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Abstract. The state of a quantum system being described by a density
operator ρ, quantum statistical mechanics calls the quantity
−kTr(ρ ln ρ), introduced by von Neumann, its von Neumann or sta-
tistical entropy. A 1999 Shenker’s paper initiated a debate about its
link with the entropy of phenomenological thermodynamics. Referring
to Gibbs’s and von Neumann’s founding texts, we replace von Neu-
mann’s 1932 contribution in its historical context, after Gibbs’s 1902
treatise and before the creation of the information entropy concept,
which places boundaries into the debate. Reexamining von Neumann’s
reasoning, we stress that the part of his reasoning implied in the debate
mainly uses thermodynamics, not quantum mechanics, and identify two
implicit postulates. We thoroughly examine Shenker’s and ensuing pa-
pers, insisting upon the presence of open thermodynamical subsystems,
imposing us the use of the chemical potential concept. We briefly men-
tion Landau’s approach to the quantum entropy. On the whole, it is
shown that von Neumann’s viewpoint is right, and why Shenker’s claim
that von Neumann entropy “is not the quantum-mechanical correlate
of thermodynamic entropy” can’t be retained.

1 Preliminary considerations

In Quantum Statistical Mechanics (QSM), S, the (statistical) entropy of a system
described by a density operator ρ is given by the von Neumann (VN) expression
SV N = −k < ln ρ > (k: Boltzmann constant) [von Neumann 1932; Landau 1958].
The spectrum of the ρ eigenvalues is strictly discrete [von Neumann 1932; Messiah
1965] and, summing over a basis of ρ eigenstates, with corresponding eigenvalues wj ,
the reduced entropy is:

σV N =
SV N

k
= −Tr(ρ ln ρ) = −

∑
j

wj ln wj . (1)

Eq. (1) is also used in the presently developing Quantum Information Processing field,
σV N being called the von Neumann information entropy [Nielsen 2000].
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The time evolution of the density operator ρ(t) for an isolated system with deter-
ministic Hamiltonian H obeys the Liouville-von Neumann equation iℏdρ/dt = [H, ρ],
and its VN entropy is then time-independent, since:

−dσV N

dt
= Tr(

dρ

dt
ln ρ) =

1

i~
Tr([H, ρ] ln ρ) =

1

i~
Tr([ρ, ln ρ]H) = 0. (2)

Small parts of the Hamiltonian of macroscopic quantum statistical systems are
often unknown, which is possibly described with a random Hamiltonian. The evolu-
tion of σV N (cf. e.g. [Balian 1982, p. 104]) is then related to the temporal increase
of entropy in isolated macroscopic systems (second law of thermodynamics). This
difficult question, discussed since Boltzmann, first in a classical context, is still open,
as shown by recent contributions from J. Lebowitz, in a classical [Lebowitz 2007] or
quantum [Lebowitz 2007; Lebowitz 2010] context. The present paper is not devoted
to this time evolution.

At thermal equilibrium, there is a consensus that in Classical Statistical Mechanics
(CSM) Gibbs entropy corresponds to the entropy of thermodynamics (from now on an
abbreviation for phenomenological thermodynamics). About Gibbs entropy, Jaynes
e.g. wrote: ”once we accept the established proposition that the Gibbs ensemble does
yield the correct equilibrium thermodynamics, then there is logically no room for any
assumption about which quantity represents entropy: it is a question of mathemat-
ically demonstrable fact” [Jaynes 1965]. This consensus also exists in the quantum
case, as verified e.g. by reading the first chapter of Feynman’s concise book entitled
Statistical mechanics [Feynman 1972]. This chapter, an introduction to equilibrium
QSM, clearly shows that the VN expression is a brick in building up equilibrium
QSM, with the introduction of the thermodynamic quantities and the establishment
of relations between them.

In 1999, a paper by Shenker [Shenker 1999] raised some doubt about this consensus
upon the relation between the VN statistical entropy and the entropy of thermody-
namics. His paper generated a reply from Henderson [Henderson 2003] criticizing
Shenker’s arguments and conclusion, followed by a paper from Hemmo and Shenker
[Hemmo 2006] moving the debate into multiple directions. These three papers are
restricted to equilibrium situations (anyway, in off-equilibrium situations, one can’t
speak of the entropy of thermodynamics, but only at best introduce a local thermo-
dynamic entropy [Callen 1966]). Since Shenker’s paper, its conclusion has somewhat
diffused within the Philosophy of Science field (cf. e.g. Ch. 7 of [Hagar 2004]). Our
examination of VN’s approach as suggested by Shenker’s paper led us to set [Shenker
1999] into a broader perspective, presented in this paper.

The entropy concept is now used in quite distinct fields, which explains the ap-
pearance of the interdisciplinary journal Entropy in 1999, and may explain why the
three above-mentioned papers appeared in journals devoted to the Philosophy of Sci-
ence. It seems undoubtful that ”in the last forty years, philosophy of physics has
become a large and vigorous branch of philosophy” [Butterfield 2007, Introduction,
p. XIII]. And, concerning the second law, Jaynes spoke of an ”enormous conceptual
difficulty”. But the content of [Shenker 1999; Henderson 2003; Hemmo 2006] forced
us to pay attention to the choice and right use of adequate physical concepts, and to
their historical development.

Concerning the choice and use of concepts, we will e.g. stress that the chemical
potential concept is a tool for finding the equilibrium states of open thermodynamical
(sub)systems, and will try to establish whether, when Shenker claims that, ”if SV N

is entropy, then perpetual motion machines are possible” [Shenker 1999], his claim
respects the general principles of physics.

Concerning the historical development of concepts and ideas in physics, it is help-
ful, in the context of our subject, to identify the radical change in the introduction
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of the idea of entropy in the field of QSM, when comparing VN’s approach with that
adopted today e.g. in [Balian 1982]. Between VN and Balian, [Shannon 1948] initi-
ated the development of modern Information Theory, and allowed Jaynes to start a
presentation of the foundations of both CSM and QSM by introducing the entropy
through the concept of information rather than from thermodynamics. This will have
two consequences for us: 1) Peres (cf. Subsection 3.3) agrees with VN about the sig-
nificance of VN entropy, but, although he refers to VN’s mental experiment to be
soon described, he gets his conclusion through a quite distinct path, 2) for clarity and
for an economy of thought and space, we limit the present paper to an examination
of the path followed by VN. A right appreciation of that historical evolution in the
presentation of the foundations of QSM is favoured by a thorough examination of
the canonical texts [Gibbs 1902] and [von Neumann 1932] (we henceforth use the
first edition of its English translation). [Dirac 1930] and [von Neumann 1932] are
generally seen as the synthetic treatises which stabilized the foundations of quantum
theory after the 1924-1927 years. But this fame may hide the fact that VN’s book also
generalized the description of macroscopic systems by statistical mechanics, made by
Gibbs in a classical context, to a quantum one.

[Hemmo 2006] largely uses different interpretations of quantum mechanics (QM),
as opposed to the laws of QM. Such a use presents several difficulties: 1) the number of
interpretations is not low, and their use may make the discussion quite technical and
specialized, 2) differences appearing in the conclusions from two distinct interpreta-
tions could arise from the interpretations and not from the laws of QM, 3) the debate
may deviate towards a discussion between those who, as Fuchs and Peres, estimate
that ”quantum theory needs no interpretation” [Fuchs 2000], and those who reply:
”Quantum Theory: Interpretation Cannot be Avoided” [Denis 2004]. But we will see
that: 1) the part of VN’s reasoning under discussion mainly uses thermodynamics,
2) VN’s reasoning uses a relation involving the quantum system which is implicitly
postulated, 3) several quantum results established by VN were accepted up to now
in the debate initiated by [Shenker 1999]. When referring to QM, these last facts
stimulate us to try and keep to its laws and to avoid additional specific interpretation
and/or possible philosophical implication of that interpretation.

In Section 2, we recall the definition and some properties of the entropy used by
thermodynamics. Then, in Section 3, we present and comment the introduction of the
statistical entropy in [von Neumann 1932]. Section 4 is devoted to a critical exami-
nation of [Shenker 1999; Henderson 2003; Hemmo 2006], the main papers involved in
that debate. A short presentation of QSM by [Landau 1958], which introduces VN’s
definition of entropy without any use of VN’s justification, is provided in Section 5.
Sections 6 and 7 are respectively devoted to a short discussion and to the conclusion.

2 Thermodynamic entropy

Clausius introduced the concept of entropy by postulating that, in an infinitesimal
reversible transformation where the thermal energy exchange of the system (at tem-
perature T ) with the external world is DQr, then DQr/T is a total differential denoted
dS, S being called the (thermodynamic) entropy of that system. The notation DQ,
from [Kittel 1969], stresses the presence of a differential form, as opposed to a total
differential. Systems first considered were closed (no matter exchange). The exten-
sion to open systems (presence of matter exchange), was made by Gibbs [Gibbs 1875;
Gibbs 1902], who introduced the concept of chemical potential and the corresponding
matter exchange internal energy term. In this paper, we follow the canonical book
[Callen 1966] as it adopts a systematic postulational approach of thermodynamics
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and moreover does not ignore open systems. Callen first restricts his attention to spe-
cific macroscopic systems which he calls simple (excluding e.g. systems with surface
effects). For them, the existence of the general principle of energy conservation (for
an isolated system) is reflected in the postulate of the existence of an energy func-
tion, the internal energy U, additive over the constituent subsystems. Callen then
introduces particular states of these simple systems, called equilibrium states. For a
simple system, an equilibrium state is completely defined by specifying its internal
energy U , its volume V , and the mole numbers n1...ni of its chemical components.
Callen then postulates the existence of a function S(U, V, n1...ni) (fundamental rela-
tion) defined for these equilibrium states, called entropy, additive over independent
subsystems, homogeneous of degree one versus U, V, n1...ni (cf. [Jaynes 1992; Balian
1982, p. 159]), differentiable, and monotonously increasing with U. It is postulated
that whenever internal constraints in an isolated system (neither energy nor matter
exchange) are suppressed, the system spontaneously comes into a new equilibrium
state where its entropy has the maximum value compatible with the remaining con-
straints. For a system with an entropy function S(U, V, n), e.g. a single phase of a
single fluid, the total differential has the form [Callen 1966, Sec. 2.1]:

dS =
1

T
dU +

P

T
dV − µ

T
dn, (3)

where T is the temperature of the system, P the pressure and µ the chemical potential.
For an ideal gas with temperature-independent heat capacity at constant pressure CP

(and therefore at constant volume CV too), the chemical potential of n moles with
internal energy U and volume V is (cf. Appendix B):

µ

T
= R ln

U
1

1−γ V −1n
γ

γ−1

(U
1

1−γ V −1n
γ

γ−1 )0

+ (
µ

T
)0, (4)

where T is the temperature of the gas, γ = CP /CV , and the index 0 refers to an
arbitrary reference state.

