the signal X (k) thus turns out to be a sum of complex sinusoids and of noise V (k). Let us
stress that X (k) is a frequency-domain process, i.e. a function of the integer k& which is linked to the frequency
f by (7). The "frequencies”, in the corresponding temporal space, of the considered sinusoids are the unknown
parameters — 3.

Our initial problem, i.e. the estimation of the time delays n;, is thus reformulated in the same way as the
standard spectral analysis problem that we described above, except that the time and frequency domains have
been permuted, i.e. the analyzed process X (k) is defined in the frequency domain instead of the time domain.
This estimation problem may therefore be solved by using the above-defined high-resolution methods, taking into
account the above time/frequency permutation (and provided the noise component meets the requirements of
these methods). It should be noted that this general approach has also been used for 2-D signals [6], in order to
estimate spatial shifts in images by using an extended MUSIC-based method.

In our 1-D case, the practical methods which result from the above principles may be defined as follows. The
vector of exponentials (4) here becomes (see its 2-D version in [6])
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and the functions (3) and (5) to be maximized are
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where the vectors v; are defined in the same way as above, but now with respect to the estimated autocorrelation
matrix Rxx of the frequency-domain process X (k). The entry with indices (p,q) of the autocorrelation matrix
Rxx reads

E{X(k+p)X*(k+q)} ¥k 0<p<L—1, 0<g<L—1 (15)

where E{} stands for expectation.

The last issue to be addressed is therefore how to estimate these expected values. In the classical signal
processing methods which concern time-domain random processes, expectations are estimated by considering
temporal means associated to the time samples of the considered signal x(n), based on ergodicity assumptions
[4]. If we assume that the same approach? may here be applied to the frequency-domain process X (k), then each

IEquivalently, one may use instead of s(n) a modified version of this signal, where its beginning is reset to 0 in order to remove the
component w(n) initially contained by s(n). The first term W (k) is then removed from (8), so that the term ”- 1” is not introduced
in (9).

2An alternative approach may be defined as follows in application domains where the initial time-domain signals contain enough
samples. These signals are first split in several windows. Discrete Fourier Transforms (DFTs) are then independently computed for
each window and the means of these DFTs over all windows are then used to derive estimates of the above expectations. The 2-D
version of this approach is e.g. used in [6].



entry (15) of the estimated autocorrelation matrix Rx x is obtained as the sample mean of X (k + p)X*(k + q),
where this mean is computed over the frequencies associated to values of k, defined in (7). This sample mean
reads explicitly

N
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where X (k) is a periodic function of k¥ with period N. The resulting overall matrix Rxx may then be expressed
as
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with
Vx(k) = [X(k),...,X(k+L—-1)]". (18)

It should be noted that this final expression of these high-resolution TDE approaches was provided, also in the
frame of NDT, in [7], without explicit proofs but with a reference to [8].

3 Filter identification method

We now consider the situation when two real-valued signals z(n) and y(n) are available, and y(n) is a filtered
version of z(n), through a causal L-th order Finite Impulse Response (FIR) filter. We aim at estimating the
real-valued coefficients h(n) of the impulse response of this filter, with 0 < n < L — 1. The frequency response of
this filter is the Fourier Transform (FT) of its impulse response, i.e?

L-1
= Z h(n)e™ %™, (19)
n=0

In this equation, the coefficients h(n) are unknown, while an estimate H(w) of H(w) may be derived, e.g. as
the ratio of the FTs of the available signals z(n) and y(n), or by using more advanced methods. If we now use
this estimate in (19) and consider the real and imaginary parts of this equation, taking into account that the
coefficients h(n) are real-valued, we obtain (up to estimation errors)

L—-1

Zh(n)cos(wn) = Re(H(w)) (20)
it

—h(n)sin(wn) = Im(H(w)) (21)
n=0

which yields two equations with unknown h(n). Moreover, these equations hold for any angular frequency w. Let
us now apply this principle to a set of P angular frequencies w; .. .wp, which may especially correspond to Discrete
Fourier Transforms (DFTs). Eq. (20)- (21) then yield a set of 2P equations, which may be expressed in matrix
form as

Muvy, = (7 (22)
with

Un = [h(O), EE) h(L - 1)]T (23)

1 cosfwi] ... cos[(L — 1)w1]

_ | 1 cosfwr] ... cos[(L— 1wl
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0 —sm[wp] —sin[(L — 1)wp]
vg = [Re(H(w1)),-..,Re(H(wp)), Im(H(w)),- .., Im(H(wp))]". (25)

3Unlike in Section 2, FTs are here considered as functions of the angular frequency w. They are denoted in the same way as in
Section 2 however, for the sake of simplicity.



