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ABSTRACT

This paper deals with the blind separation of convolutively mixed
speech sources. The proposed methods take advantage of the a
priori knowledge that speech signals contain silences. They con-
sist in first detecting silence phases in these source signals and
then identifying each filter of the considered separating systems in
such a phase. The criteria used in both stages of these approaches
are based on the power (cross)-spectra of the observations: their
time-segmented coherence function is first used to detect silence
phases and the filters to be identified are then expressed as the ra-
tios of observation power (cross)-spectra. This general approach
is applied to various separating systems, depending i) whether the
considered structures are symmetrical, asymmetrical, or asymmet-
rical with a complementary part, and ii) whether they include or
not a post-processing stage for filtering the extracted sources. The
performance of all these approaches and of two methods from the
literature is investigated by means of experimental tests performed
with speech sources mixed by means of real acoustical in-car trans-
fer functions. This shows that the proposed approaches yield an
interesting performance/complexity trade-off as compared to pre-
viously reported methods.

1. INTRODUCTION

All situations related to the processing of data resulting from the
reception of several source signals by an array of sensors lead to
a difficult analysis [2, 9]. Blind Source Separation (BSS) meth-
ods allow to treat the observed sensor signals resulting from the
mixing of source signals, so as to estimate the sources from these
mixed signals. In recent years, BSS became one of the exciting
new topics in advanced statistics and signal processing, and it ap-
plies to major fields such as audio, seismology and even within the
medical framework.

Two kinds of mixtures exist : i) linear instantaneous mixtures,
which apply to narrow-band telecommunication problems for ex-
ample, and ii) convolutive mixtures, which are the most realistic
model e.g. for acoustical signals, due to multipath propagation
with non-negligible time delays. But the latter mixtures remain
more difficult to treat.

Many convolutive BSS methods assume the statistical inde-
pendence of the sources and take advantage of various properties.
Surveys of such methods may be found e.g. in [15, 16]. Various
approaches are related to information theory (see e.g. [1, 10, 11,
12, 14]). Some approaches were initially introduced by consid-
ering non-linear functions. This includes the original convolutive
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version [13] of the Herault-Jutten approach [7] and its optimized
extension by Charkani and Deville [3, 4, 5] which is considered in
the benchmark reported in this paper. Tests performed with such
approaches [4, 5] showed that their performance is quite good for
simple artificial mixtures but gets much lower when real mixtures
of acoustical signals are considered, despite the sophisticated prin-
ciples and important computational load of these methods.

This paper therefore also addresses the convolutive BSS prob-
lem, with main emphasis on real mixtures of speech signals but
with a specific goal: we aim at achieving a better performance/com-
plexity trade-off than the previous methods for the considered class
of signals. To this end, we take advantage of the a priori knowl-
edge that speech sources contain silences.

The remainder of this paper is organized as follows. A first
BSS approach with a symmetrical structure is introduced in Sec-
tion 2, where we especially detail signal segmentation using co-
herence functions and filter identification. In Section 3, we present
an alternative BSS approach based on an asymmetrical structure,
which yields various options. We then present experimental results
in Section 4 and draw conclusions from this work in Section 5.

2. FIRST PROPOSED BSS APPROACH

2.1. Classical symmetrical BSS structure

We consider the classical BSS configuration shown in Fig. 1,
where two signals, z1(n) and z2(n), are provided by two mi-
crophones. They are generated by the propagation of two speech
source signals s; (n) and sz(n) which are assumed to be centered
and uncorrelated hereafter. These microphone signals z;(n) are
then convolutive mixtures of the two source signals and the signal
propagation may be modelled as:

{

where the transfer functions of the Moving Average (MA) mix-
ing filters are denoted A;; (z).