When there are two chemical species, each in a given phase (e.g. neon and krypton
in the gaseous state), with n1 and n2 moles respectively, there are two chemical
potentials, µ1 and µ2 [Callen 1966, Sec. 2.1].

In order to introduce results which will be useful in the following Sections, we
now imagine a model isolated cylinder, separated by an internal wall into two parts
with respective volumes V1 and V2. Initially, the internal wall is adiabatic, rigid and
firmly fixed, impermeable to matter, and each part is in an equilibrium state, with
respectively n1 and n2 moles of the same gas, ideal or not, at respective temperatures
T1 and T2. At some instant, the internal wall becomes both diathermal (thermal
exchanges become allowed) and permeable to the gas. In the final equilibrium state,
as a result of entropy extremalization respecting the remaining constraints, the gas in
parts 1 and 2 has the same temperature and the same chemical potential [Callen
1966, Sec. 2.8]. If now the gas is an ideal gas verifying (4), because of these equalities
then V/n has the same value in the two regions, and since PV = nRT (cf. Appendix
A), the pressure has the same value in the two parts. This equality of the final
pressures is not a priori verified, as the internal wall is permanently rigid and fixed.
Thermodynamically treating that final equilibrium without explicit or implicit use
of the chemical potential concept would mean considering each part of that isolated
system as closed whereas each part is open (cf. Appendix B).

Some frustration, well identified in [Kittel 1969], is generally felt when starting the
study of thermodynamics, which postulates the existence of the entropy function S,
and simultaneously declares that it is unable to give any microscopic interpretation of
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S, since it operates strictly at the macroscopic level. When Boltzmann and Gibbs built
(classical) statistical mechanics, they aimed at getting a microscopic interpretation
of the principles of thermodynamics, and particularly of S. Today, thermodynam-
ics as deduced from the principles of (quantum or classical) statistical mechanics is
called statistical thermodynamics, as opposed to (phenomenological) thermodynam-
ics, which rests on a few postulates operating at the macroscopic level. Paraphrasing
[Callen 1966, p. 267], one should admit that the point of division between thermo-
dynamics and statistical mechanics can be displaced towards statistical mechanics, if
new postulates, suggested by results from statistical mechanics, are introduced into
thermodynamics, which e.g. allows a ”thermodynamic theory of fluctuations” to be
built. We will ignore this possible extension of thermodynamics, which would be a
possible source of confusion for the question under examination.

It should be clear that thermodynamics, while using rather abstract language and
construction, is however a natural science, since: 1) its general principles, and concepts
such as temperature or pressure, were suggested by experience, 2) it makes full use of
the principle of energy conservation, historically suggested by experience (cf. [Poincaré
1902, Ch. 8; Poincaré 1908; Sommerfeld 1950]), 3) an aim of thermodynamics is to
get information upon a physical system already partly experimentally known: e.g.
the Reech formula (Landau 1958, (16.14)) allows us to know a thermal quantity by
measuring mechanical quantities only.

3 Von Neumann and statistical entropy

Statistical mechanics explicitly takes the microscopic constituents into account, de-
scribing them with a more or less realistic model. CSM is now considered an ap-
proximation of QSM, valid in some limiting conditions (classical regime: cf. [Kittel
1969] and footnote 1 ). This point should not be understood stricto sensu, since CSM
considers that the atoms or molecules of a gas are distinguishable, whereas QM has
taught us that they are not. In the case of gases, it then happens that when compar-
ing the theoretical expressions obtained in the classical regime and the corresponding
ones valid in CSM, the same expression is obtained for the internal energy U , but
the expressions for the entropy S differ (Gibbs paradox [Kittel 1969]), the correct one
being given by QSM. In the context of this paper, one has to refer first to [Gibbs
1902] upon CSM, since VN explicitly refers to Gibbs in [von Neumann 1932].

In order to correctly appreciate VN’s justification of his expression for entropy
(SV N ) in [von Neumann 1932], one must replace it in this larger context. It is then
essential to identify the existence, content and order of three distinct parts: 1) in
Sec. 2 of Ch. 5, VN first introduces the concept of quantum semi-permeable walls,
and shows that they may separate orthogonal and only orthogonal states. He then
establishes his expression for SVN, the entropy of a quantum system. 2)
in Sec. 3, VN proves that a quantum measurement is irreversible, and, using his
expression for the entropy, he derives expressions for a quantum system at thermal
equilibrium (QSM) which are formally identical to those found by Gibbs for a classical
system (CSM) in [Gibbs 1902]. 3) Ch. 6 is devoted to the quantum measuring process.

1
At temperature T , when quantum particles obey Bose or Fermi statistics,

−

n(ε), the mean number

of quantum particles in a quantum state with energy ε, is
−

n(ε) = 1/(e(ε−µ)/kT
± 1) (+ for bosons, - for

fermions, µ: chemical potential). If these identical independent particles are in such experimental conditions

that, for any energy ε, the inequality e(ε−µ)/kT
≫ 1 holds, then

−

n(ε) ≃ e−(ε−µ)/kT for any ε. It therefore

appears that the expression for
−

n(ε) is then identical to that of the classical Maxwell-Boltzmann statistics,

and the system of particles is said to be in the classical regime [Kittel 1969]. But the particles are then still

indistinguishable, contrary to their classical counterparts, and this has important consequences in entropy

considerations.
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3.1 Von Neumann and Gibbs

In the introduction of [Gibbs 1902], Gibbs defines statistical mechanics as ”a branch
of mechanics which owes its origin to the desire to explain the laws of thermody-
namics on mechanical principles”, which he does in Ch. 14, entitled ”Discussion of
thermodynamical analogies”. If the physical system of interest (”the system”) Σ is
modeled with n pointlike particles obeying the laws of classical mechanics, its state
at some instant t is described, in the Hamiltonian formalism, by the collection of its
6n coordinates and momenta (q1, q2, ...,q3n, p1, p2, ...,p3n). Gibbs introduces (p. 5)
an abstract space with 6n dimensions associated with (q1, ...,p3n), its phase space Γ .
The state of the system at time t is represented by a point M in Γ . As time evolves,
M follows a trajectory in Γ , according to the 6n corresponding Hamilton equations.
But this trajectory can’t be known, since the initial position of M in Γ and parts of
the Hamiltonian are experimentally unknown and uncontrollable. As a consequence,
if the same experiment or measurement is repeated several times, keeping the same
macroscopic conditions, the results will slightly differ in these successive experiments.
This suggests introducing the concept of probability by mentally repeating the same
experiment with Σ. Gibbs instead introduces a mental collection Σ1, Σ2, ...,ΣN of
systems (ensemble of systems, today called a Gibbs ensemble [Gibbs 1902, preface;
Penrose 1979]), each system being a copy, or replica, of Σ obeying the same mechan-
ical laws as Σ, but differing in its initial conditions and Hamiltonian while respecting
the same macroscopic constraints as Σ. The number of these replica N → ∞ [Gibbs
1902, note in p. 5] in such a way that the corresponding points in Γ may be regarded
as distributed continuously within Γ. Gibbs then introduces ρ, the probability density
in phase space (noting it P and calling it the coefficient of probability): the probabil-
ity for Σ of being represented by a point within a volume dΓ around M in Γ at t is
ρ(M, t)dΓ .

In Ch. 1 of [Gibbs 1902], Gibbs establishes several properties verified by ρ. In
Ch. 4, he discusses the form to be taken by ρ at statistical equilibrium (defined as
a situation where ρ is time-independent), which leads him to propose the canonical
law as ”the most simple case conceivable”. His expression contains two constants,
Ψ and Θ, which gain a meaning in Ch. 14, when Gibbs establishes the link with
thermodynamics, the canonical law becoming:

ρ =
e−βE∫

Γ e−βEdΓ
, (5)

where the energy E is a function of the 6n coordinates of M, and the denominator
allows for normalization. The physical system of interest is weakly coupled to another
system of far greater heat capacity, acting as at thermostat and imposing that system
its temperature T , and β = 1/kT. Gibbs also introduces the natural logarithm of ρ,

which he calls the index of probability and denotes η. He establishes that −−
η, the

mean value of −η = − ln ρ, corresponds to the (reduced) thermodynamic entropy:

−−
η = − < ln ρ >= −

∫
Γ

ρ ln ρdΓ, (6)

with ρ given by (5) One should be careful that, e.g. in (116) of [Gibbs 1902], −−
η is

denoted as η, i.e. as the index of probability. Today’s notation for −−
η is SG/k (Gibbs

reduced entropy). In Ch. 11, Gibbs establishes several properties verified by SG. He
particularly proves that, when mentally varying ρ with given mean energy, the ex-
pression for ρ making SG maximum is the canonical law. Eq. (6) is a generalization
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of a relation first postulated by Boltzmann, written as SB = k ln W since Planck,
W being the number of ”complexions” (roughly: microscopic states) realizing a given
”macroscopic state”. That relation from Boltzmann bridged the gap between ther-
modynamics and statistical mechanics. In that relation and in (6), k, the Boltzmann
constant, is a scale factor allowing compatibility between the predictions of CSM and
experimental facts.

