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INT. I. ELECTRONICS, 1994, VOL. 77, NO. 6, 823-844 

Optimum piecewise-linear transcoders 
Part 1. Weighted minimax piecewise-linear approximation and 
minimax decomposition of piecewise functions 

YANNICK DEVILLET 

This paper mainly concerns the following mathematical problem: an initial 
single-argument single-valued function F is known only through a set of points 
P,(Xi, K, y), with K=F(Xi), and with application-dependent weights K. An 
optimum (or almost-optimum in some cases) approximating function/ should be 
derived from these points P i .  f is searched within a predefined class of functions. 
Various such classes are successively considered. They consist of subsets of 
piecewise-linear functions. The approximation criterion used to derive f from points 
Pi consists of determining an approximating function which minimizes an overall 
error. This error is typically defined as the maximum among local weighted errors 
associated with each point Pi. Beyond piecewise-linear approximation, this paper 
also presents algorithms for optimizing the domains of operation of the subfunctions 
of any type of piecewise function acccording to a possibly-weighted minimax 
criterion. This investigation is motivated by an industrial application, i.e. automatic 
TV tuner alignment. This application is outlined in this paper and detailed in a 
companion paper (see Deville 1994a), which shows that the proposed approach 
applies to a wide class of systems, including active filters and phase shifters. 

1. Introduction 
This paper mainly deals with the type of mathematical problem which may be 

summarized as follows (the exact definitions are provided in the subsequent 
sections): an  initial single-argument single-valued function F is known only through 
a set of points Pi(Xi, Y,, kt(), where X i  and Y, are real values with Y,=F(Xi), and 
where the weights W. may be set to  any real positive values depending on the 
considered application. An optimum (or almost-optimum in some cases) approxi- 
mating function f should be derived from this set of points Pi, according to  the 
approximation criterion provided a t  the end of this section. This function f is 
searched within a predefined class of functions. The class considered roughly 
consists of piecewise-linear (PWL) functions. This, in fact, yields various cases, 
depending on the exact definition of the considered class of functions. 

These cases are studied successively, according to  increasing complexity, so this 
paper is organized as follows. Section 2 presents the basic case when the approximat- 
ing function is restricted to consist of a single line. Sections 3 and 4 concern the case 
when the approximating function is PWL and allowed to have discontinuous 
segments. This investigation is split in two, depending on whether the 'interpolation 
capability' of the approximating functions is ignored ($3) or taken into account (64). 
The algorithms developed in $ 3  and 4 in fact have wider applicability than the PWL 
approximation. Therefore, they are presented in a general context and their specific 
application to  PWL functions is provided at each step of the approach. Then, g 5 
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824. Y.  Deville 

presents the case when the approximating function is PWL and, in addition, is 
required to be continuous. Section 6 corresponds to the situation when the 
approximating function is continuous and PWL, defined by a set of points (i.e. the 
limit points between its adjacent segments and one additional point in each extreme 
segment) and when the coordinates of these points may only have integral values. 
Finally, $ 7  contains a summary of all the results thus obtained and information 
about related problems. This section also outlines the industrial TV tuner appli- 
cation which has motivated these investigations. It thus justifies all the steps of the 
approach used in this paper. 

The approximation criterion used to determine an optimum approximating 
function typically corresponds to a weighted minimax approach. More precisely, 
first consider the case when the class of approximating functions consists of 
possibly-discontinuous PWL functions (and when their 'interpolation capability' is 
ignored). In this case, a local weighted error is defined between any point Pi 
corresponding to the initial function F and any approximating function f (as 
explained in $ 2  and 3, this error is equal to the absolute value of the difference 
between the values of F and f for X = X i ,  multiplied by the weight of Pi). Then, 
the overall error between the complete set of points Pi and f is defined as the 
maximum among the local weighted errors corresponding to all points P i .  Finally, 
the approximation criterion used in this paper for a given set of points Pi consists of 
determining an approximating function f ,  which minimizes this overall error, i.e. 
which minimizes the maximum among all local weighted errors. Hence the name 
'weighted minimax' used for this approximation criterion. This criterion corresponds 
to a worst-case approach: the overall performance of an approximating function is 
defined by the worst local error that it yields, i.e. this function should provide a low 
local error for all the input data points. The selection of this criterion is motivated 
by the application outlined in $7. 

The other cases treated in this paper yield slightly different approximation criteria, 
but they also correspond to (weighted) minimax approaches. Therefore, within the 
overall domain of PWL functions, the specific features of this paper consist of 
performing an approximation with weighted minimax criteria, and in only considering 
single-argument single-valued functions. This should first be contrasted with standard 
linear approximation methods, such as stright-line Least-Mean-Square (LMS) 
approximation (see Papoulis 1984, Box er a/. 1978): the latter approach aims at 
providing a low average quadratic error and most often yields higher local errors for 
some points Pi. This is not acceptable in the application that we consider, where 
overall performance is defined by the worst local error and is not optimized by this 
standard approach. This paper should also be distinguished from the investigations of 
PWL functions, which are particularly motivated by applications to nonlinear circuits . .. 
or system modelling: these investigations relate to higher dimensional spaces, they are 
concerned with the existence of approximating functions rather than their practical 
determination according to given criteria (see Lin and Unbehauen 1992) or they use 
other approximation criteria (see Batruni 1991) and/or they apply to specific initial 
functions (see Yamamura 1992), or they concern functional representation instead of 
approximation (see in particular Kahlert and Chua 1990, 1992 and the review 
provided by Kevenaar and Leenaerts 1992). 

The algorithms described below are derived from various theorems. These 
theorems are provided in this paper, but their proofs are skipped for the sake of 
brevity (details are given by Deville 1994b). 
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Optimum piecewise-linear transcoders-Part I 825 

2. Weighted minimax linear approximation 
2.1. Problem statement 

Input data. The initial single-argument single-valued function F is known only 
through a set S containing n points Pi (see Fig. l), with i=O to (n- I). Each such 
point has two main real coordinates, denoted Xi  and Y,, with Y,=F(X,). In addition, 
an arbitrary weight & is associated with each point, as explained below. The 
following conditions are set on these coordinates: each weight F should be strictly 
positive and the points should be ordered so that Xi  increases strictly with the point 
index i (the latter condition is set only because it yields simplified expressions of the 
proposed algorithms). 

Class of approximating functions. In this section, this class contains all functions f 
defined as: f ( x ) = p s + q ,  wherep and q may have any real values. Each such function 
corresponds to a line D having a slope p and an intercept q. The term 'line' and 
notation D are used below to represent f .  

Definition I-Point/line error E,,: The error between an input data point Pi and a 
line D, defined by ( p ,  q), is defined as 

The basic term of this error is the absolute value of the difference between the initial 
and approximating functions for the considered X coordinate. Moreover, this term 
is multiplied by the weight Wi. The selection of these weights allows one to rescale 
individually the basic error terms corresponding to various X coordinates according 
to the considered application. In particular, the weights required for TV tuners are 
provided by Deville (1994 a). 