Xl(Z)
Xz(z)



Mixture model Separating system

Fig. 1. Classical BSS configuration.
The outputs of the considered separating system read:

{ Yl(z) X1 (Z) — Cl(z).Xz (Z)
Y}(Z) Xz(z) - Cz(z).Xl (Z)

If we insert the expressions of the observations provided in Eq. (1)
into Eq. (2), we obtain the following expressions for the outputs:

0]

Yi(z) = Si(2).[A11(2) - ( )-A21(2)]
+52(2)[ 2(2) — C1(2).A22(2)] ©)
Ya(z) = Si(2).[A2 () C2(2).A11(2)]
+ S2(2). [A??( ) — C2(2).A12(2)]

BSS methods based on this classical structure aim at selecting
its filters C1(z) and C-(z) so that the following condition (C1) is
fulfilled: the system outputs Y7 (z) and Y2(z) depend on sources
S1(z) and Sa(z) respectively, or on S»>(z) and S1 (=) respectively.

Various methods have been proposed in the literature for adapt-
ing the separating filters C(z) and C2(z) so as to reach condi-
tion (C1). We will now introduce an alternative method to identify
these filters.

2.2. Filter identification procedure

2.2.1. Preliminary version of the identification procedure

As shown above, BSS requires to find the separating filters C1(z)
and C>(z) which reach condition (C1). Eq. (3) shows that this is
achieved for the two couples of filters defined by:

o) = o
e = i
where (i,1) = (1,2) or (i,1) = (2,1).

The general idea of the methods that we introduce in this pa-
per is to benefit from a priori knowledge about speech signals, i.e.
more precisely to take advantage of their silence phases. For the
sake of simplicity, we first present a preliminary version of the ap-
proach that we propose for the above symmetrical BSS structure.
This version uses the Fourier transforms of the observations over
silence phases as follows:

e \We consider the first detected silence phase (we explain in
Subsection 2.3 below how we detect it) and use it to assign
C: as follows:

®)
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By denoting ¢ the index of the source which is active over
this phase, (1) yields:

{ Xl(e]:‘“) = Ah(eJ“)SZ(eW) (6)
Xo(e7) = Agi(e?¥).Si(e?¥)
so that (5) results in
jwy Ali(ejw)
O = Loito) ™

Similarly, we then consider a silence phase associated to the
other source, and use it to assign C» as follows:

X2 (6jw )
Xi(e)

02(6]'4/.)) = (8)
By denoting I the index of the source which is active over
this phase, with I # i, we get in the same way as above:

Azl(@jw)

Cy (ejw) = All (Ej“])

)
By setting the frequency responses of the filters C; and C»
to the values defined by (7) and (9), with [ # i, these filters are

therefore actually made equal to one of the couples of target filters
defined in (4).

2.2.2. Final filter identification procedure

Instead of the Fourier transforms of the observations (over time
windows) considered above, the eventual approach that we pro-
pose to identify the above filters is based on the power spectral den-
sities Sz, (w, k) and power cross-spectral densities Sziz; (w, k)
of the observations over time windows indexed by k. By selecting
such a window in a silence phase where only S; is active, Eq. (1)
yields:

Seres(w, k) = All(e]:w)'A;lz(e]:w)'SSiSi(W) (10)
Seges(w, k) = A2i(e/).Agi(e7).Ss;s, (W)
so that: s (k) Api(ei)
Sees (@) Tor(e79) (11)

Deriving the left-hand term of Eq. (11) from the observed
signals therefore yields an estimate of the same frequency response
Ci(e*) asin (7). Similarly, the filter C»(e’) is estimated during
a silence phase where only S; is active, using:

Segwzq (w,k)
Seizq (w,k)

Ag(e7%)
Aq(ed@)

(12)
which yields the same filter as (9).

2.3. Silencedetection

We now explain how to detect the phases when one source disap-
pears. Our method is based on the real coherence function of the
observations I'(w, k), measured over half-overlap ping time win-
dows, which are indexed by k. This function is defined as:

2
| Sz o) (k) |
Seie; (@) Sz 2; (@,F)

(13)

I'(w, k)

where the same notations as above are used.