In [Gibbs 1902], Gibbs also establishes general expressions showing that the ma-
jor thermodynamic quantities can be deduced from the knowledge of the partition
function Z =

∫
Γ e−βEdΓ . One may e.g. write U (cf. the explanation following his

relation (484)) and the reduced entropy SG/k (cf. the expression of dΨ/dΘ after his
relation (251)) as:

U = − ∂

∂β
ln Z, (7)

SG

k
= [βU + ln Z]. (8)

In Ch. 5 of [von Neumann 1932], VN explicitly refers to Gibbs in Sec. 2, writing
”we are dealing with a Gibbs ensemble” (cf. also his notes 185 and 186). And, in the
second part of the next section, the discussion starting with ”we shall now investi-
gate the stationary equilibrium superposition, i.e., the mixture of maximum entropy
when the energy is given”, is the quantum version of Gibbs’s work. Von Neumann
then introduces the partition function and establishes that (7) and (8) are still valid
with quantum macroscopic systems. He then stresses that: 1) ”the analogy of the
expressions obtained above for the entropy, equilibrium ensemble etc., with the corre-
sponding results of the classical thermodynamical theory is striking” (p. 395), 2) the
quantum statistical mixture which he uses at thermal equilibrium contains the weight
e−W/kT , and ”the classical ”canonical” ensemble is defined in exactly the same way”
(p. 397).

In the classical case, in (6), ρ has the same dimensions as dΓ−1, i.e. the dimensions
(action)−3n with a system of n point-like particles. It is known that, rather than
ln ρ, one should therefore write ln (ρξ3n) where ξ is some well-chosen constant of the
dimensions of action, which suggests that this question is linked to the choice of the
origin of entropy. In the quantum case, the phase space is not used, the ρ spectrum is
discrete, and this question does not appear. We will not discuss this point (cf. [Jaynes
1992; Balian 1982, Ch. 3]).

3.2 Von Neumann’s justification for SVN

When care is taken of considering the whole treatment of equilibrium QSM by von
Neumann (cf. the beginning of our Section 3), it can picturesquely be said that VN
first uses thermodynamics to guess the expression for quantum entropy in Sec. 2 of
Ch. 5 of [von Neumann 1932], entitled ”thermodynamical considerations”, and that
he then inserts this expression in Sec. 3, in his building of QSM. The final justification
of his whole work upon QSM is found in the subsequent historical confrontation of
his theoretical results with experimental reality (Sackur-Tetrode relation: cf. Section
7). In this paper, we focus upon these ”thermodynamical considerations”, essential
for the work undertaken in [Shenker 1999; Henderson 2003; Hemmo 2006], examined
in our Section 4.

In Sec. 2 of [von Neumann 1932], with S, the quantum system, VN associates
mental replicas S1... SN (N ≫ 1), an approach agreeing both with his previous
introduction of the concept of statistical mixture in Ch. 4 of [von Neumann 1932],
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and with the Gibbs ensemble method. Each replica is strictly uncoupled to any other
replica (cf. his note 186). VN then links each replica to a molecule of an ideal gas:
1) each system Si is (mentally) enclosed in a massive, impenetrable box Ki, all the
boxes K1... KN being themselves in a quite large, massive box K coupled to a heat
reservoir, which imposes its temperature T to K and to the boxes Ki (but not to their
contents Si), 2) Quantum system S is described by a density operator ρQ, which may
reduce to a projector P[ϕ] = | ϕ >< ϕ | (the mixed state then reduces to the pure
state | ϕ >). Having introduced an orthonormal basis {| ϕn >} of the state space of
S, we will consider that when the state of S is described by ρQ=

∑
n wnP[ϕn], then

in this discussion everything happens as if wnN among the N replicas were in the
state | ϕn >, and this for any n, i.e. the frequency interpretation may be used for
the probabilities wn. This agrees with the discussion of the meaning of a statistical
mixture previously given by VN, in [von Neumann 1932, Ch. 4 Sec. 1], where VN
examines two interpretations.

VN calls each box Ki a molecule, and system Si inside box Ki an internal degree
of freedom of molecule i. Even more briefly, one can think of this internal degree as
a spin (of a paramagnetic molecule), remembering that the Ki are in fact generally
macroscopic (as in the Gibbs ensemble method). We stress that the word ”molecule”
has a triple ambiguity in the present context: 1) it generally refers to a macroscopic
system, 2) it may refer either to the translational motion of the box Ki (translational
motion of the molecule) or to the association of the translational motion and ”spin”,
i.e. to the box either without or with its content, 3) in [von Neumann 1932, Ch.
5 Sec. 2], VN writes: ”... it is evident that ordinary statistics be used, and that
the Bose-Einstein and Fermi-Dirac statistics... do not enter into the problem”. If
”molecules” are delocalized over the same volume, this does not mean that these
molecules are distinguishable, as they may be distinguished only through their ”spin”.
It rather corresponds to the idea that, because of the quite high masses and quite low
concentrations of these ”molecules”, this gas is in the classical regime (cf. footnote
2).

One of VN’s aims is to associate a specific entropy with each state of the Quantum
system, i.e with each ρQ. This means that in each box Ki the system Si is supposed

not to be in thermal equilibrium with the bath (through Ki and K). And the whole
procedure followed by VN means that he considers ”spin” Si to be uncoupled to ”(the
rest of the) molecule” Ki. The situation is then the following: one has a collection
of independent molecules, possibly classified into several species through their spin
state. The Ki are maintained at constant temperature T ; the spin of each molecule
is not coupled to the other degrees of freedom of the molecule, nor to any bath. Spins
with a very weak coupling are found e.g. in nuclear magnetism (with true nuclear
spins). In thermodynamics, given a thermodynamical system, its entropy is defined
for all equilibrium states. This is presently true for the translational motions of the
molecules, and especially when the Ki are kept at constant temperature T . VN
postulates a generalization of that fact for any state of a quantum system, either
a pure state (Trρ2

S = 1) or a mixed state (Trρ2
S < 1): an entropy can then in

principle be defined for each density operator ρQ, and that therefore not
depending upon the way this state appeared. Rejecting this postulate would mean
giving up any hope of building a quantum version of statistical mechanics. We will
call it von Neumann’s postulate 1.

VN first shows that all pure states have the same entropy, which he decides to
take equal to 0 (origin of entropies). He then accepts the existence of semi-permeable

2
With ordinary atoms or molecules, the specific effects resulting from this constraint occur only at low

temperature, with the lightest elements (helium and hydrogen) at high concentration (quantum liquids).

Presently, the masses are far greater and the concentrations quite lower.
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walls, and supplies an argument that they can separate orthogonal states and only
them (another justification is given, within Peres’s approach, in [Peres 2002]). These
results were accepted in [Shenker 1999; Henderson 2003; Hemmo 2006], and will not
be examined in this paper.

VN then imagines a transformation where, both in the initial and final states,
all the molecules (boxes Ki) are enclosed in a volume V and at temperature T. The
initial state of their spins (spin S and spins of ensemble {S1... SN}) is the most
general mixed state, described by ρQ =

∑
n wnP[ϕn], (VN denotes it U). Their final

state is the pure state | ϕ > (ρQ reduces to the projector P[ϕ]). VN evaluates the
entropy changes through successive transformations between these states. The final
state is clearly not a state of thermal equilibrium ({S1... SN} is in a pure state) and
the same is generally true for the initial state (the state for {S1... SN} is described
by an arbitrary ρQ). Such evaluations are however relevant, because: 1) the molecules
(Ki) and spins (Si) being uncoupled, their entropies are additive. We will call this
property for {Ki,Si} von Neumann’s postulate 2 (thermodynamics considers the
entropy S of the collection of the whole molecules {Ki,Si}, and not separately that of
{Ki} or {Si}), 2) thanks to von Neumann’s postulates 1 and 2, and to the permanent
thermal equilibrium of the molecules Ki at temperature T, VN is able to apply results
from thermodynamics to the thermodynamic entropy variations and finally to find
the expression for the entropy associated with ρQ.

We keep a simplification in VN’s scheme made in [Shenker 1999], supposing that
the density operator ρQ has only two eigenvalues w1 and w2 (Shenker moreover sup-
poses that w1 = w2 = 1/2). The generalization to more than two eigenvalues is easy,
through repetition of the process. We moreover number the successive stages in a
way making them compatible with Fig. 1 of [Shenker 1999], therefore starting with
number 2 (in [Shenker 1999], Shenker adds number 1, with physical conditions of the
molecules and of their spins identical to those in the last one, 7, to get a cycle):

2) N molecules in volume V, at T. Their spins in the mixed state
ρQ = (w1 | ϕ1 >< ϕ1 | +w2 | ϕ2 >< ϕ2 |).

4) After reversible separation (with intermediate states 3, cf. Appendix B): in a
first box with volume V, w1N molecules at T , their spins in state | ϕ1 >; in a second
box with volume V , w2N molecules at T , their spins in state | ϕ2 > .

5) After isothermal reversible compressions, the w1N molecules in the first box
occupy a volume w1V at T , their spins being still in state | ϕ1 >; the w2N molecules
in the second box occupy a volume w2V, at T , their spins being still in state | ϕ2 >.

6) All the molecules have been kept in their own volume (w1V , w2V ). The spins
have all been quasi-statically brought to state | ϕ > .

7) The N molecules have been brought into the same box with volume V , and
kept at T , their spins being kept in the pure state | ϕ > .

VN considers the system formed by the two uncoupled parts {molecules, their
spins}, or more clearly {translational motions, ”spins”} as a thermodynamical system.
Its entropy variation in a transformation is additive (statistical independence, as
suggested by uncoupling [Landau 1958], and VN’s postulate 2): ∆S = ∆Strans +
∆Sspins.