Figure 1. Weighted minimax linear approximation: input data set S containing n points P i ,  
with i=O to (n- I ) ,  line D and resulting errors and gaps. 
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Definition 2-Setlline error E,,: The error between an input data set S of points Pi, , 
with i=O to (n-I), and a line D defined by (p ,q)  is defined as 

As explained in 5 1, this definition corresponds to a worst-case approach. 

Definition 3-Optimum lines and optimum error: Given an input data set S, the 
optimum lines are all the lines Do,, which minimize the above-defined error 
EsL(S, D), among all the existing lines, i t .  among all real values p and q. The 
optimum error Esop,(S) is the error E,,(S,D,,,) common to all optimum lines. U 

G o d  of the investigation, appro.uimutio~~ criterion. Given an input data set S,  this 
section aims at determining some corresponding optimum line. The associated 
minimum error is also determined. As explained in the previous section, this 
correspnds to a weighted minimax approach, as opposed to LMS approximation. 

2.2. Solutions for input data sets coutaining I or 2 points 

When the input data set S contains n= l or 2,points, the solutions to the problem 
defined above have specific expressions. These special cases are presented here. In 
the remainder of this section, it is assumed that n > 3. 

Theorem 1: IJ the input data set S contains n =  I points, there is an infinity of 
optimum lines; i.e. all  he lines which contain this point. The optimum error is: 
ES,,",(S) = 0 .  

Theorem 2: If the input dutu set S cotrtoins n = 2  points, there is exactly one optimum 
line. nlis is //re litle which contains these points. rile optimum error i.s: Eson,(S) =O.  

2.3. Performance criteria 

Several algorithms for solving the above-defined problem are presented in the 
four next subsections. The overall performance of any of them is measured by the set 
of parameters defined in this subsection. 

Complexity. The complexity of the proposed algorithms is defined with respect to 
their basic action, which consists ofcomputing an error EpL (or gap epLdefined below). 
This yields two classes of algorithms. Some algorithms have a complexity which is 
'independent of input data', i.e. for a given number n of input data points, the number 
of errors E,, computed to obtain the solution does not depend on the coordinates of 
these points. This number of errors is then proportional to a certain power of n, which 
defines the complexity of the algorithm. Conversely, the number of errors EpL 
computed for the other algorithms 'depends on input data', i.e. on point coordinates. 
The lowest and highest possible values of this number of errors then correspond to 
dimerent powers of n. They define the range of complexity of such algorithms. 

Se~isitivity. The approach presented below consists of first deriving initial algo- 
rithms from mathematical theorems. These algorithms always provide the exact 
solution to the considered problem when an infinite precision is available to 
represent numbers and to perform computations. However, the final algorithms are 
to be executed on computers, which use a finite precision. Therefore, the initial 
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Optimum piecewise-linear transcoders-Part 1 827 

algorithms are then modified in order to take into account truncation effects. Some 
of the resulting algorithms are insensitive to truncations, i.e. when run on a 
computer they always provide the solution. The others are almost-insensitive to 
truncations, i.e. they only fail for very special data. 

Accuracy. Some practical algorithms provide an 'almost-exact' solution (i.e. the 
exact one except that it is rounded with the precision of the computer). The other 
algorithms only provide an 'approximated' solution (i.e. a solution which differs 
from the exact one by an amount which is higher than plain truncation effects, but 
which is selected by the user). 

Anyone of the proposed algorithms only has a part of the desired features. To 
obtain all these features, combinations of these algorithms are proposed at the end 
of this section. 

2.4. First approach based on triplets of input data points 

This subsection and the next ones contain two parts. First, the required 
definitions and theorems are provided. Then, the resulting algorithms are presented. 

Definition 4--Point/line gap epL: The gap between an input data point Pi and a line 
D, defined by ( p ,  q), is defined as 

This gap e,, is the signed counterpart of the error EpL defined above (see Fig. I) .  
Its sign defines the relative positions of Pi and D (e.g. Pi is above D when 
epL(Pi ,  D)>0). 

Theorem 3: { P i , P j , P k }  is a triplet of points of the input data set S,  with 
X i < X j < X , ,  then exactly one line D meets the following conditions 

Moreover, the error E,, between a point of this triplet and this line is the same for all 
three points of this triplet: EpL(Pi, D)= EpL(Pj, D)= EpL(Pk,  D). 

The slope and intercept of this line are easily derived from the linear system (4)-(5). 

Definition 5: I f  { P i , P j , P k }  is a triplet of points of the input data set S, with 
Xi< X j <  X , ,  then the line defined by Theorem 3 is called the line associated with this 
triplet. Moreover, the common error EpL between any point of the triplet and the 
line associated with this triplet is called the error associated with this triplet and is 
denoted by E,: ET(Pi, P j ,  Pk) = EpL(Pj ,  D) = EpL(Pj ,  D)= EPL(Pk, D). 0 

Theorem 4: If the input data set S contains n 2 3 points, there is exactly one optirnum 
line. It is the only line D such that there exists at least one triplet {P i ,  P j ,  P,} ofpoints 
of S ,  with Xi < X j < X k ,  such that the following conditions are met 

(a)  D is the line associated with this triplet 

(b)  V P I  E S -  {Pi$',, Pk}, EpL(Ptr D) < ET(Pi, P,, Pk) (6)  
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A first algorithm providing the solution to the considered problem may be 
deduced from Theorem 4 (see Fig. 2). As a result of Theorem 4, this algorithm 
consists of successively using various triplets of points {Pi ,  Pj ,  P,) of S ,  with 
Xi < X j <  X , .  These triplets may be used in any order. If some o priuri knowledge on 
the input data is available, it should be exploited so as  first to use the triplets which 
have a higher probability of providing the solution (in order to increase speed). 
Otherwise, the loops on i, j, k of Fig. 2 may be used. For each such triplet, the 
associated line D(Pi, Pj,  P,) and error E,(Pi, Pj, P,) are first determined. Then, the 
algorithm tests (again in 'any' order) if the desired condition Ep,[P,, D(Pi, Pj ,  P,)] 
< ET(Pi,  Pj,  P,) (see ( 6 ) )  is met for each of the points P, of S ,  except for the points of 
the triplet (for which it is met by construction, but this would often fail in practice 
due to rounding errors). If this condition is not met for a t  least one point, Theorem 4 
states that the current triplet does not provide the optimum. Then, another triplet is 
considered (i.e. go to 'next k' in the loop on k in Fig. 2). Otherwise, if 
E,,[P,, D(Pi, Pj,  P,)]< ET(P,, Pj,  P,) is met for all the other points of S ,  the current 
triplet provides the solution. Then, the line and error associated with this current 
triplet are provided as the outputs Do,, and ESOP, of the algorithm (along with a flag: 
see below), and the algorithm ends. 