Provided the number of selected angular frequencies is large enough to have 2P > L, the linear set of equations
(22) may then be inverted, e.g. using Moore-Penrose pseudo-inverse. This yields the impulse response coefficients
h(n) which form vy,

Provided the filter order L is small enough, this identification method only requires the frequency response of
this filter to be estimated at a few frequencies. It is therefore e.g. of interest for relatively narrow-band signals
(such as ultrasound NDT signals) because they only yield accurate estimates H (w) in their restricted band, which
corresponds to a few DFT frequencies.

This generic method is applied in the same way as in Section 2 to the ultrasound NDT signal, which is here
defined by (2) however, i.e.

e the input signal z(n) of this identification method is then the front side reflection signal w(n), which is again
extracted as the beginning of the overall A-SCAN signal s(n), still assuming that the front side and defect
signals have no temporal overlap,

e the output signal y(n) is the defect reflection signal w(n) x h(n) in (2), which is extracted as the end of the
overall A-SCAN signal s(n).

We developed this approach independently, but it should be noted that similar methods were also reported in
the literature (see e.g. the survey in [9]).

4 Experimental results and conclusions

The performance of the MV and MUSIC time-delay estimation methods was first tested with signals obtained as
follows. A real front-side echo was used as the signal w(n). An artificial A-SCAN signal s(n) was then derived
from it according to the model (1), with a = 0.5 and no = 278. This overall signal is shown in Fig. 1 (a), while Fig.
1 (b) and (c) contain the experimental functions Thrrsro(n) and Tary (n), computed with L = 20. As explained
above, the sample indices n associated to the maxima of these functions are the estimated values 7 of the delay
parameter ng. Fig. 1 (b) and (c) then show that both methods estimate ng very accurately. More precisely,
zoomed versions of these figures show that both methods yield nig = 279 = ng + 1.

The same approach was then applied to a real A-SCAN signal recorded from a sample of polystyrene, where the
”defect echo” actually corresponds to the reflection on the back side of the sample. Fig. 2 (a) shows that the two
echos have similar shapes (with a phase reversal, i.e. @ < 0 in (1)). The model (1) is therefore quite relevant for
this real signal. However, the actual delay ng is here unknown. It is considered to be equal to the delay between
the corresponding extrema of the two echos, i.e. ng = 378. Fig. 2 (b) and (c) then show that the MUSIC and MV
methods here again estimate this delay very accurately, i.e. they resp. yield 79 = 381 and 79 = 379.

This approach was eventually applied to a sample of Titanium Aluminide (TiAl), with a defect consisting of a
flat bottom hole. Fig. 3 shows that, although the echos have somewhat different waveforms, their delay no = 333
is relatively accurately estimated: the functions Tyysrc(n) and Thry (n) of the considered methods still contain
a single, sharp, peak and they resp. yield 7,9 = 321 and 7y = 319.

The performance of the filter identification method described in Section 3 was then tested with a signal created
according to (2), where w(n) is again a real recorded echo and h(n) was set as follows (up to a time delay ny
which is omitted below for better readability): h(n) =1 if 1 <n < 10 and h(n) = 0 otherwise. Fig. 4 (a) contains
the resulting A-SCAN signal (with normalized echo magnitude for better readability). Fig 4 (b) shows that the
considered method (here applied with L= 51) succeeds in estimating h(n) very accurately.

As a conclusion, the tests performed so far demonstrate the good performance of the proposed methods in the
considered conditions. The next stage of this investigation will mainly consist in applying the above identification
method to real signals, such as those recorded from polystyrene and TiAl samples, in order to estimate and
interpret the corresponding impulse responses h(n).
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Fig. 1to 3: (a) A-SCAN signal (top), (b) Thusic(n) (middle) and (c) Thv(n) (bottom), resp. for synthetic
signal, polystyrene and TiAl samples.
Fig. 4: (a) A-SCAN signal (top), (b) estimated impulse response (bottom).