Following VN, we consider the entropy variations of the system {translation
motions, spins} from stages 2 to 7, respectively denoting ∆Strans(i −→ j) and
∆Sspins(i −→ j) the entropy variations of the translation motions of the molecules
and of their spins in transformation i −→ j. We start with 2 −→ 4. According to
thermodynamics (cf. Appendix C) and to VN, during the 2 −→ 4 reversible transfor-
mation the entropy of the system {K, S} does not change:

∆S(2 → 4) = 0, (9)
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and therefore the ”spin” entropy variation ∆Sspins(2 −→ 4) and the translational
motion entropy variation ∆Strans(2 −→ 4) have opposite values.

In the reversible isothermal compressions 4 −→ 5, there is an entropy variation
Nk(w1 ln w1+w2 ln w2) (cf. Appendix C), to be attributed to the translation motion
only: ∆Strans(4 −→ 5) = Nk(w1 ln w1 + w2 ln w2). There is no entropy variation
for the system {translation motions, spins} in 5 −→ 6 (the spins then remain in pure
states, and the physical conditions for the molecules Ki don’t change), and the same
is true in 6 −→ 7 (during 6−→7, the molecules {Ki,Si} are indistinguishable, and
there is no change of the total entropy when isothermally bringing together w1N
molecules initially occupying a volume w1V and w2N molecules initially occupying a
volume w2V , moreover keeping their total volume equal to V ).

To summarize, from 2 to 7, the entropy of the whole system {translation motions,
spins} displays a variation equal to Nk(w1 ln w1 + w2 ln w2), which is negative, i.e.
this entropy decreases. The N ”molecules” occupy the same volume V at the same
temperature T , both in the initial state 2 and in the final state 7, so the entropy
of the translation motions is the same in 2 and in 7, and that decrease is therefore
due to the spins only. The entropy variation per spin in the whole process 2 −→ 7
is therefore k(w1 ln w1 + w2 ln w2). Since the final spin state is a pure state, the
final spin entropy is 0. Its initial entropy, i.e. that of the initial mixed state was
therefore −k(w1 ln w1 + w2 ln w2). For the same reason, in the more general case
when ρQ =

∑
n wnP[ϕn], the entropy for system S is

SV N = −k
∑

n

wn ln wn or σV N = −
∑
n

wn ln wn, (10)

which is the von Neumann expression.
In this presentation, we systematically used density operators ρ, which therefore

obey Trρ = 1. There is of course a difference for the corresponding entropy Sspins for
the collection of ”spins” and that for a single ”spin”, equal to Sspins/N.

Von Neumann’s reasoning is therefore quite clear: he postulated that, with any
state of a quantum system Σ, described by ρ, one can associate the mean value
S(ρ) of a certain function of the Hermitian operator ρ, called the entropy of Σ, and
satisfying the constraints of the second principle. Then, to find S(ρ), he accepted
the first and second principles of thermodynamics and, using thermodynamics, he
obtained the VN expression for S(ρ). We gave a detailed treatment of that part of
VN’s reasoning, as it is this step which is disputed in [Shenker 1999; Henderson
2003; Hemmo 2006] (cf. Section 4).

If one associates that part of VN’s treatment with the rest of his work upon QSM
in [von Neumann 1932, Ch. 5], one can confidently estimate that VN’s aim was to
check that introducing his postulates 1 and 2 leads to a coherent building, rather than
to get a purely deductive establishment of the principles of thermodynamics, which
would mean some circular reasoning.

The constancy of entropy of the whole system {translation motions, spins} during
2 −→ 4 should not be a surprise. It is true that if, at constant temperature T,
two samples of molecules behaving as the model gases of Appendix A, one with N/2
molecules of species A in a region with volume V/2, and the other with N/2 molecules
of species B in a distinct region with volume V/2, are mixed into a single volume V,
then the total entropy is increased by Nk ln 2 (entropy of mixing, cf. Appendix C).
But the present separation process 2 −→ 4 is not the inverse of that operation, since
before the separation the ”molecules” occupy a volume V , and after separation each
species still occupies a volume V (and not V/2).

VN’s procedure for the entropy determinations was called an ”arithmetical ar-
gument” in [Shenker 1999, end of Sec. 2] and in [Hemmo 2006, e.g. Sec. 2, p. 157].
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Our presentation shows that VN’s result is in fact a direct consequence of: 1) the
existence of an entropy function defined A) for the translation motions, for any equi-
librium state, B) for the spins, for any (pure or mixed) state described by a density
operator ρ, 2) VN’s assumption of uncoupling between translation motions and spins
and postulate 2. [Shenker 1999] completes VN’s succession of stages, in order to get
a thermodynamical cycle. He then writes that considering that the entropy has the
same value in the (thermodynamically identical) initial (1) and final (7) states is
an ”assumption”, which ”ignores the heat and work reservoirs”. Speaking of an ”as-
sumption” is clearly wrong, because it does not respect the existence and definition
of the entropy function (see e.g. [Callen 1966] and our Appendix C). The reservoirs
are helpful in the calculations, and play a role during the transformations (e.g. ther-
mal reservoirs allow to keep the temperature constant, pressure reservoirs allow a
reversible behaviour during the compression), but thinking that their presence invali-
dates the previous entropy variation determinations is confusing between calculations
and results of calculations.

3.3 Peres and von Neumann’s experiment

The 1995 first edition of Peres’s presentation of QM concepts and methods appeared
some sixty years after VN’s book. [Peres 2002] did use VN’s thought experiment, but
his aim and approach were quite different from VN’s ones in [von Neumann 1932], as
may be appreciated through a historical perspective.

With [von Neumann 1932], VN aimed at stabilizing the mathematical founda-
tions of QM and at inserting Gibbs’s ideas upon CSM into a quantum context. In
Sec. 2 of Ch. 5, VN explicitly indicated that he had to start from the principles of
phenomenological thermodynamics. As recalled in our Subsection 3.2, VN inserted
S, the quantum system of interest, into a box K kept at temperature T (and there-
fore replica Si into replica Ki). His two implicit postulates allowed him to apply the
principles of thermodynamics to {Ki, Si}, a system composed of two species, col-
lections {Ki} and {Si}. He could describe the collection of Ki as the ”molecules” of
an ideal gas, being then able to finally deduce information upon the quantum system
S. Therefore, when VN established his expression for entropy, he used QM mainly for
the description of {Si} (and of S) with an arbitrary density operator, as declared at
the beginning of his Sec. 2 [von Neumann 1932, Ch. 5]: ”quantum mechanics plays a
role only insofar as our thermodynamical observations relate to such objects whose
behavior is regulated by the laws of quantum mechanics”.

In 1948, Shannon introduced the concept of information entropy, in a classical con-
text, which then allowed Jaynes to introduce the concept of information into statistical
mechanics [Jaynes 1 1957; Jaynes 2 1957; Jaynes 2003]. Jaynes presented statistical
mechanics through ”a reversal of usual reasoning” [Jaynes 1 1957], information en-
tropy being then taken as a starting concept. This approach is e.g. adopted in [Balian
1982]. While this procedure may surprise those used to a traditional exposition (phe-
nomenological thermodynamics, statistical physics, statistical thermodynamics), the
beginner should be less reluctant. Such a change, not infrequent in the development
of physics, comes with social changes: Clausius defined entropy after the industrial
development of steam engines, Gibbs’s extension to open systems followed the de-
velopment of chemistry, with chemical reactions taking place in open subsystems,
and Jaynes and his followers start with the concept of information entropy at the
Information Age under development.

Peres introduces VN’s experiment in Ch. 9 of [Peres 2002], the title of which is
unambiguous: ”Information and thermodynamics”. Peres starts with the information
entropy concept. He introduces the entropy concept in a quantum context, which
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allows him to assess that the (reduced) entropy of a quantum state described by a
density operator ρ is −Tr(ρ ln ρ) ((9.16) of [Peres 2002]). Peres then refers to [Ein-
stein 1914], cited by VN, and uses VN’s thought experiment and QM to establish that
the quantum entropy defined in this way corresponds to thermodynamic entropy. It
should therefore be clear that Peres follows a different approach from VN. Since Peres
uses QM before thermodynamics, he needs a quantum treatment of the behaviour of
{Ki, Si}, contrary to VN who used thermodynamics first. He then observes that ”the
hybrid classical-quantum reasoning” found in [Einstein 1914] ”is not satisfactory”.
An exact quantum treatment should a priori be difficult for two reasons: 1) getting
an exact solution for a quantum mechanical problem is quite exceptional, 2) Si is an
arbitrary quantum system. Because of 1), approximate methods have been developed
in QM. So-called semi-classical methods, where ~ is considered as a parameter and
made arbitrarily small, are presently of no interest, because the original paper [Ein-
stein 1914] and [von Neumann 1932] use the fact that the mass of the box Ki is far
greater than that of Si. This idea is kept in [Peres 2002]. Such a difference between
masses is e.g. at the root of the Born-Oppenheimer approximation.

Whereas Peres follows a path quite different from that taken by VN, he shares
with him the idea that −Tr(ρ ln ρ) is analogous to the entropy of thermodynamics, as
shown in the introduction of Section 4. But the important point here is not accumu-
lating approaches favoring this or that opinion. We presently think more important
to strictly distinguish between VN’s approach and that from Peres, which originates
in a viewpoint ”from which thermodynamic entropy and information-theory entropy
appear as the same concept” [Jaynes 1 1957]. For the sake of clarity and in order to
limit the size of this discussion, we chose not to examine Peres’s approach and will
avoid any reference to the use of the information entropy concept in the following
Sections.

4 Examining Shenker’s and ensuing papers

As recalled in Section 3, in [von Neumann 1932] VN first showed that all pure states
have the same entropy, which he decided to take equal to the origin of entropies.
He then postulated the existence of quantum semi-permeable walls, and showed that
they can separate orthogonal states only. These results, accepted in [Shenker 1999;
Henderson 2003; Hemmo 2006], will also be accepted in this Section.