For some 'pathological' data sets S ,  rounding errors occurring in computations 
on a finite-precision computer may be such that for each triplet, a t  least one point P, 
docs not meet EpL[P,, D(Pi, Pj. P,)]< E,(Pi, Pj ,  P,). Then, the algorithm ends after 
having considered all triplets, but without providing the solution. Because of this 
possible situation, the algorithm always returns a flag, set to Solved or  Nor-solved 
depending on whether the algorithm has found the solution. 

The complexity of this algorithm ranges from n (when the first triplet provides 
the solution) to n4 (when all triplets must be tested). It is almost-insensitive to 
truncations. I t  provides an almost-exact solution. 

Algorithm 1 

{ 
For i  = 0 to  ( n  - 3 )  

For j  = ( i  + 1) to  ( n  - 2 )  
For k = ( j  + 1 )  to  ( n  - 1 )  

{ 
Find D(Pi, P,, P k )  and Er(Pi ,  P,, Pk) 

Flag = NolLsolved 
End 

1 
Figure 2. Weightcd minimax linear approximation: first algorithm based on triplets of input 

data points. 

D
ow

nl
oa

de
d 

by
 [

"Q
ue

en
's

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

, K
in

gs
to

n"
] 

at
 0

6:
07

 0
6 

M
ar

ch
 2

01
5 



Optimum piecewise-linear transcoders-Part I 829 

2.5. Second approach based on triplets of input data points 

Theorem 5: If the input data set S contains n 2  3 points, and i f  ETms, is the maximum 
among the errors associated with all the triplets of (different) points that may be 
derived from S, then triplets of points whose associated line D and error E, are 
respectively equal to the optimum line Do,, and error E,,,,, are all the triplets such that 
ET = ET,., . 

Theorem 5 shows that the problem considered in this section may be solved by 
successively considering all the triplets of points (with X i < X j < X k )  that may be 
derived from S, by computing the line D and error E, associated with each triplet, 
and by keeping the highest error E, thus obtained and the corresponding line D. 
This error and this line are then the optimum ones. The expression of this algorithm 
is relatively similar to Fig. 2. 

The complexity of this algorithm does not depend on data and is of order n3. 
This algorithm is completely insensitive to truncations, and provides an  almost-exact 
solution. 

2.6. Approach based on couples of input data points 

Definition 6: If {Pi ,P , ,Pk}  is a triplet of points of the input data set S, with 
X i <  Xi< X,, then the corresponding term F,,, is defined as 

Theorem 6: If the input data set S contains n 2  3 points, and i f  {P j ,Pk}  is a couple of 
points of S, with X i<X, ,  then 

(i) Let P j  be an arbitrary point of S such that X i< X j <  X ,  and let Dj and E,, 
respectively be the line and error associated with the triplet { P i ,  P j ,  P,}. Let 
E ~ =  1 define the positions of the points {P i ,  P j ,  P,} with respect to Dj: E,, 
= EjepL(Pir Dj) = - E ~ ~ ~ ~ ( P ~ ,  Dj) = E ~ ~ ~ ~ ( P ~ ,  Dj). cj  may also be defined as fol- 
lows: ej= sgn [epL(Pi, Dj)] = - sgn [ePL(Pj, Dj)] = sgn [epL(P,, Dj)], where sgn is 
the sign function, defined as: sgn ( x )  = 1 if x 2 0, and sgn ( x )  = - I otherwise. 

(ii) Let S' be an arbitrary subset of S, composed only of points P, such that 
X i< X I <  X,, and containing at least one point. For each point P, of S', let Dl 
be the line associated with the triplet {P i ,  P,, P,}. 
In these conditions, the following equivalence holds 

i f  S' is such that G,,,is assigned: Gmi,> ETj  
[VP~ES ' ,  EpL(P,, Dj)< ETA- (otherwise this condition disappears) 

where the following notations are used 

(1) G,,, is the maximum among aN the following values: 
the values E~~,,(P,,D,) corresponding to aN the points of S', 

the values: 
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Y.  Deville 

corresponding to all the points of S' such that Fir,  < I ,  if any. 

( 2 )  G,,, is the minimum among all the values 

corresponding to all the points of S' such that Fi, ,  z 1, if any (if such points 
exist, G,,, is assigned; otherwise, it is no/) .  

An algorithm providing the solution to be considered problem may be deduced 
from Theorem 6 (see Fig. 3). As in Algorithm 1, this algorithm aims a t  determining a 
triplet { P i ,  P j ,  P , } ,  with X i < X j < X k ,  which meets (6), where D is the line associated 
with this triplet. However, here (6) is split in two conditions, by separately 
considering the points situated 'between' Pi and P, from the point of view of their X  
coordinates and those situated 'outside'. Equation (6) then reads 

Equation (10) also performs the test on E p L  for P j ,  but this is not a problem because 
this test is met by construction for this point. Moreover, the current algorithm 
consists of successively considering several couples of points { P i ,  P , } ,  with X i <  X , .  
From these couples, the algorithm derives triplets { P ; ,  P j ,  P,}  which meet (10) (this is 
explained below). Each such triplet is then used in the same way as  in Algorithm I ,  
except that only (I I) remains to be checked instead of (6). The overall structure of 
the current algorithm (see Procedure-l in Fig. 3) is therefore similar to Algorithm 1 
(in particular, it returns a flag, Flag-Procedure-I, stating if it has found the 
solution). Its specific features are to loop on couples (again in 'any' order), to check 
(I I) for each triplet, and above all to build triplets from couples according to a 
method which will now be explained. 

At this stage, a couple of points { P i ,  P , } ,  such that X i <  X ,  and that there exists 
at least one point P ,  with X i < X , < X , ,  are supposed to have been selected. The goal 
is then to find if there exists (at least) one point P,, such that X i < X j < X k  and that 
(10) is met. If there exists such a point (all of them are equivalent as shown below), 
the resulting triplet is used as  explained above. Otherwise, no suitable triplets can be 
built from the current couple, and another couple is considered (see the first 'Then 
next k' in Fig. 3(a)). As a first step, assume that only the points P,  providing a 
predefined value for ej  defined in Theorem 6 are to be accepted. Then, Theorem 6 
allows us to replace (10) by an equivalent set of conditions, where S' of Theorem 6 
here consists of a11 the points P ,  of S such that X i < X , <  X , .  Moreover, the latter set 
of conditions allows us to determine P j  as follows. A first loop on all the points of S' 
is performed, in order to determine G,,, and G,,, (if it is assigned) corresponding to 
this c j ,  and to test if the condition VP,eS' ,  P , / F i n =  I ,  E ~ ~ , , ( P ~ , D , ) > O  is met. If the 
latter condition is not met, no points P, are suitable and another couple should be 
considered (for this predefined 8,). Otherwise, a second loop on all the points of S' is 
performed in order to determine if a point P j  of S' is such that G,,,<E,,  and 
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Optimum piecewise-linear transcoders-Part 1 83 1 

Gmin > E,, (this condition is only tested if Gmi, was assigned above) and such that the 
value cj corresponding to this point (as defined in Theorem 6) is equal to the 
predefined value that it is assumed to have here. If such a point exists, it provides a 
suitable triplet which is then used as explained above (and there is no use looking for 
other points P j  for the current couple, because all the resulting triplets are associated 
with the same line and error). Otherwise, no points Pj are suitable and another 
couple should be considered (for this predefined cj)., 

c j  was assumed to be predefined above. In fact, ~t can take two values, i.e. 1. 
Therefore, the overall search of a point P j  for a given couple { P i ,  P,) consists of first 
considering, for example, ej= 1, and then looking for a corresponding point P j  as 
explained above. If no such point is found, then cj= - 1 is used in the same way. This 
approach is implemented in Algorithm 2: Procedure-2 performs the overall search of 
Pj, while Procedure3 corresponds to the case when E~ is already set. Both procedures 
return a flag stating whether they have found a suitable point Pj. When they find it, 
they return the line and error associated with the corresponding triplet {Pi, Pj, P,}. 