In the phases when one source disappears, the two observa-
tions are equal up to a filter (see Eq. (6)), so that I'(w, k) = 1.
On the contrary, I'(w, k) gets significantly lower than 1 for the
phases and frequencies when the two sources are active and have
a frequency overlap. The magnitude of I'(w, k) therefore allows
one to detect silence phases. The criterion that we use in practice
is the mean of I'(w, k) over the frequency range [0-800Hz]. This
range was selected because it includes a major part of the energy
of speech signals (i.e. pitch and first formant) and I'(w, k) is there-
fore accurately estimated on this range.

The above filter identification and silence detection principles
are combined as follows in the resulting overall BSS method. We
first compute the above mean coherence functions for all time win-
dows of the mixed signals. We then form an ordered list of the time
windows corresponding to silence phases, so that they correspond
to decreasing values of the corresponding means of I'(w, k). We
consider the first window in this ordered list and identify the corre-
sponding value of the separating filter C1 (z). We then use the next
time windows in the above ordered list as follows. We identify the
value of the filter C>(z) in another time window and we check if
the distance between the frequency responses of Ci (z) and C2(z)
is above a user-defined threshold, thus indicating that C>(z) does
not correspond to the same source as C;(z). If this condition is
met, both target filters of a couple of filters defined in Eq. (4) were
identified and the filter identification procedure ends. Otherwise,
the above steps are repeated for the next time windows in the or-
dered list, until the target filter C>(z) corresponding to the other
source is reached.

2.4, Post-processing

The method that we introduced at this stage makes it possible to
identify a couple of target filters defined in Eq. (4) and to derive
the corresponding separating system outputs according to Eq. (2).

This approach yields two cases, depending on which sources
among S1(e?“) and S (e?*) are active respectively in the first and
second silence phases, i.e. depending whether (i,1) = (1,2) or
(7,1) = (2,1). More precisely, the resulting signals read:

i) For (z,1) = (1,2):

Yi(z) = Sa(2)[Aia(2) — G Ax(2)]
{ Ya(2) = Si(2).[Aa(z) — ;“;‘;E;%.A 1(2)] a4
ii) For (i,1) = (2,1):

Yi(z) = Si(2)[An(z) — §2E .42 (2))]
{Ym = S lAn(e) - B 4 O

These signals are therefore not equal to the sources signals
Si(z) themselves, nor to their contributions A4;;(z).S;(z) in the
measured signals, but to specific filtered versions of the sources.
Such a frequency distorsion is a drawback for various applications,
especially in the speech processing field. To avoid it, we add a
post-filtering stage realized by two filters D, (z) respectively ap-
plied to the output signals Y, (z), and expressed as:

v
e — Om(2)
m#ne€{l,2}

This stage can be realized if and only if we have identified the
two separating filters C1(z) and C»(z). With the post-processing

Dy, (2) (16)
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filters defined in Eq. (16), the final, i.e. post-processed, outputs
read:

i) For (4,1) = (1, 2):

Pl(Z) = 1’1 z)Dl(z) = Azg.Sz(Z)
{Pz(z) = V() Ds(2) = Au.Si() (17
i) For (i,1) = (2,1)

Pl(z) = Yl(Z)Dl(Z) = A21.51(Z)
{Pz(z) — Y(2).Da(z) = Au2.5a(2) (18)

They are therefore equal to the source contributions in the sen-
sor signals in both cases.

3. SECOND PROPOSED BSS APPROACH

The BSS approach that we here propose again uses silence phases
in each source to identify separating filters. But these filters are
here included in a modified BSS structure.

3.1. Proposed asymmetrical BSS structure

We here consider the same mixture model as in Section 2, but we
now introduce a new BSS structure. This structure again yields

two signals Y1 (z) and Yz (z).

v

=

¢ @

(=

Fig. 2. Proposed structure for deriving each
of the separating system outputs.