The content of [Shenker 1999] and the argumentation in the ensuing papers [Hen-
derson 2003; Hemmo 2006] led to a rather confusing situation upon the validity of
VN’s approach. On thorough examination, the existence of a methodological choice
in [Shenker 1999] suffices, from a strict logical position, for our evaluation of the
relevance of the critics made in that debate upon von Neumann’s justification (Sub-
section 4.1). We however chose to also discuss a few significant elements developed
in these three papers, hoping that this would help the interested reader in examining
their content (Subsections 4.2 to 4.4).

We first criticize a general claim from Shenker, as it may be influential upon
the appreciation of VN’s justification. [Shenker 1999 Sec. 1] asserts: ” To appreciate
the spirit and problems of von Neumann’s attempt it may be useful to compare it
with Gibbs’s approach.”. Gibbs ”drew a very cautious conclusion, namely, the mere
existence of an analogy”. ”Von Neumann and others claim to have shown” ”that SV N

’is genuine entropy, fully equivalent to that of standard thermodynamics.,7 This claim
is by far stronger than Gibbs’s”. But in Section 3 we showed that, on the contrary,
VN explicitly spoke of an analogy just as Gibbs. The expression ”genuine entropy” is
not from VN, but from [Peres 2002, p. 270] (cf. also reference 7 in the previous citation
from [Shenker 1999]). The question is therefore: what did Peres mean by ”genuine
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entropy”, and [Peres 2002, p. 274] answered that: ”there should be no doubt that von
Neumann’s entropy... is equivalent to the entropy of classical thermodynamics. (This
statement must be understood with the same vague meaning as when we say that the
quantum notions of energy, momentum, angular momentum, etc., are equivalent to
the classical notions bearing the same names.)”.

The following example illustrates the respective roles of statistical and thermo-
dynamic entropies: critical opalescence (1869, Andrew, in CO2) is due to large fluc-
tuations in quite specific experimental conditions [Reif 1965]. When VN wrote [von
Neumann 1932], the phase transition field was less developed than today, but it was
already known that statistical mechanics is able to describe fluctuations, while ther-
modynamics is not (cf. Section 2). If the system has a volume V and is composed of N
microsystems, the physicist formally introduces the ”thermodynamic limit”, defined
with V −→ ∞, N → ∞, and N/V kept constant (cf. e.g. [Balian 1982]). As a result,
in a situation when, e.g., mechanical statistics indicates that a thermodynamic quan-
tity increases with time and that at each instant this quantity fluctuates around its
mean value, thermodynamics ignores these fluctuations, by construction knowing only
the mean value, and its increase with time. Then, in a situation presenting relative
fluctuations roughly equal to 1/

√
N, the physicist says that they may practically be

neglected. Therefore statistical mechanics may speak of entropy fluctuations around
its mean value, while (phenomenological) thermodynamics may not. Less formally,
when writing e.g. PV = nRT for an ideal gas, the physicist considers that N = nNA

(NA : Avogadro number) is finite but macroscopic.
We now examine the above-mentioned critical methodological point and significant

elements.

4.1 Shenker’s use of two alternative descriptions

Considering VN’s thought experiment, recalled in our Subsection 3.2, [Shenker 1999]
adds stage 1, with conditions identical to those of stage 7: N ”molecules” in the same
box, with volume V , at T , their ”spins” being in the pure state | ϕ > . Then, using
the notations of Section 3, and the existence of entropy:

∆S(1 −→ 7) = 0, (11)

a result valid for any path leading from 1 to 7, reversible or not, since 1 and 7 are
identical. But thermodynamics can’t directly give ∆S(1 −→ 2), for the following
reason: while the ”molecules” (Ki, Si) are not distinguishable at step 1 (all have
their spin in state | ϕ >), two species do exist at step 2 (the molecules in state | ϕ1 >,
those in state | ϕ2 >). One can however say that:

∆S(1 −→ 2) + ∆S(2 −→ 7) = 0. (12)

In Section 3, we found that the entropy variation of the whole system {translation mo-
tions, spins} from 2 to 7 is equal to ∆S(2 −→ 7) = ∆Strans(4 −→ 5) = Nk(w1 ln w1+
w2 ln w2). Therefore:

∆S(1 −→ 2) = −∆Strans(4 −→ 5) = −Nk(w1 ln w1 + w2 ln w2), (13)

a result which may be interpreted as follows, using VN’s postulate 2: in the 1 −→ 2
transformation, Strans does not change (N ”molecules” in volume V at T ) and
the entropy variation ∆S(1 −→ 2) must therefore be attributed to the ”spins”;
∆Sspin(1 −→ 2) = −Nk(w1 ln w1 + w2 ln w2). Since the ”spin” entropy is zero for
stage 1 (pure state) it is therefore −Nk(w1 ln w1 + w2 ln w2) for the mixed state
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of stage 2, i.e. +Nk ln 2 when w1 = w2 = 1/2 as in [Shenker 1999]. Had Shenker
agreed with our presentation of our Section 3, and with this determination and in-
terpretation of ∆S(1 −→ 2), his 1999 paper would not exist. One has therefore to
explain why he does not get VN’s result.

VN’s cleverness consisted in both applying thermodynamics to {Ki,Si}, and
taking advantage of: 1) the additivity property for the entropy variations of {Ki,Si},
the sum of the entropy variations of {Si} (to be found) and of the translation motions
{Ki}, 2) the fact that the spin entropy is the same for all pure states. Careful ex-
amination of [Shenker 1999] shows that Shenker, contrary to VN (cf. Subsection
3.2), tries to compare two alternative descriptions of the same system, the
ideal gas, one with the language of thermodynamics, and one with quantum
mechanics. This is a key point, and there can be no doubt about it, as e.g. he writes
[Shenker 1999, Sec. 4]:

1) ”when we move from stage 2 to stage 4, SV N decreases, while from a ther-
modynamic point of view entropy is conserved”, then adding that ”this impairs Von
Neumann’s argument”. This is written again at the beginning of his Sec. 5, and is
used to show that according to Shenker, ”if SV N is entropy, then perpetual motion
machines are possible”,

2) ”Let us focus on the 1 to 4 frame. SV N increases from stage 1 to 2 and then
decreases from stage 2 to 4. To deduce that SV N is entropy, in a way analogous to Von
Neumann’s original arithmetical argument, we must show some correlative changes
in the thermodynamic entropy. We must show either that the thermodynamic entropy
increases from stage 1 to stage 2, or that it decreases from stage 2 to stage 4”.

But Shenker’s comparison can’t be made, because at this stage of VN’s reasoning
it is impossible to determine any entropy variation of a physical system using quantum
mechanics, since the quantum expression for entropy has still to be found. Trying to
carry out this program unavoidably leads either to a circular reasoning, not to be
attributed to VN as Shenker does, and/or to inconsistencies. This is illustrated by
the following example, concerning the 2 −→ 4 transformation already considered: this
transformation uses semi-permeable walls able to separate two species of ”molecules”.
This means that during the whole 1 −→ 6 transformation two species of molecules
do exist. And in the reversible separation of the ”molecules” into two distincts boxes,
leading from 2 to 4, the total entropy is unchanged (cf. Section 3.2), which means
that an entropy variation of the translation motions is strictly compensated by an
opposite entropy variation of the quantum system S (spin). Shenker, on the contrary,
in [Shenker 1999, Sec. 5] writes: ”Now we can return to the quantum version of
the experiment”, and then considers that he can successively apply the principles of
thermodynamics and those of QM to the same system, and that the density operator
describing this system, ”ρ incorporates the effect of the volume available for the
system on its quantum state”. But at this stage of reasoning it is impossible to
determine the entropy variation of the whole system {K, S} using QM (the quantum
expression for entropy has still to be found). It is moreover certainly true that ”a
proper density matrix incorporates all the available information regarding the system”
[Shenker 1999, p. 45], but this makes sense only once the physical system has been
defined. Shenker has already written that he considers ”an ideal gas” of molecules.
However, if the density operator ρ did incorporate both the effect of the volume
available for the system on its quantum state, and the existence of two species of
molecules, it would not have the formal aspect used by Shenker. The quantum entropy
variation then considered by Shenker when speaking of SV N is in fact that of another
system, namely that of S, which has no reason to be equal to that of the whole system
{K, S}.

The two descriptions used by Shenker are moreover incompatible, since Shenker
first writes that ”At the initial stage we have an ideal gas in a container, in equilibrium
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with some heat bath”, and then, a few lines further on, adds that ”The initial state of
each molecule is, in terms of a density matrix: ρ1 =| a1 >< a1 | . This state is pure”
[Shenker 1999, p. 36]. But it seems irrelevant to a priori exclude the possibility that at
thermal equilibrium, at temperature T, the system be described by a density operator
ρ ∝ e−H/kT , as suggested by CSM, and confirmed by VN’s work and the development
of QSM. This last possibility generally corresponds to a statistical mixture, the case
of a system with a non-degenerate ground level, in the zero temperature limit, being
an exception. It is therefore contradictory to claim that the ”molecules” are both in
a pure state and at thermal equilibrium.

Shenker’s error could result from a confusion between VN’s and Peres’s approaches
(cf. Subsection 3.3), which could have prevented him from distinguishing between two
steps in VN’s reasoning: 1) in his Sec. 2 of Ch. 5, VN applies the principles of thermo-
dynamics to the whole system {translation motions, ”spins”} to get his expresssion
for SV N , which then describes a property of the quantum part S (”spin”), 2) having
found his expression for the entropy of S, then, in Sec. 3 of Ch. 5 (cf. our Section 3)
VN uses that expression and the quantum partition function to associate ”statistical
thermodynamic” quantities with a quantum system at thermal equilibrium.