The main advantage of this algorithm is that its complexity for each couple is only 
of order n because it only peforms 1 to 5 loops on part of the points of S .  Therefore, the 
complexity of the overall algorithm ranges from n (when the first couple provides the 
solution) to n3 (when all couples must be tested) instead of n4 for Algorithm 1. 

In the preliminary description provided above, the determination of an interme- 
diate point P j  uses the tests G,,,< E,, and Gmin> E,,. From a mathematical point of 
view, strict equality occurs in these tests (e.g. G,,,=E,,) for any data set when a 
suitable triplet is used. Therefore, because of rounding errors on finite-precision 
computers these tests often fail, so that the overall preliminary algorithm often fails. 
This is avoided by adding a 'safety margin' to these tests (see Fig. 3(b), e.g. 
Gm,,<(l +a)E,,, with O<a*l). The final algorithm thus obtained is almost 
insensitive to truncation effects, but only provides an approximated solution, with a 
precision fixed by a. 

2.7. Combined approaches 
The preferred final algorithms consist of associating the basic algorithms 

presented above in order to combine their advantages. These combined algorithms 
contain two steps. If an approximated solution is acceptable, the algorithm that 
should be called in the first step is the algorithm based on couples of input data 
points, because this is, on average, the fastest proposed algorithm. Otherwise, i.e. if 
an almost-exact solution is required, the algorithm that should be called in the first 
step is the first algorithm based on triplets of input data points, which is somewhat 
slower. For almost all data sets, this first step provides the solution and the 
combined algorithm ends at this stage. Otherwise, a second step is performed by 
calling the second algorithm based on triplets of input data points. This algorithm is 
much slower, but guarantees that the solution is always found. 

3. Minimax decomposition of piecewise functions, without interpolation; application 
to weighted minimax possibly-discontinuous PWL approximation 

3.1. General problem statement 
Lower and higher levels. In this section, a 'lower level' (LL) is assumed to be 
available. It is created by defining three main items, i.e. by selecting a basic type of 
approximating subfunction f,; by defining the error corresponding to an input data 
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Procedurecl /* Overall algorithm */ 
{ 
For i = 0 t o  ( n  - 3 )  

For k = (i + 2 )  t o  (n - 1 )  

{ 
Call  Procedure-2 
If Flag,Procedure-2 = Pj-not-found 

Then next k 

Flag-Procedure-1 = Not-solved 
End 

1 

Procedure-2 / *  Search P,*/ 

{ 
Call  Procedure-3 with ~j = 1 
If Flag_Procedure-3 = Pj-found 

Then { 
Flag-Procedure-2 = Pj-found 
Return 

1 
Else { 

Call  Procedure-3 with e;  = - 1  
If Flag_Procedure_3 = Pj-found 

Then { 
Flag-Procedure-2 = Pj-found 
Return 

Else { 
1 

Flag-Procedure-2 = Pj-not-found 
Return 

1 
1 

1 
3 (4 
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Optimum piecewise-linear transcoders-Part 1 

Procedure-3 / *  Search P, with predefined ej */ 
{ 
For 1 = ( i  + 1 )  to ( k  - 1 )  

{ 
Find Dl associated with { P ; ,  A, Ph),  F,LL and epL(P;,  D l )  

If (F;,, = 1 )  and (e j . epL(P; ,  D l )  < 0 )  
T h e n  ( 

Flag_Procedure_3 = Pj-not-found 
Return  

1 

If ( 1  = i + 1 )  o r  ( ~ , . e p ~ ( P i , D l )  > Gmo,) 
T h e n  G,,, = e j . e p ~ ( P ; ,  D1) 

I f  (Fir* > 1 )  and ( ( G,,;, no t  yet assigned in this call o f  Procedure-3 ) 
or  

([F;rk + lIl[F;,k - l ] . ~ j . e p ~ ( P i , D l )  < G,;,)) 
T h e n  G,., = + l ] / [Fi lk  - l ] . e , . ep~ (P . ,  Dl )  

1 

For 1 = ( i  + 1 )  to (12  - 1 )  

{ 
Find Dl and ET1 associated with {P, ,  Pl, Pk ) ,  and e p L ( P ; ,  D l )  

I f  ( E X  = E , )  and (G.,,,, 5 ( 1  + ~ ) . E T I )  and 
( ( G,,,, no t  yet assigned i n  this call of Procedure-3 ) or 

( ( 1  + cr).G,;, 2 E T I ) )  
T h e n  { 

Flag-Procedure-3 = Pj-found 
Return  ( D l ,  E T I )  

1 
1 

Flag-Procedure-3 = Pj-not-found 
Re tu rn  

1 
(b) 

Figure 3. Weighted minimax linear approximation: algorithm based on couples or input 
data points. 
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834 Y. Deville 

set and to such a subfunction f,; and by creating algorithms which minimize this 
error with respect to f,. This section applies to any such LL and especially to the one 
developed in $2, which corresponds to the final target of this paper. This section 
aims at  building a 'higher level' (HL) on top of this LL. This consists of defining the 
same type of items as for the LL, except that this section applies to more complex 
approximating functions. 

Inpur data. Here again, the input consists of a set ST (where 'T' stands for Total set, 
as opposed to the subsets of ST defined below). This set contains n points Pi, with 
i=O to (n- I). The point coordinates depend on the considered LL. Only the X i  
coordinates are 'seen' in the HL, and they should strictly increase with i (as in $2). 

Class of approximating funcrions. Here, this class contains any function f (where 
'T' again stands for Total) defined as follows: its domain of definition consists of all 
real values and is split in tn non-empty intervals, where m is a parameter off T. These 
intervals are indexed by the interval index u ranging from 0 to (m- I ) ,  and they are 
denoted I,. The limits of these intervals are denoted s,, with x, strictly increasing 
withu, i.e. I,=]-oo,?r,[for u = I  t0(m-2)1,=[x,,x,+~[,andI,-,=[x ,-,, + a [ .  
f is split according to the intervals I,, i.e. it contains m parts and on each interval, 
I,, it is equal to a subfunction f, which belongs to the class of functions 
corresponding to the LL (for simplicity, the same LL is used on all intervals). When 
using $2 as the LL, each function f,, is defined as: f,,(x)=p,x+q,. Then, JT  is a 
possibly-discontinuous PWL function. 