Each of these signals is here obtained as shown in Fig. 2 and
therefore reads:

Yi(z) = Xi(z)—Ci(z).X2(2) (19)
i€l1,2]
or:
Yi(z) = S1(2).[A11(2) — Ci(2).A21(2)]
+82(2).[A12(2) — Ci(2).A22(2)] (20)
i€1,2]

The two values of the separating filter C;(z) that make it possible
to respectively extract S (z) and Sz (z) are therefore:

e B
Ci(z) = T



3.2. Filter identification and silence detection

The initial BSS problem is then reformulated as a filter identifi-
cation problem, i.e: if we are able to identify the two values of
Ci(z) defined in Eq. (21), then by computing the corresponding
signals Y;(z) according to Eq. (19) we extract the two source sig-
nals. The method that we propose to this end is a direct adaptation
of the method introduced in Section 2 for identifying the filter C;
of the symmetrical structure. More precisely, we here again detect
silence phases by means of the procedure described in Subsection
2.3. In such a phase, we set one of the two filters C; to:

Soqwg@.k)
Sapag (@:F)

Ci(e?*) = (22)
If only source .S; is active in this phase, the same calculations as in

Subsection 2.2.2 here yield:
) A”(ejw)
Ci(e?”) = ——=
(e’) Ao (e7%)
The two values of C; thus obtained, respectively associated to I =

1 and 2 (again distinguished as explained in Subsection 2.3), are
therefore actually equal to the two target values defined in (21).

(23)

3.3. Post-processing

At this stage, the outputs signals resulting from this method read
explicitly:

Yi(2) S1(2).[A11(2) — 25 A1 (2)] (24)
Yi(z) S2(2).[A12(2) — G5 Aos (2
Here again, these signals are not equal to the sources signals

Si(z) themselves, nor to their contributions A;(z).S;(z) in the
measured signals, but to specific filtered versions of the sources.
As in our first method, we again need to add a post-filtering stage.
That is realized by filters D, (z) applied to each output signal
Y (2), and here defined as:

Din(2) (25)

Cn(z) — Cn(2)
m#n € {1,2}
Hereafter, the post-processing filters can again be realized if

and only if we have identified the two separating filters C;(z).
With the post-processing filters defined in Eq. (25), the final out-

puts read:
This enables us to obtain the contributions of each source on
sensor 2, if separation is carried out as in Eq. (19).

(26)

3.4. Extensions
3.4.1. Source contributions on the first sensor

A complementary version of the above method, still based on the
identification of the ratio of mixing filters during a silence of each
source, makes it possible to extract the components from each
source on the other sensor. The corresponding separating system
provides the signals:

Yi(z)

Xo(z) — Ci(2).X1(2)
1€ {1,2}

@)
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If we write these new output expressions as in Eq. (20), we can
then derive the expressions of the new separating filters, defined

by:

0o w
Ci(z) = The

We must note that these filters in Eq. (28) are the inverse of
those obtained in (21) for the initial asymmetrical structure. They
are therefore directly available from the previous identifications.
The post-processing filters D, (z) used here have the same ex-
pression as in Eq .(25), but they now include the filters defined in
Eq. (28).

This enables us to obtain as final outputs the contributions of
each source on sensor 1, defined by:

A11 (Z)Sl (Z)

A (2).S2(2) (29)

3.4.2. Selection of extracted sources

The four output signals defined in Eq. (26) and in Eq. (29) yield
two extracted versions for each source. We should then keep the
couple of outputs corresponding to the best separated signals in
practice. To this end, we propose to introduce another stage in
this method, which calculates the cross-correlation coefficients,
before the post-processing stage, between the above four interme-
diate outputs taken two by two. We then keep the couple of signals
which yields the lowest cross-correlation coefficient.

3.4.3. Post-processing Options

As explained in Subsection 3.3, some applications need a post-
filtered version of the extracted signals and the corresponding post-
processing stage requires both target values of C;(z) to be identi-
fied. We showed in Subsection 3.4.1, that the complementary ver-
sion of the proposed approach has the same target filters C;(z) as
the initial version (up to an inversion). This means that, by im-
plementing both the initial and complementary versions, we get
two estimates of each target filter. We should then select which
estimate we keep for each filter. Based on the related discussion
that we provided in Subsection 3.4.2., the selection method that we
here propose consists in keeping the filter estimates and the cou-
ple of outputs, which yield the least correlated signals before the
post-processing stage. Then we can apply the post-filtering with
the filters thus kept.