4.2 Shenker’s perpetual motion machines

[Shenker 1999] uses the 2 −→ 4 transformation to claim that, ”if SV N is entropy, then
perpetual motion machines are possible”. That 2 −→ 4 quasi-static separation process
with von Neumann’s device, with two gases and an arbitrary w1 value, is analyzed
in detail in Appendix B, with the use of Fig. 1. In Subsection 4.3, we mention the
importance of the chemical potential concept for this analysis, allowing us to prove
(cf. Appendix B) that the total force acting on the two jointly moving walls bb and
dd is zero, which means that this quasi-static transformation takes place without
mechanical work exchange with the outside: Shenker’s machines can’t exist.

In [Shenker 1999], the thermodynamic system is ill-defined: SV N refers to the
”spin” part S of {K, S}, whereas the entropy conservation during 2 −→ 4 is that of
{K, S}, and Shenker fails to distinguish between them.

4.3 Chemical potentials, measurements, separation

In [Shenker 1999, Sec. 4] Shenker writes that at the end of the 2 −→ 4 separation
process, ”we must know the number of particles on each side in order to obtain equal
pressures at the compression step”, and that ”the numbers can be measured by,
say, quasi-static weighing”. Thinking that these measurements are necessary implies
that the concept of chemical potential introduced in [Gibbs 1875; Gibbs 1902] and its
present consequences are ignored, which means treating thermodynamical subsystems
systematically as closed systems, even when they are open (sub)systems. This is
clearly a misuse of thermodynamics. In fact, in that 2 −→ 4 quasi-static process,
since gas 1 can be permanently exchanged between regions 1 and 1-2, and gas 2
between 2 and 1-2, the chemical potential for the first gas permanently has the same
value in regions 1 and 1-2, and the same is true for the chemical potential of gas
2 between 2 and 1-2. As a result (Appendix B), pressure in region 1 keeps equal
to the initial partial pressure of gas 1, and pressure in region 2 keeps equal to the
initial partial pressure of gas 2, and each one keeps equal to the corresponding partial
pressure in region 1-2.

[Shenker 1999] stimulated a reply [Henderson 2003], in which Henderson observed
that ”it is important to consider not only the internal, or spin, degrees of freedom of
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the particle, but also its spatial degrees of freedom” and that the spatial (i.e. transla-
tional) degrees of freedom are thermalized, at temperature T , in agreement with VN.
Henderson judiciously stressed that [Shenker 1999] had considered the spin part only.
Unfortunately, having identified the existence of the two uncoupled parts (”transla-
tion” and ”spin”), Henderson then was not able to keep her distance from [Shenker
1999]. She first reproduced the major error consisting in trying to successively apply
thermodynamics and quantum (statistical) mechanics to the same physical reality,
explicitly writing ”We will compare what we expect thermodynamically to what we
calculate using the Von Neumann entropy”. This led her to start considerations upon
the quantum state of the spin part S and upon the question of quantum measure-
ments, which, we think, even increased the confusion.

More explicitly, Henderson agrees with everybody that, at the beginning of the
2 −→ 4 separation process, and in the specific case w1 = w2 = 1/2 chosen by Shenker,
the spin part is in the mixed state ρ = I/2 (I being the identity operator within the
two-dimensional spin space). Then, considering the end of this separation, step 4, she
notices that ”Shenker claims that the state of the system at this stage is pure”, and
then tries to show that, on the contrary, the spin part remains in the mixed state. In
her lengthy argument, Henderson starts by considering the 1 −→ 2 transformation,
having claimed that: ”Von Neumann’s argument runs as follows. In the initial state,
we have a gas of particles each in the pure state | + >= 1/

√
2(| 0 > + | 1 >),

occupying a box of volume V. A measurement is then made in the ( | 0 >, | 1 >) basis,
giving an equally weighted mixture of particles in states | 0 > and | 1 > ”, i.e. step
2 [Henderson 2003, p. 292]. In fact, contrary to what Henderson writes paraphrasing
[Shenker 1999], step 1 and the 1 −→ 2 transformation were not proposed by VN but
by Shenker (cf. our Subsection 4.1). Since the entropies of S and of {K, S} at step 2 do
not depend upon the way the given quantum mixture was obtained, then if one starts
from step 2, as VN did, the part of the discussion of [Henderson 2003] pertaining to
her measurement act leading to 2 becomes useless and can be ignored. We therefore
concentrate upon the 2 −→ 4 separation process, and the quantum description of S
and/or {K, S}, supposing it presents some interest.

Henderson denotes the density operator for the spatial (i.e. translational) degrees
of freedom at thermal equilibrium (given by the canonical law) as ρs, and writes that
any molecule, after the separation, is in the state:

ρ =
1

2
(| 0 >< 0 | + | 1 >< 1 |) ⊗ ρs (Henderson). (14)

This expression is wrong, because ρs, given by the canonical law, is a function of
the Hamiltonian. This Hamiltonian is defined only in the volume occupied by the
”spatial” motion of the molecule. Henderson writes it as a common factor for | 1 >
and | 0 >, which means that molecules with | 1 > state and those with | 0 > state
are in the same spatial region. This implies that the nominally semi-permeable walls
were in fact unable to bring molecules with spin | 0 > into region 1 and those with
spin | 1 > into region 2, contrary to the assumption of a separation process, recalled
in [Henderson 2003, p. 292]. In fact, at stage 4 one has molecules in region 1, with
spin in the pure state | 0 >, and molecules in region 2, with spin in the pure state
| 1 > .

4.4 Justification, or verification?

Momentarily staying with [Henderson 2003], we come to its claim that: ”the Von
Neumann entropy of ρs is S(ρs) = c(T ) + log V , where c is a constant depending on
temperature”. It is true that e.g. from the model gas of our Appendix A and (26) one
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can easily deduce that the entropy of a fixed quantity of gas (closed system) at T in
a volume V obeys a relation of the form S(T, V ) = a(T ) + b lnV , but this S(T, V )
expression for thermodynamic entropy should not be confused with the expression
S(ρs) for the VN entropy. One may try to consider that the expression in [Henderson
2003] comes from QSM results for thermal equilibrium. But such results have yet
to be set up at this stage of VN’s reasoning, since VN established his expression
S = −kTrρ ln ρ in Sec. 2 of Ch. 5, and only then, in the second part of Sec. 3, did he
establish the canonical law, using his expression for entropy. What Henderson tries
to do here is then not a justification (of VN’s formula for S), but a verification
(of the coherence of quantum statistics with thermodynamics).

The abstract of [Hemmo 2006], a reply to [Henderson 2003], unambiguously stresses
that its aim is still to analyze VN’s thought experiment. Its introduction states that
it argues that ”Von Neumann’s argument does not establish the desired conceptual
linkage between Trρ ln ρ and thermodynamic entropy (1/T )

∫
pdV ”. This claim in-

troduces a possible new misunderstanding: choosing a thermodynamical system with
equilibrium states defined in the energy representation [Callen 1966] by a function
U(S, V, n), then, when that system is closed, the thermodynamical identity reduces
to dU = TdS −PdV. And in a reversible infinitesimal transformation, since the work
of the pressure forces acting on that system is DWr = −PdV, the thermal exchange
with the external world verifies DQr = TdS, i.e. the Clausius definition of entropy.
If moreover the transformation is isothermal (dT = 0) and the system is an
ideal gas, then its internal energy does not change, and dS = P dV/T, therefore in
a finite reversible transformation:

∆S =
1

T

∫
rev

PdV rev: reversible path. (15)

This expression for an entropy variation of a closed system is therefore quite specific.
Moreover, there is strictly no reason why it should always be equal to the entropy
of another system, with quantum behaviour. What VN established, with both the
thermodynamical system he had defined and what can be called his trick (this word
for the transformations he imagined), is that the sum of the entropy of his quantum
system of interest and of an entropy variation of this form was zero, which gave him a
general expression for the entropy of the quantum system. So the two quantities are
not equal but turn out to be opposite (cf. Subsection 3.2). One should then rather
understand that [Hemmo 2006] starts by accepting VN’s expression for the entropy of
a quantum system, SV N , and then tries to compare the result given by VN’s expression
with that from thermodynamics, adding stage 1 to VN’s thought experiment and
successively considering three compositions of the gas: ”a single particle”, ”finitely
many particles” and ”the limit of finitely many particles”. As [Henderson 2003], this
program of [Hemmo 2006] is therefore quite distinct from VN’s work recalled in
Subsection 3.2. Whereas [Henderson 2003] was a verification, [Hemmo 2006] claims to
establish that entropy variations calculated with SV N fail to equal the corresponding
variations using thermodynamics. This would make sense only if, for both calculations
(thermodynamics, SV N with QM), the same well-defined thermodynamical system
were used for the same transformation.

We first focus on that part of [Hemmo 2006] treating macroscopic systems (”finitely
many particles” and ”the limit of finitely many particles”). In [Hemmo 2006], in
the determination of entropy variations with thermodynamics, open subsystems are
treated as closed subsystems, as in [Shenker 1999] (cf. Subsection 4.3), which leads
Hemmo and Shenker to consider that ”in order to perform a quasi-static compres-
sion a measurement of the location (L or R) of the particles is necessary”. As a
consequence, the determination of the thermodynamic entropy variations in [Hemmo
2006] is wrong. Examining the determination of the expression for SV N then becomes
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superfluous, and we limit ourselves to a few comments. This determination of SV N

would anyway be a hard task, as it is somewhat similar to that met when build-
ing QSM. Since e.g. it aims at a comparison with thermodynamical results obtained
under definite experimental conditions (isothermal transformations of an ideal gas),
adequate assumptions should then be made, e.g. thermal equilibrium and constant
temperature for the translational motion.