Subsets S, oJ input data puints. For any 11, with u = 0 to m - I, the set S, is the subset 
of the set ST composed of the input data points Pi whose X i  coordinates are inside 
I,. When using $2 as the LL, each subset S, corresponds to the set S of $ 2  (but the 
notations n of $ 2  and of the current section should not be mixed: n of $ 2  
corresponds to the number of points of S,, which is only part of the total number of 
points n of ST considered in this section). 

Definition 7-Point/total-function error E,,: The error between an input data 
point Pi and an approximating function f is defined as 

where fu is the subfunction off corresponding to the interval I, which contains Xi. 
The definition of the error E,,, between a point and a subfunction is assumed to be 
available from the LL. When using $2 as the LL, E,,,=E,, as defined in $2. C l  

Definition 8-Setltotal-function error E,,: The error between an input data set ST 
of points P i ,  with i = O  to (n- I), and an approximating function f T  is defined as 

As explained in 5 1. this definition corresponds to a worst-case approach. In such an 
approach, it is natural to define the overall error E,,, off from its local errors for 
all points Pi. As shown hereafter, E,, may also be defined from the overall errors of 
the subfunctions f,, which are available form the LL. This is better suited to 
practical algorithms and yields an easier generalization in $4.  
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Optimum piecewise-linear t ranscodersParr  1 835 

Definition 9-Subset/subfunction error ESFu: For any u, with u=O to (m- I), the 
error between the subset S, of a set ST comprising points Pi and the subfunctionf, of 
an approximating function f is defined as 

When using $ 2  as the LL, EsFu=Es, as defined in $ 2  (computed only with the 
points of ST situated in S,). 

Theorem 7: 7he error between a set ST and an approximating function f may also be 
expressed as 

Definition IO-Optimum approximating functions and optimum error: Given an input 
data set ST and a number of parts m, the optimum approximating functions are all 
the m-part approximating functions f :p,, of the above-defined class, which minimize 
the error EsFT(ST,fT). The optimum error EsTop,(ST,m) is the error E,,(s~, f T, 

common to all optimum approximating functions. 0 

Goal of the investigation, approximation criterion. Given an input data set ST and a 
number of parts m, this section aims at  determining some corresponding optimum 
approximating function. The associated minimum error is also to be determined. As 
explained in $ 1, this corresponds to a minimax approach. In particular, when using 
$ 2  as the LL, this section performs a weighted minimax possibly-discontinuous 
PWL approximation. Moreover, as explained in 84, this approximation criterion 
does not take into account the interpolation capability of the approximating 
functions (while the approach of $4 does). 

3.2. Quantizarion of rhe limits of the intervals I,, 
The parameters o f f  to be optimized consist of all interval limits xu and all 

parameters of all subfunctions f,. The basic principle of the algorithms proposed to 
solve this problem consists of optimizing the parameters xu by successively consider- 
ing different 'basic cases', where each basic case corresponds to using a fixed set 
{x,,  . . . x - , } .  In each such basic case, all subsets S, are fixed, and therefore, all 
subfunctions f, are optimized independently by using the algorithms available from 
the LL. Moreover, for any interval index u and any point P i ,  all the values of x, 
belonging to ]Xi-,  , X,] yield the same decomposition of ST in subsets S, and 
therefore the same error E , , (S~ ,~  T). So, when looking for the minimum of this 
error, there is no need to vary all xu  continuously. Instead, the minimum error is 
found by using only quantized values xu, which yield an overall set of basic cases 
defined as follows: for each possible decomposition of ST into subsets S, consider a 
single set {x, , . . . xm- ,) which provides this decomposition. In this paper, the 
following single set {x, , . . . xm- ,) is considered: as stated above, the equivalent 
values for each xu are those belonging to ]Xi-, ,  Xi]. Therefore, the single value 
which is used is Xi.  To sum up, the overall finite set of basic cases considered is 
defined by two conditions i.e. all xu are equal to Xi coordinates of points of ST (with 
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836 Y. Deuille 

x, increasing strictly with u) and these basic cases provide all possible decomposi- 
tions of ST into subsets S,. With this approach, each .xu is completely defined by the 
index I, of the corresponding point of ST: far U =  I to m-I ,  .Y,=X,~.  These 
parameters I, are used instead of s, below. In addition, the conventions I,=O and 
1, =n  are used. Each basic case is then defined by the set {I, ,  . . .Im- ,}. The last step 
of this approach consists of defining all the values of this set {I,, . . .Im- ,} which 
should be considered, i.e. which correspond to a possible decomposition of ST into 
subsets S,. This requires a preliminary definition. 

Definition I I :  The minimum width of any subset S, of ST is the minimum number 
of input data points Pi that it is allowed to contain. It is denoted W. 0 

W depends on the LL. When using 5 2  as the LL, W=2. This results from the 
fact that decompositions of ST, yielding only two points in a subset S,, should be 
considered because they are needed to guarantee that E,,,(S,, f J = O  is achieved. 
Conversely, going down to one point is useless because it does not decrease the 
minimum of this error E,,,(S,, f,) and it can only degrade the errors on the other 
intervals (because they contain more points than in the previous case), so that it 
degrades the resulting error E,,,. 

When this limit W is introduced, ST should contain enough points to have at  
least W points available per part u o f f  T, i.e. the problem is relevant only when: 
n >  Wm. Moreover, each subset S, consists of the points of ST whose indices range 
from I,, included to I,,+, excluded. Therefore, the possible sets {I,, . . . Im-,} are all 
those such that 

The possible sets {I,, . . . Im- ,} resulting from (16) may be defined by using an 
approach where all the possible values of I, are considered, and for each such value 
all the possible values of I, are considered, and for each such couple of values all the 
possible values of I, are considered . . . and so on, until all I, are defined. Then, it is 
easily shown that the range required for each I, to consider all possible basic cases is 

3.3. Approach based on a complete loop on I, 

An algorithm for solving the problem considered in this seciton may be directly 
derived from the above discussion. Its basic version consists of performing an 
outermost loop on all the possible values of I, (defined by (17)). For each such I , ,  a 
loop on all the corresponding possible values of I, (defined by (17)) is performed . . . 
and so on, until the innermost loop on I,-,. For each such complete set 
{i, , . . .I,- ,}, all subfunctions f, are optimized independently, as stated above, and 
the corresponding optimum errors E,,, are obtained. This yields a current locally 
optimum function (i.e. a function optimized with respect to all f, for these fixed I,,). 
This function is denoted f (see Fig. 4). Its error E,, is derived from all ESP, 
according to (15). The overall algorithm consists of keeping a partially optimum 
function f zp, (and its error EsTOpJ, which is one of the functions providing the lowest 
error E,,, among all the locally optimum functions f considered up to the current 
basic case. This partial optimum is possibly updated for each basic case. When all 
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Optimum piecewise-linear transcoders-Par1 1 