4. EXPERIMENTSAND RESULTS

The experiments described in this section concern the cocktail party
problem. The two considered speech signals from the English
Multext data base are centered, rescaled so as to have similar pow-
ers and limited to a length of 100000 samples.

The performance of the proposed approaches has been tested
with various mixing filters lengths, with main emphasis on real
measured acoustical transfer functions. More precisely, we have
first used 256-tap MA filters derived from measurements performed
in a car with two microphones, which had an inter-microphone dis-
tance equal to 25 cm. The above source signals have also been ap-
plied to 8, 16, 32, 64, 128-tap MA filters derived from subsampled
in-car measurements. This aims at testing the proposed approach
for various mixing conditions.



Eq. (11,12,13,22) require estimates of the power spectral den-
sities Sx,; ., (w, k) and power cross-spectral densities Sy, ; (w, k)
of the observations over a time window indexed by k. The method
used to this end in this paper is a modified version of averaged pe-
riodogram. This method is called the Welch-WOSA method [6, 8].
Each time window £ of signals is segmented by means of overlap-
ping weighting sub-windows. The power spectral densities and
power cross-spectral densities of the segmented signals are calcu-
lated over each sub-window, and by averaging them we extract the
required estimates. More precisely we use a Hamming window
and an overlap of 75%.

Two other methods are tested in order to compare them with
our methods. The first of them is noted N1 by Charkani and
Deville [3, 4, 5]. It’s a decorrelation method with a simple nor-
malization. The other, more sophisticated, method is called the
Optimized method and uses sub-optimum separating functions [3,
4, 5]. These two methods are based on a modified version of the
stochastic algorithm, corresponding to the Herault-Jutten [7] rule,
previously extended by Nguyen Thi et al. [13] to the convolutive
domain. The performance reported below for these adaptive al-
gorithms has been measured after a period allocated to their con-
vergence. To this end, the mixed signals were presented twice to
these BSS systems and performance was only measured during
their second occurence.

The signal/noise ratio (SNR) available before BSS processing,
i.e. in each observed signal 7, is denoted SN R;, (%) hereafter. Per-
formance is then assessed in terms of : i) the SNR measured in the
outputs of the BSS system, and denoted SN R,,+(%) below, and
ii) the SNR improvement (SN RI) achieved by the system, i.e:
SNRI(i)=SNR,u:(i) | SNR;»(i). This SNRI is averaged over
the two channels of the BSS system, so that the eventual perfor-
mance criterion is: SNRI=y/SNRI(1).SNRI(2).

First Method | Second Method

filter order | MD AD MD AD
8 158 | 105 | 14.9 9.4

16 229 | 15.6 17 15.2

32 222 | 5.6 19.7 9.0

64 5.6 2.5 55 6.3
128 6.0 45 4.2 4.7
256 7.6 6.3 6.1 6.0

Table 1. SNRI (dB) obtained with the two proposed methods
for different mixing filters, without post-processing, and with au-
tomatic (AD) or manual (MD) silence detection.

Table 1 presents the results of experiments performed with the
two proposed methods' without post-processing, i.e. when con-
sidering the signals Y;(z) as outputs. In each case, we test: i) the
complete approaches i.e. including their automatic silence detec-
tion (AD) procedure described in Subsection 2.3 and ii) a restricted
version where we manually detect the silence phases (MD). Table
1 shows that the two approaches proposed in this paper have simi-
lar performance and yield a significant SV RI even in hard mixing

LAl the results reported in this section for the second method concern
its overall version, i.e. including its complementary part defined in Sub-
section 3.4.1. At this stage of our tests, the selection of the version of the
extracted sources and associated filters, defined in Subsections 3.4.2 and
3.4.3, was performed as follows: for each source, we manually selected
the version which yields the best SN RI () before post-processing.
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conditions. Moreover, they always yield much better performance
than the decorrelation approach presented in Table 3, while their
computational load is quite limited®. The performance of our ap-
proaches is much closer to that of the complex optimized approach
also presented in Table 3 and even better for various mixing filters,
including the actual 256-tap filters. It should also be noted that
the modified version of our approaches with manual detection of
silence phases yields much better performance than the automated
version. These approaches could therefore be improved by devel-
oping a better silence detection procedure.