We now come to the case of one particle. In [von Neumann 1932, Ch. 5], once
he had established his SV N expression (Sec. 2), von Neumann verified that SV N

does not decrease in a measurement process (first part of Sec. 3), and found the QSM
analogs of (7) and (8) (second part of Sec. 3). Then, von Neumann did consider a
gas with one particle for a discussion of macroscopic measurements (Sec. 4), another
subject than the one treated in our paper. In the case of a gas with one particle,
Hemmo and Shenker [Hemmo 2006] notice that applying the laws of thermodynamics
to a single particle is ”problematic”, but add that they ”do not address this issue”,
which neither eliminates nor solves the problem. Clearly, with a few particles or a
single one, the intensive quantities, pressure, temperature and chemical potential loose
their meaning [see e.g. Feshbach 1987]. Then, should a disagreement appear in the
comparison between the results from VN’s expression and those from thermodynamics
used in these conditions (which VN avoided when establishing his formula for SV N ),
it would then be careful not to incriminate the SV N expression. If, following [Hemmo
2006], one decides to forget the difficulty, momentarily assuming that the laws of
thermodynamics valid for one mole are also valid for one molecule (the extensive
quantities being just divided by NA), which allows one to keep expression (15), a
difficulty soon appears: the results of Subsection 4.3 and Appendix B are then still
valid, and the pressure for a given gas is the same in both regions during the separation
process. It is therefore impossible then to say that at the end of the separation (step
4) the single molecule is in region 1 or in region 2, contrary to what is done in
the analysis given in [Hemmo 2006, Subsec. 3.1]. This contradiction invalidates the
conclusions of that analysis.

We end up with a comment about (in)distinguishability. Today, indistinguisha-
bility of identical particles may be viewed as an experimental reality, responsible for
exchange, a purely quantum phenomenon e.g. giving rise to the ferromagnetism of
iron. The identical atoms or molecules of a gas are indistinguishable. Thermodynam-
ics is so built that it does respect the indistinguishability of identical particles. In
[Shenker 1999, p. 37], the molecules of a gas are implicitly assumed to be distinguish-
able, an idea explicitly kept in [Henderson 2003, p. 293; Hemmo 2006, p. 165]. In
a context of verification of the coherence of QSM with thermodynamics, what
are the consequences of erroneously treating these molecules as distinguishable? Call-
ing | 0 > and | 1 > two orthonormal states for the ”spin” of a ”molecule”, then
a molecule with spin state | 0 > and one with state | 1 > are distinguishable and
may be separated, but e.g. all the ”molecules” found in region 1 at the end of the
separation have the same spin state, and are then indistinguishable. And denoting the
partition function of a single ”molecule” as Z0, the partition function for N1 identical

independent ”molecules” in this region is not Z = ZN1
0 (distinguishable particles),

but Z ≃ ZN1
0 /N1! (indistinguishable particles in classical regime) [Reif 1965]. If one

uses Z = ZN1
0 , then, in the entropy expression calculated with (8), a term −k lnN1!

≃ −kN1 lnN1 will be missing, whereas, in a transformation of this closed system of
N1 molecules, that term will not be missing (it should be present both in the initial
and final entropy expressions).
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5 Landau and the von Neumann entropy

[Shenker 1999] states: ”to the best of my knowledge, no other justification” (than
the one in [von Neumann 1932] examined by Shenker) ”has so far been given to the
opinion that SV N is entropy”, an idea reproduced in [Hemmo 2006]. In already cited
[Feynman 1972], devoted to applications of QSM, the concept of entropy is introduced
through the VN expression, at thermal equilibrium, without any comment about the
choice for this definition of entropy. Another justification can however be found, in
Vol. 5 (Statistical Mechanics) of the Course of Theoretical Physics by Landau and
Lifshitz, the second edition of which [Landau 1958] was earlier than 1962 Landau’s ac-
cident. Landau and von Neumann had independently introduced the density operator
ρ into QM in 1927. Landau had worked with Bohr in Copenhagen around 1929, and
his ideas upon QM were close to Bohr’s approach. He asserts from the very beginning
of Vol. 3 (non relativistic QM) of the Course [Landau 1967], that QM is not logically
closed, as it contains classical mechanics as a limiting case, but needs classical me-
chanics in order to get founded. Landau’s exposition of statistical mechanics reflects
that position. He starts with quantum statistical mechanics, introducing the statis-
tical entropy through a quantum version of the Boltzmann postulate SB = k ln W
which, in the classical limit, has to agree with it. He then derives the Liouville-Von
Neumann relation (cf. Section 1), the quantum analog of Liouville’s theorem of clas-
sical mechanics, and finally establishes the relation σ = −Trρ ln ρ. In his approach,
nowhere has thermodynamics been solicited. The content of the principles of thermo-
dynamics, thermodynamic quantities such as pressure, and general relations existing
between them, are presented in later chapters, from the general principles of statis-
tical mechanics (cf. e.g. in Sec. 13: DQrev = TdS, i.e. Clausius relation). Landau’s
approach uses the following path: Boltzmann postulate → VN expression → thermo-
dynamic quantities → (quantum) Gibbs law. Following Landau, [Kitttel 1969] also
introduces thermodynamics through statistical mechanics only, without resorting to
phenomenological thermodynamics.

6 Discussion

On the whole, one should clearly distinguish between the following three expres-
sions for entropy: 1) the one used by (phenomenological) thermodynamics, defined
for equilibrium states, and which takes the form S(T, V, n) for the simplest systems
of Section 2, T being an independent variable (cf. Appendix A), 2) the expression
of the VN entropy, SV N = −kTr(ρ ln ρ), defined for any state, mixed or pure, of
any quantum system, 3) the value of the VN entropy when a quantum macroscopic
system is at thermal equilibrium. The VN expression therefore operates as a bridge be-
tween the thermodynamic entropy and the equilibrium QSM entropy, i.e. the entropy
calculated for quantum macroscopic systems at thermal equilibrium using e.g. (the
quantum version of) (8). It is now possible to complete the beginning of Subsection
4.4, suggested by [Henderson 2003]: it is relevant to try and compare S(T, V, n) from
thermodynamics (macroscopic system, equilibrium), not with the general expression
SV N = −kTr(ρ ln ρ), but with the results from equilibrium QSM, derived e.g. from
(the quantum version of) (8). The comparison obviously must use the same system,
respectively viewed as a thermodynamical system and modeled at the microscopic
level. The two expressions should be compatible, but not identical (the quantum ex-
pression, and only it, contains microscopic quantities). This behaviour, reflecting the
distinct roles of (phenomenological) thermodynamics and QSM, can be illustrated e.g.
by the Sackur-Tetrode relation (e.g. cf. [Kittel 1969, p. 167]), expressing the quan-
tum entropy of an ideal monoatomic gas. This relation, which contains the quantum
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volume VQ = (2π~
2/mkT )3/2 (m : mass of an atom, ~ : reduced Planck constant), is

compatible with but cannot be obtained using thermodynamics. This comparison is
meaningful in both the VN and the Landau approaches, in a context of verification of
the coherence of QSM with thermodynamics (cf. Subsection 4.4). Historically, while
the form of the Sackur-Tetrode relation had been discovered experimentally, this re-
lation was firmly established only after the creation of QSM. It could be submitted
to experimental tests, which have been successful (Clusius, 1936, cf. [Kittel 1969, p.
169]), a fact historically strongly in favour of the validity of QSM, and implicitly of
the correctness of von Neumann’s ideas upon (quantum) entropy.

The above short incursion into the development of QSM after [von Neumann
1932] both shows a key position of VN’s expression in statistical mechanics and the
possibility of establishing it without any use of VN’s approach. The complexity of
VN’s argumentation and the existence of Landau’s and Jaynes’s approaches may
explain why most physicists ignore VN’s justification, which then mainly keeps a
historical interest in the context of a presentation of QSM, while it obviously occupies
a central place in the debate discussed in Section 4.

7 Conclusion

By referring to their own writings, we could show that successively Gibbs, von Neu-
mann and recently Peres spoke of an analogy between thermodynamic entropy and
the entropy introduced in classical and quantum statistical mechanics. Gibbs’s and
VN’s texts, written before the 1948 Shannon paper initiating the development of In-
formation Theory, made no reference to the information concept, but started from
the concept of thermodynamic entropy. On the contrary, Peres’s recent book starts
from the concept of information entropy, following Jaynes’s ideas. For that reason, for
the sake of clarity and of an economy of space, we did not discuss Peres’s approach,
although it both uses VN’s thought experiment and agrees with VN’s conclusions.
In the recent debate about the link between thermodynamic and von Neumann en-
tropies discussed in Section 4, the existence of quantum semi-permeable walls, and
VN’s result that all pure quantum states have the same entropy, have been accepted,
and so we did in Section 4. We showed that, once the existence of an entropy S(ρ)
associated with each quantum state, described by ρ, is postulated (von Neumann’s
postulate 1), then, taking the entropy of pure states as the origin of entropy, one gets
the expression SV N proposed by von Neumann for S(ρ). This expression is the quan-
tum analog of the definition of entropy introduced by Gibbs in a classical context, ρ
being the probability density in phase space Γ. Then using his expression for SV N ,
VN, in a quantum context, established relations (7) and (8) previously obtained by
Gibbs in classical physics. This last result, which allowed von Neumann to say that
−kTr(ρ ln ρ) is the quantum statistical entropy, had not been previously examined
or even mentioned in the debate of Section 4. Moreover, we especially identified two
facts which deeply affected this debate: a misuse of thermodynamics (treatment of
open subsystems as closed subsystems) and a misunderstanding of VN’s approach
(alternative use of thermodynamics and QM in the debate, instead of VN’s sole use
of thermodynamics).