A l g o r i t h m  3 

Procedure-1 / *  Overal l  a l g o r i t h m  */ 
{ 
A s s i g n  p a r a m e t e r  m  of  f T  
A s s i g n  p a r a m e t e r  lo  o f  f T :  lo  = 0 
A s s i g n  p a r a m e t e r  1, of  f T :  1 ,  = n 

Flag-opt = 0 /* s t a t e s  t h a t  ESTOP, h a s  n o t  ye t  been ass igned */ 

C a l l  Procedure-:! ( 1 ,  0 ) 
1 

Procedure-2  ( u, E le j , )  / *  Recurs i ve  procedure */ 
{ 
& u < m  

T h e n  f o r  1, ( o f  f T )  = 1,-, ( o f  f T )  + W t o  n - ( m  - u ) . W  

Cal l  Procedure-3  
Ca l l  Procedure-2  ( u  + 1 ,  E~~,,,,,id ) 

1 

Else  { 
C a l l  Procedure-3 

Procedure-3  /* P e r f o r m  o p t i m i z a t i o n  o n  I,-, */ 
{ 
O p t i m i z e  f,-, ( o f  f T )  
F i n d  correspond ing  ESFU, ,~~ (i.e. o p t i m u m  E s ~ u ( S , - l ,  f,-,)) 

Figure 4. Minimax decomposition of piecewise functions (without interpolation) with 
application to weighted minimax possibly-discontinuous PWL approximation: 
approach based on a complete loop on 1,. 
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838 Y. Deuille 

possible basic cases have been considered, it is a globally optimum function and the 
corresponding error ESTOP, is the optimum error. 

This algorithm may then be improved in various ways. First, when considering a 
new set {I,, . . . I,,,- ,}, some of its elements I ,  (having the lowest indices) have the same 
value as in the previous set. Therefore, there is no use re-optimizing the corresponding 
subfunctions f, of the current locally optimum function. Instead, they are kept from 
one set { I , ,  . . . I m -  ,} to the next one. To this end, they are forwarded from each loop 
level u (which varies I,) to the next one, along with f,-, which is the only subfunction 
optimized by the loop level u. The corresponding errors E,,, are also forwarded to the 
next loop level. More precisely, only their maximum needs to be forwarded, since only 
E,,, defined by (15) should be available a t  the end. This maximum among errors E,,, 
may be defined as follows, with respect to Definition 12 provided below. From the 
point of view of the calling loop level which sends this maximum E,,, to the next loop 
level, this value is equal to the error Ele f tmi ,  of this calling level. From the point of view 
of the called level which receives it, it is its error El,, , .  

Definition 12: When an input set ST is processed according to the loops on all I,  
defined above, and when the considered loop level is u (i.e. I ,  is varied), the set of 
intervals I ,  to I , , , - ,  associated with the currently considered approximating function 
f is split into three parts with respect to this level u. 

(I) The left part consists of the intervals l o  to I , - ,  (if any). These are the intervals 
which are not varied in the current level, because I, to I , - ,  are fixed (by the 
previous levels) in this level. 

(2) The middle part consists of the interval I , - ,  . This interval is varied in the 
current level, because I ,  is varied by this level. However this interval is fixed for 
each such I, (and therefore for each call to the next levels). 

(3) The right part consists of the intervals I ,  to I , - ,  (if any). These are the 
intervals which are varied in the current level, even for a fixed I , ,  because I , ,  , 
to I,-, (if any) are varied in the calls to the next levels that are 'included in the 
current level. 

For any such part of intevals o r  any union of such parts, an associated error is defined 
as the maximum of the errors E,,, corresponding to the intervals I ,  which comprise 
this part o r  union of parts. In particular, the following errors are used in this paper 

The proposed algorithm may also be improved as follows. If a software 
implementation of this algorithm explicitly contained the loops on I ,  mentioned 
above, the number of loops written in the source code would fix the value m. To allow 
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Optimum piecewise-linear transcoders-Part 1 839 

the user to select m on  each run, a recursive program is preferred. All these 
considerations yield Algorithm 3 (Fig. 4), where the recursive procedure Procedure-2 
receives the following parameters: the index u of the parameter I, that is varied in this 
recursion level, the error E,,,, corresponding to this current called level as explained 
above, and other common variables such as the partly assigned current function f T. 

3.4. SpeciJic problem statement 

The remainder of this section only concerns the case when the LL has two 
properties. It should first be such that whatever u and S,, if the number of input data 
points contained by S, is equal to W, then EsFUop,(S,)=L, where ESFUop, corresponds 
to the optimization performed by the LL with respect to f, for a given S,, and where 
the limit L on ESFUop, is a constant value, corresponding to the considered LL. The 
LL should also be such that: Vu, VS,, VP,, Vf", EsFu(Su, f,)> EsFu(S,, f,), where S: is 
the union of S, and P i .  I t  is easily shown that these properties are met when using $2 
as the LL (with L=O). The goal of the investigation is the same as  in the beginning 
of this section, but here the properties of the LL allow us to determine that some sets 
{I, .  . . I,,-,} cannot provide optimum functions (or that these functions are also 
provided by other sets). This allows us to create approximation algorithms which 
skip such sets {I,. . .Im-,} and which are thus much faster than the algorithm 
presented above (which of course also applies here). 

3.5. Approaches based on partial loop on I, 

Consider a given input data set ST, an  approximating function f to be optimized 
and a given loop level u. For each value of I,, two errors are defined as follows. The 
optimum error Em,,.,,, associated with the 'middle part' is obtained by optimizing 
Emid (see Definition 12) with respect to f,-, . The optimum error Erighl.opl associated 
with the 'right part' is obtained by optimizing E,,,,, (see Definition 12) with respect 
to I,+ , to I,-, , and to all parameters of all sub-functions fu  to f m -  , . 

For each loop level u, Algorithm 3 described above progressively increments I, 
from its minimum to its maximum possible value. Thus, thanks to the properties met 
by the LL here, Emid.opl increases or remains constant and Erighl-opl decreases or 
remains constant. Moreover, when I, is equal to its minimum possible value, Emid.opl 
is equal to L because S,-, contains W points. Similarly, when I, is equal to its 
maximum possible value, E,,,,,.,,, is equal to L because each of the subsets S, to 
Sm- , contains W points. All these conditions mean that Emid.opl 'crosses' E,ight.Op, for 
a particular value of I,. More precisely, in the general case, a single value 1: of 1, 
meets the following conditions: VI,, I, < I:, Emid..,, < E,i,h ,.,,, and VI,, I, > I f ,  
Emid.opt > Erigh,.o,t. Then the optimum value of I, (for the current values I, to 1,- ,) is 
either 1: o r  (If+ I) because when I, is varied further from these values in any 
direction, either Emid.op, o r  Eright.opt increases, so that their maximum increases and 
therefore EsFT increases (or remains constant: in this case, other values I, may also 
yield the optimum, but only the above two values are needed to determine this 
optimum). Among these two values, the optimum is the one which minimizes 
m a ~ ( E ~ ~ ~ . , , ~ , ,  Eright.opl). This suggests modifying Algorithm 3 as follows: in each level 
u, start the loop on  I, in the same way as  in Algorithm 3 but when the 'crossing' 
occurs, i.e. when Emid.,p, becomes higher than E,igh,.,p,, stop this loop, determine the 
optimum I, among the current value and the previous one as explained above (i.e. by 
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840 Y .  Deville 