First Method | Second Method

filter order | MD AD MD AD
8 12.1 6.0 15.3 9.3

16 16.4 | 15.3 0.6 0.4

32 22.1 6.5 -1.8 -2.6

64 5.0 45 -4.3 -4.9

128 5.8 5.3 0.3 -0.74
256 7.9 6.9 25 1.5

Table2. SNRI(dB) obtained with the two proposed methods for
different mixing filters, with post-processing, and with automatic
(AD) or manual (MD) silence detection.

Table 2 contains the results of experiments performed with the
two proposed methods with post-processing, i.e. when consider-
ing the output signals P;(z), in the same conditions as above. This
shows that even in hard mixing conditions the first proposed ap-
proach yields a SIN RI most often equivalent to that of the sophis-
ticated method and always much better than the simple decorrela-
tion method. Here again this approach therefore yields a much bet-
ter complexity/performance trade-off than the previously reported
methods. For some filters, the post-processing stage of the sec-
ond proposed approach yields significantly degraded performance
as compared to the results reported in Table 1. This phenomenon,
which is to be further investigated, might be related to the non-
causality of some target separating filters.

Filter order
8 16 | 32 | 64 | 128 | 256
Decorrelation | -24 | 23 | 01| 1.3 | 0.8 | -09
method (N1)
Optimized 101 | 6.7 | 56 | 43| 81 | 57
method

Table 3. SNRI (dB) obtained with two classical methods for
different mixing filters.

As an example, we now detail the results obtained in an exper-
iment with the two speech source signals and real 256!"-order MA
filters. Automatic silence detection is made with half-overlapping
time windows containing 4096 samples. The 100000-sample source
signals are thus segmented in 47 windows indexed by k = 1, ..., 47.
The coherence functions of the observations over some of these
windows are represented in Fig. 3. A silence phase (in source 1) is

2|t should be remembered however in this comparison that the methods
without post-processing proposed in this paper and the two methods from
Charkani and Deville do not yield the same filtered version of the sources.



detected by our method around k£ = 17. This is coherent with the
fact that the actual silence phase corresponds to k& € [16, 22]. The
(filtered) speech signals P;(z) thus extracted by the first presented
BSS method are shown in the two bottom plots of Fig. 4, with
the mixed signals represented in the middle plots and the source
signals in the top plots.

s

k=10
I I I I
T T T
0.5 k=11
0 I I I I I I I
1 T T T T
0. 5 ‘{ k=12

V\/ k=13
- ——

) SF/ W k=14
0 ih | | | | | ‘ k=15

1 EE— ————T T —1

0.5 l>/’ k=16
0 I I I I I I I
1 T T — ————1

0.5 F/ k=17
0 I I I I I I I
1 T —— T T T T

05 F_/ k=18
0 I I I I I I I
1 T T —_T T T T

O.SF k=19
0 I I I I I I I

0 100 200 300 400 500 600 700 800

Fig. 3. Coherence function in the range [0 Hz,800 Hz] over
time windows indexed by k for 256" -order MA filters.
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Fig. 4. Temporal signals : Source signals (top), mixed signals
(middle), output signals (bottom) for 256" -order MA filters.

5. CONCLUSIONS
In this paper, we presented two main convolutive BSS methods in-

tended for speech separation and based on silence detection and
subsequent frequency-domain filter identification. These methods

366

give rise to several versions, especially depending whether or not
the extracted sources are post-filtered to obtain the source contri-
butions in sensor signals. Experimental tests with real high-order
acoustical mixing filters showed that this post-processing stage
may degrade the performance of one the proposed methods. This
phenomenon might be related to the fact the two considered struc-
tures do not identify the same filters and therefore do not yield
the same causality contraints. These topics will be further investi-
gated. Anyway, the two methods without post-processing intro-
duced at this stage yield an interesting performance/complexity
trade-off as compared to the two approaches from the literature
to which they were experimentally compared.
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