VN’s expression σV N = −Tr(ρ ln ρ) was introduced without any use of the
justification given by VN in [von Neumann 1932], successively by Landau, Kittel, and
with another approach by those following Jaynes, e.g. Balian and Peres. This change
reflects the fact that physics is not only a mental/experimental construction, but also
a social activity, a reality which more deeply explains why today classical statistical
mechanics is seen as a province of quantum statistical mechanics.
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A Ideal gas with T-independent CV: U and µ

[Callen 1966, p. 52] derives the expression of the chemical potential µ for an ideal
monoatomic gas (γ = 5/3) from the Gibbs-Duhem equation:

d(
µ

T
) =

U

n
d(

1

T
) +

V

n
d(

P

T
), (16)

a consequence of the Euler equation U = TS−PV +µn. The same approach may be
used for the chemical potential of any ideal gas with temperature-independent CV ,
and leads to (4). It makes use of the following equations of state:

1

T
=

R

γ − 1

n

U
and

P

T
= R

n

V
. (17)

Use of relation U = (3/2)nRT in [Callen 1966], when deriving the expressions for
µ and S, may suggest that this justification can’t avoid calling upon statistical me-
chanics. We presently aim at showing that one may establish (4), which especially
holds when γ = 5/3, without any reference to statistical mechanics. Starting from the
fundamental relation S(U, V, n) and (3), one first notices that 1/T = (∂S/∂U)V,n is a
function of (U, V, n), and therefore U may be seen as a function U(T, V, n). A gas is
said to obey the first Joule law if, for it, U(T, V, n) is V -independent: (∂U/∂V )T,n ≡ 0.
Now introducing U(S, V, n), the fundamental relation in the internal energy represen-
tation, one rewrites (3) as

dU = TdS − PdV + µdn, (18)

which shows that P = −(∂U/∂V )S,n is a function P (S, V, n). V and U can therefore
be seen as functions of S, P, n. One then introduces the relation H = U +PV , defining
the enthalpy function H(S, P, n), and its differential:

dH = TdS + V dP + µdn. (19)

T = (∂H/∂S)P,n is a function of (S, P, n). S and H may therefore be seen as functions
of T, P, n. A gas is said to obey the second Joule law if its enthalpy H(T, P, n) is P -
independent: (∂H/∂P )T,n ≡ 0. A gas is said to be ideal if it both obeys the first
and the second Joule laws. This is one of the possible definitions, chosen here as in
[Bruhat 1962]. The definitions of H and of an ideal gas require that:

PV = H(T, n) − U(T, n). (20)

By considering a transformation of n moles of an ideal gas from (P, V, T ) to (P +
dP, V + dV, T + dT ), one can show that PV is proportional to T [Bruhat 1962]. The
proportionality constant can’t be obtained by thermodynamics, but from experience:
PV = nRT , with R = 8.314 J.K−1mole−1. From general thermodynamic relations
and the definition of an ideal gas, it follows that CP does not depend upon P but
only on T and n, that CV does not depend upon V but only on T and n, and that
CP − CV = nR (Meyer relation), therefore CV = nR/[γ(T ) − 1]. Thermodynamics
can’t give the γ(T ) law. This information must be obtained from experiments. The
behaviour of monoatomic or diatomic gases in definite (P, T ) domains allows us to
introduce the model of an ideal gas with CV (and therefore CP and γ) being
temperature-independent (VN assumes it in his note 191), and with U(T = 0)
= 0. For such a gas, U = nRT/(γ − 1), since (∂U/∂V )T,n = 0 for an ideal gas. We
thus obtained both equations of state (17) which, inserted into (16), lead to (4).
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B Chemical potentials and separation process

We examine the 2 −→ 4 separation process, keeping the framework of thermodynam-
ics, with two distinct gases 1 and 2 obeying the model of Appendix A (e.g. argon and
neon, with γ = 5/3). Insofar as the existence of quantum semi-permeable walls has
been accepted in this debate, the results to follow are valid for the systems examined
in this paper. Initially, w1n = n1t (t: total) moles of gas 1 and w2n = (1 − w1)n
= n2t moles of gas 2 occupy the same region, with volume V. After separation, each
gas occupies a volume V . Figure 1 represents an intermediate state in that 2 −→ 4
separation with VN’s device (Section 3). bb and dd walls are quasi-statically moved
to the left, and jointly (their distance is kept constant). Wall (2,5) is fixed and semi-
permeable, being transparent to gas 1, but opaque to gas 2. Wall dd is transparent to
gas 2 but opaque to gas 1. Wall bb is opaque to both gases. We denote the chemical
potential of gas 1 (resp. 2) in region i as µ1(i) (resp. µ2(i)). Since regions 1 and 1-2
may exchange gas 1, µ1(1) = µ1(1 − 2). Since regions 2 and 1-2 may exchange gas 2,
µ2(2) = µ2(1 − 2).

In stage 2, partial pressures P10 for gas 1 and P20 for gas 2 verify:

P10V = n1tRT ; P20V = n2tRT (21)

In an intermediate state when region 1, containing n1 moles of gas 1, has a volume
V1, then region 2, containing n2 moles of gas 2, has a volume V2. Since the distance
between pistons bb and dd is kept constant, then V1 = V2 = v. Pressures P1 in region
1 and P2 in region 2 then verify:

P1v = n1RT and P2v = n2RT. (22)

The chemical potential µ for a given gas verifies (cf. (4) and Appendix A):

µ

T
= R ln

U
1

1−γ V −1n
γ

γ−1

(U
1

1−γ V −1n
γ

γ−1 )0

+ (
µ

T
)0. (23)

The temperature is kept constant, U = nRT/(γ−1), and µ1(1) = µ1(1−2); therefore
n/V has the same value for gas 1 in regions 1-2 and 1; the same is true for n/V of
gas 2 in regions 1-2 and 2, i.e.:

n1

v
=

n1t − n1

V12
=

n1t

V
and

n2

v
=

n2t − n2

V12
=

n2t

V
. (24)

The concentration of the first gas in region 1 is therefore equal to its concentration
before the beginning of separation, and the same is true for gas 2 in region 2. Moreover,
from these relations:

P1 = P10 and P2 = P20, (25)

i.e. pressure in region 1 is permanently equal to the partial pressure of gas 1 before
the beginning of separation, and the same is true for pressure in region 2 and the
partial pressure of gas 2. There is truly a pressure P1 acting upon wall bb, and a
pressure (P10 + P20) − P2 = P1 acting upon wall dd, which moves jointly with wall
bb. However, the total force acting upon {bb,dd} is zero. Thermodynamically, the
total internal energy U of the gases is the same at stages 2 and 4 (ideal gases, same
temperature). During 2 −→ 4, ∆U = Qr + Wr , and since ∆U = 0 and Wr = 0, then
Qr = T∆S is zero: during the 2 −→ 4 transformation, the entropy of the gases is
conserved (in [von Neumann 1932, note 199] VN justified the constancy of entropy
in the separation process by referring to Planck’s treatise). Coming now to {K, S}:
the entropy of the system {K, S} does not change during the 2 −→ 4 reversible
transformation.
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C Some entropy balances

Knowing the three equations of state 1/T , P/T, µ/T (as functions of U, V, n) for the
model gas of Appendix A (cf. (17) and (4)), and using Euler equation and a reference
state (index 0), one gets its fundamental relation S(U, V, n) :

S = n [R ln
U

1
γ−1 V n−

γ
γ−1

(U
1

γ−1 V n−
γ

γ−1 )0
+

S0

n0
]. (26)

Use of S(U, V, n) gives an easy access to entropy variations, making clear the assump-
tions made. For instance, in the 2 → 4 separation process examined in Appendix B,
the entropy S of the system formed by the two gases 1 and 2 is the sum of the en-
tropies S1 and S2 of each gas, at stage 2 (the two gases are uncoupled, a fact implicit
when speaking of partial pressures in Appendix B), and at stage 4 (they are in dis-
tinct regions). Therefore the entropy variation ∆S of that system between 2 and 4
is:

∆S = (∆S)1 + (∆S)2. (27)

The w1n moles of gas 1 keep their volume, and their internal energy (same temper-
ature, ideal gases). Therefore (∆S)1 = 0. The same is true for gas 2, and the total
entropy is therefore constant as already found in Appendix B. This result implicitly
uses the chemical potential concept (through the derivation of S(U, V, n) from
the Euler equation).

Now, if the w1n moles of gas 1 and w2n moles of gas 2 initially occupying distinct
regions with respective volumes w1V and w2V are mixed into the same volume V ,
there is a total entropy increase (entropy of mixing) equal to −nR(w1 ln w1+w2 ln w2)
(cf. (27) and (26)).

In Sections 3 and 4, we distinguished the ”molecules” through their quantum states
(part S of {K, S}). We now suppose that the n moles of gas following the model of
Appendix A are all identical (e.g. gas 1). It would be wrong to keep the reasoning of the
first situation in this appendix and to conclude that the total entropy is still conserved,
because separation with semi-permeable walls is now meaningless. One can however
imagine that the initial volume is expanded from Vi = V to Vf = 2V, the other
conditions being unchanged (temperature T ). Then introducing a wall separating the
volume 2V into two identical regions, each with volume V , would not change the total
entropy. In the expansion, there is an entropy increase equal to:

∆S = nR ln
Vf

Vi
= nR ln 2. (28)

One should distinguish between the isothermal separation of two species of molecules
initially in the same volume V , leading to a volume V for each species (total entropy
is then conserved) and the isothermal expansion from V to 2V of a single species
(total entropy then increases).

The results in this appendix are also valid for the (Ki,Si
) ”molecules”, because

there is no coupling between the elements of a Gibbs ensemble, and moreover VN
assumed CV to be temperature-independent.
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Mécanique quantique, Théorie non relativiste, French edn.: Mir Publishers, Moscow
Lebowitz, Joel L. 2007. From Time-Symmetric Microscopic Dynamics to Time-Asymmetric
Macroscopic Behavior: An Overview. Boltzmann’s Legacy - Proceedings of Vienna
Conference on Boltzmann, p.63-89, arXiv:0709.0724v1
Lebowitz, Joel L. 2010. Approach to thermal equilibrium of macroscopic quantum
systems, Phys. Rev. E 81: 011109, 1-9
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