testing max (Emid.opt, Erighl.opt)), compare the corrresponding locally optimum func- 
tion f (and error EsFT) with the partial optimum one, update the latter if needed, 
and return to the previous loop level. On rare occasions, strict equality Emid.opl 
- - Erigh,.ap, may occur for one (or several) I : .  Then this 1; (or any of them) is the 

optimum I ,  and is used in the same way as above. 
A second algorithm based on a partial loop on I ,  consists of also stopping the 

loop on I ,  if both Emid.opl and Erigh,.apt become lower than E,,,,, because improving 
Emid-opl and E,i,,,.,p, further will not decrease ESFT below E,,,, anyway. This yields 
faster operation and does minimize E,, (i.e. the maximum among all E,,,), which is 
the only requirement in this section. However, this approach only meets this 
requirement, while the first version (and Algorithm 3) in fact minimizes all E,,,, 
thus taking full advantage of the allocated number of parts m. 

3.6. Approaches based on a dichtomy on 1, 

The underlying principle of the first approach, based on a partial loop on I ,  
presented above, is to consider the difference (Emid.op,- Erighl.opl). This is a mono- 
tonic function of I,, which starts from a value lower than or  equal to zero for the 
minimum possible value of I,, and which ends with a value higher than or equal to 
zero for the maximum possible value of I,,. The algorithm then consists of 
determining the 'zero' of this function, or in fact the adjacent values of I, for which 
the sign of this function changes, since 1, and therefore this function only has discrete 
values. In the algorithm presented above, this zero search was performed by 
progressively increasing I,. Another approach consists of performing a classical 
dichotomy on I , ,  starting with an initial dichotomy interval corresponding to the 
minimum and maximum possible values of I,, and ending when the interval is 
composed of iwo adjacent values, which contain the optimum in the same way as 
above (i.e. test max(Emid.Op,, Erigh,.op,)). Here again, a faster version is obtained by 
taking into account E,,,, in order to end the loop on I ,  prematurely when possible, 
and only Es, is thus optimized instead of all E,,,. These dichotomic algorithms are, 
on average, much faster than the previous ones, since the number of values of I ,  that 
they test a t  each recursion level only varies as the logarithm of the number of 
possible values of I,. They are therefore the preferred algorithms. 

4. Minimax decomposition of piecewise functions, with interpolation. Possibly 
discontinuous PWL application 

If the approximating function f is to be used only for X coordinates equal to 
coordinates Xi of points Pi of the specified set ST, the optimization algorithms 
presented in 5 3  should be used. Conversely, if it is to be used for any X, these 
algorithms yield desired behaviour for any X except for the sub-interval 1: 
=]X,,"+, - ,,, XI"+ ,[ of each interval I , ,  with u = 0  to m-2. This may be explained as 
follows, for such a fixed index u ,  As stated in 53, each subfunction f ,  is optimized by 
taking into account the points whose indices range from I ,  included to 1,. , excluded. 
Then, for any X situated in I : ,  f T  is equal to f, which is used in the extrapolation 
mode, i.e. this X is not surrounded by points Pi taken into account in the 
optimization of this f u  (all these points are 'on the left' of X).  This may yield a low 
approximation accuracy. This problem is solved by also using the point PI"+, in the 
optimization off,: this point is situated 'on the right' of the considered X, so that f, 
is thus only used in the interpolation mode. 
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Optimum piecewise-linear transcoders-Part I 84 1 

This approach yields the same general and specific problem statements as in $ 3, 
except for the following items. For u=O to (m-2), the set S, contains all the input 
data points that it contained in $3, but also the point which limits I, on the right. By 
using the quantized values xu of $ 3  and the corresponding variables I , ,  S, consists of 
the input data points PI" included to PI"+ ,  included. For u=(m-I), the set S, is 
defined in the same way as in $ 3 because PI"+,  does not exist. The error E,,, is here 
only defined according to (15) (with respect to the new subsets S,). 

The problems thus defined are solved by using the same approach as in $3, 
except that the subsets S, d o  not contain the same points. This yields the following 
modifications. First, the problem is relevant only when n 3 ( W  - l)m + I. Then, the 
possible sets {I, . . . Im- ,} are all those defined by the following conditions (again with 
Io=O and Im=n): Vu,u=O to (m-2), 1,+,>1,+ W-I and for u=(m-I),  1,+,3I, 
+ W. By using the same loop structure as  in $3, these conditions yield the following 
possible range of values for each I, 

Vu,u=I to(m-I),I,=I,,-,+ W-I ton-1-(m-u)(W-1) (22) 

This yields the same algorithms as in $ 3, except that the subsets S ,  defined in the 
current section are used and that the range of values for each I, is defined by (22). 

5. Weighted minimax continuous PWL approximation 

The problem treated here is the same a in $4, except that only the LL of $ 2  is 
used (the approach may be easily extended to another LL) and that the optimum is 
searched only among continuous PWL functions. This problem is defined with 
respect to $ 4  rather than $3  because it is more natural to take the interpolation 
capability into account here, since smooth continuous functions are considered. The 
proposed algorithms provide functions which may be slightly sub-optimum. This is 
not a problem because this section is only a step towards the next section which 
'restores' optimality. 

In the basic stage of this section, an  m-segment possibly-discontinuous PWL 
functionfr is available. A continuous PWL function gT is then derived as follows. gT 
also has m segments. I t  is defined by (m+ 1) points, i.e. the (m- 1) limits between its 
segments, and two other points respectively situated in its leftmost and rightmost 
segments. These last two points are respectively made equal to Po and P,-, . The 
other (m-I) points have the same X coordinates as the corresponding limits 
between adjacent segments off ', i.e. X,". To assign the Y coordinate of any of these 
points, two 'hints' are available, i.e. the left and right limits off at this X (i.e. for 
X =  XI"). These limits are respectively equal to the values of the susbfunctions 
corresponding to the two adjacent segments, i.e. f,- ,(XJ and f,,(Xlu). The Y 
coordinate of the point of gT is made equal to one of these limits, i.e. to the one 
corresponding to the segment where the higher error E,,,(S,,J,) occurs. This 
method is coherent with minimax approaches, which only take into account the 
items which yield the highest errors. However, gT thus obtained is not guaranteed to 
be optimum. 

A first algorithm for solving the overall problem of this section consists of calling 
one of the algorithms of $4, which provides a function f T, and then deriving yT as  
explained above. gT is the output of this algorithm. An alternative is an algorithm 
similar to one of those of $ 4  except that, for each set {I, .  . .I,- ,}, after determining 
the current function f T, the corresponding continuous function gT is derived as 
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842 Y.  Deoille 

explained above. The error EsFT corresponding to ST and gT is then computed and 
compared with the partial (sub-)optimum among the continuous functions obtained 
up to now, and these (sub-)optimum functions and errors are updated if needed. At 
the end of the algorithm, this yields the selected (sub-)optimum continuous function. 
This approach is slower than the first but likely to provide a function gT closer to the 
optimum, because it selects the (sub-)optimum set {I, . . . Im-  ,} according to the 
errors corresponding to gT, not to f T. 

6. Weighted minimax continuous PWL approximation with quantized parameter 
values 

The problem considered here is the same as in $5, except that the X and Y 
coordinates of the points which define an approximating function are only allowed 
to have integral values. A simple solution to this problem consists of performing an 
exhaustive search on  these discrete values in a given domain. However, this leads to 
a combinatorial explosion for the numbers of segments m used in real applications. 
Instead, approaches similar to those of $ 5 are proposed here. 

More precisely, in a basic stage, it is assumed that a continuous PWL function gT 
is available and that the X coordinates of its points are integers. The latter condition 
is achieved by using a data set ST such that all Xi are integers. Then, a continuous 
PWL function hT defined by points having integral X and Y coordinates is derived 
by only modifying the Y coordinates of the points of gT as  follows. The simplest 
method only consists of rounding the Y coordinates of the points of gT to the nearest 
integers. In a more elaborate version, for the Y coordinate of each point of hT, a 
small set of integral values surrounding the corresponding Y coordinate of gT is 
successively considered. The error EsFT associated with each such function hT is 
determined, and the function providing the lowest error is kept. This version is 
slower than the simplest method but is likely to provide, most often, the optimum 
function within the type of functions considered here, because only a discrete set of 
functions exists and the optimum function hT is likely to be close to gT. This version 
thus 'erases' the sub-optimality of the algorithms of Q: 5. 

Two approaches, similar to those of $ 5, are then proposed to solve the overall 
problem of this section. In the first, one of the algorithms of $ 4  is first called, thus 
providing a function f T .  Then, a continuous function gT is derived as explained in 
$5. Finally, the procedure described above in this section derives the corresponding 
function hT, which is the output of the algorithm. Conversely, in the second 
spproach the determination off T, gT, hT is performed for each set {I,. . . I , , - , ) ,  and 
the partial (sub-)optimum function and error which are progressively updated 
correspond to an continuous PWL function with integral coordinates. Here again, 
the second approach is slower but likely to provide a function closer to the optimum 
(especially when based on the algorithms of $4 which use a larger number of sets 
{ I . .  .I,"- ,I). 

7. Conclusions and applications 

In this paper, we have mainly preesented algorithms for a weighted minimax 
PWL approximation, which led to various cases, depending on the exact type of 
PWL appproximating functions used. This may be summarized as follows. Two 
major cases were first presented, which respectively consist of using single-line 
approximating functions or possibly-discontinuous PWL ones (with interpolation 
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capability taken into account or not). The algorithms proposed for these cases 
provide optimum functions. The other two cases consist of requiring the PWL 
approximating functions to be continuous and/or defined by points which have 
integral X and Y coordinates. These two specific cases were studied because they 
correspond to practical applications, as  shown at the end of this section. The 
algorithms proposed for these two cases provide functions which are not guaranteed 
to be optimum, but which are likely to be most often very close to the optimum. 
Future work in this domain might consist of looking for optimum algorithms. 

All these algorithms obviously apply to simple (i.e. unweighted) minimax PWL 
approximation: all the weights W, should then be set to 1. However, restricting 
a priori the investigation to unweighted minimax PWL approximation allows us to 
derive improved algorithms. In particular, the algorithm of 5 2, based on couples of 
input data points, may then be simplified. Also, algorithms providing a worst-case 
complexity which is only a small fraction of n2 (instead of the complete n3 in this 
paper) may then be created (they are not presented in this paper where the target 
application uses weights, as explained by Deville 1994 a). 

We have also presented algorithms which have wider applicability than the 
weighted minimax PWL approximation. This remark mainly concerns the algor- 
ithms of $ 3  and 4, which optimize the domains of operation of the subfunctions of 
any type of piecewise functions according to a (possibly weighted) minimax 
criterion, by taking interpolation capability into account o r  not. To a lower extent, 
this also concerns the basic stages of QS 5 and 6. 

These optimization algorithms were investigated because they were needed in an 
industrial application, i.e. automatic TV tuner alignment. This application (and 
others) is presented in a companion paper (see Deville 1994a) and the remainder of 
this section aims only at showing how it leads to the approximation problems 
considered in this paper. This application requires us to build a transcoder which 
receives a digital word (defining the desired frequency of operation of the TV tuner), 
and which provides a corresponding adequate digital word (defining the control 
voltage provided to a filter of the tuner). This transcoder should have a very simple 
hardware structure, in order to be easily embedded into one of the tuner chips. This 
yields the following constraints on the form of its transfer function. First, in order to 
simplify the structure of its logic circuitry, which computes the value of this function 
for the current input value during TV operation, this function is only allowed to 
involve linear computations and comparisons. The transfer function of the trans- 
coder is thus restricted to possibly-discontinuous PWL functions. Then, one should 
minimize the size of the transcoder memory required to achieve a given performance 
(defined by the error E,,, as  explained below). Therefore, only continuous PWL 
approximating functions are accepted: when used to approximate relatively smooth 
functions, for a given number of segments m ,  they yield a slightly higher optimum 
error than possibly-discontinuous PWL functions, but they significantly reduce the 
number of parameters needed to define a function. As a result, they most often 
achieve a given performance with a lower memory size. Finally, the logic circuitry of 
the transcoder is restricted to operate only with integers, in order to simplify its 
structure. Therefore, only approximating functions defined by points having integral 
X and Y coordinates are accepted. The functional form of $ 6  is thus obtained. 

Among this type of transfer function, a particular function is selected as follows. 
Each manufactured tuner should have a specific transcoder transfer function, 
because of component spreads between tuners. This function is therefore derived 
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844 Optimum piecewise-linear transcoders-Part I 

from measurements which are performed for each manufactured tuner and which 
yield the above-mentioned points P i  defining the ideal behaviour of the tuner. The 
transcoder transfer function should be chosen so as  to fit this set of points in 'the 
best way'. This requires us to define a figure for measuring the performance of a 
tuner (defined by a set of points Pi)  and of a given transcoder transfer function. This 
~erformance figure is fixed by the considered application and is equal to the 
maximum frequency mistuning over the complete band of operation (see Deville 
1994a). As shown by Deville (1994a), this performance figure is estimated by an 
overall error which may be rapidly defined as the maximum among weighted errors 
associated with the points Pi (where the weights are defined by the application and 
derived from the coordinates of the points Pi and possibly from additional 
information). Therefore, the transfer function f of the transcoder is chosen so as to 
minimize this overall error, thus yielding the weighted minimax approximation 
criterion considered in this paper. 
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