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ABSTRACT

An increasing number of astronomical instruments (on Earth and space-based) provide hyperspectral images, that is three-dimensional
data cubes with two spatial dimensions and one spectral dimension. The intrinsic limitation in spatial resolution of these instruments
implies that the spectra associated with pixels of such images are most often mixtures of the spectra of the “pure” components that
exist in the considered region. In order to estimate the spectra and spatial abundances of these pure components, we here propose
an original blind signal separation (BSS), that is to say an unsupervised unmixing method. Our approach is based on extensions and
combinations of linear BSS methods that belong to two major classes of methods, namely nonnegative matrix factorization (NMF)
and sparse component analysis (SCA). The former performs the decomposition of hyperspectral images, as a set of pure spectra and
abundance maps, by using nonnegativity constraints, but the estimated solution is not unique: It highly depends on the initialization
of the algorithm. The considered SCA methods are based on the assumption of the existence of points or tiny spatial zones where
only one source is active (i.e., one pure component is present). These points or zones are then used to estimate the mixture and
perform the decomposition. In real conditions, the assumption of perfect single-source points or zones is not always realistic. In
such conditions, SCA yields approximate versions of the unknown sources and mixing coefficients. We propose to use part of these
preliminary estimates from the SCA to initialize several runs of the NMF in order to refine these estimates and further constrain the
convergence of the NMF algorithm. The proposed methods also estimate the number of pure components involved in the data and
they provide error bars associated with the obtained solution. Detailed tests with synthetic data show that the decomposition achieved
with such hybrid methods is nearly unique and provides good performance, illustrating the potential of applications to real data.
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1. Introduction

Telescopes keep growing in diameter, and detectors are more and
more sensitive and made up of an increasing number of pixels.
Hence, the number of photons that can be captured by astro-
nomical instruments, in a given amount of time and at a given
wavelength, has increased significantly, thus allowing astronomy
to go hyperspectral. More and more, astronomers do not deal
with 2D images or 1D spectra, but with a combination of these
media resulting in three-dimensional (3D) data cubes (two spa-
tial dimensions, one spectral dimension). We hereafter provide
an overview of the instruments that provide hyperspectral data in
astronomy, mentioning specific examples without any objective
to be exhaustive. Several integral field unit spectrographs (e.g.,
MUSE on the Very Large Telescope) provide spectral cubes at
visible wavelengths, yielding access to the optical tracers of ion-
ized gas (see for instance Weilbacher et al. 2015). Infrared mis-
sions such as the Infrared Space Observatory (ISO) and Spitzer
performed spectral mapping in the mid-infrared, a domain that
is particularly suited to observe the emission of UV heated
polycyclic aromatic hydrocarbon (e.g., Cesarsky et al. 1996;
Werner et al. 2004). In the millimeter wavelengths, large spec-
tral maps in rotational lines of abundant molecules (typically
CO) have been used for several decades to trace the dynamics of
molecular clouds (e.g., Bally et al. 1987; Miesch & Bally 1994;
Falgarone et al. 2009). The PACS, SPIRE, and HIFI instru-
ments, on board Herschel all have a mode that allows for

spectral mapping (e.g. Van Kempen et al. 2010; Habart et al.
2010; Joblin et al. 2010) in atomic and molecular lines. Owing
to its high spectral resolution, HIFI allows one to resolve the pro-
files of these lines, enabling one to study the kinematics of, for
example, the immediate surroundings of protostars (Kristensen
et al. 2011) or of star-forming regions (Pilleri et al. 2012) using
radiative transfer models. Similarly, the GREAT instrument on
board the Stratospheric Observatory For Infrared Astronomy
(SOFIA) now provides large-scale spectral maps in the C+ line
at 1.9 THz (Pabst et al. 2017). The Atacama Large Millime-
ter Array (ALMA) also provides final products that are spectral
cubes (see e.g., Goicoechea et al. 2016). A majority of astronom-
ical spectrographs to be employed at large observatories in the
future will provide spectral maps. This is the case for the MIRI
and NISPEC instruments on the James Webb Space Telescope
(JWST) and the METIS instrument on the Extremely Large Tele-
scope (ELT).

Although such 3D datasets have become common, few
methods have been developed by astronomers to analyze the
outstanding amount of information they contain. Classical anal-
ysis methods tend to decompose the spectra by fitting them with
simple functions (typically mixtures of Gaussians) but this has
several disadvantages: (1) the a priori assumption made by the
use of a given function is usually not founded physically, (2)
if the number of parameters is high, the result of the fit may
be degenerate, (3) for large datasets and fitting with nonlinear
functions, the fitting may be very time consuming, (4) initial
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Table 1. Major variables.

Variable Description

spec(l, v) Value of elementary spectrum l at velocity index v
Spec Matrix of values spec (l, v) of elementary spectra

map(m, l) Scale factor of elementary spectrum p in pixel m
Map Matrix of scale factors map(m, l)

obs(m, v) Observed value of pixel m at velocity v
Obs Matrix of observed values obs(m, v)

guesses must be provided, and, (5) the spectral fitting is usually
performed on a (spatial) pixel by pixel basis, so that the extracted
components are spatially independent, whereas physical compo-
nents are often present at large scales on the image. An alter-
native is to analyze the data by means of principal component
analysis (e.g., Neufeld et al. 2007; Gratier et al. 2017), which
provides a representation of the data in an orthogonal basis of
a subspace, thus allowing interpretation. However, this may be
limited by the fact that the principal components are orthogonal,
and hence they are not easily interpretable in physical terms. An
alternative analysis was proposed by Juvela et al. (1996), which
is based on a Blind Signal Separation (BSS) approach. It consists
in decomposing spectral cubes (in their case, CO spectral maps)
into the product of a small number of spectral components, or
“end members”, and spatial “abundance” maps.

This requires no a priori on spectral properties of the com-
ponents, and hence this can provide deeper insights into the
physical structure represented in the data, as demonstrated in this
pioneering paper. This method uses the positivity constraint for
the maps and spectra (all their points must be positive) com-
bined with the minimization of a statistical criterion to derive
the maps and spectral components. This method is referred to
as positive matrix factorization (PMF, Paatero & Tapper 1994).
Although it contained the original idea of using positivity as a
constraint to estimate a matrix product, this work used a classical
optimization algorithm. Several years later, Lee & Seung (1999)
introduced a novel algorithm to perform PMF using simple mul-
tiplicative iterative rules, making the PMF algorithm extremely
fast. This algorithm is usually referred to as Lee and Seung’s
nonnegative matrix factorization (NMF) and has been widely
used in a vast number of applications outside astronomy. This
algorithm has proved to be efficient including in astrophysical
applications (Berné et al. 2007). However, NMF has several dis-
advantages: (1) the number of spectra to be extracted must be
given by the user, (2) the error bars related to the procedure are
not derived automatically, (3) convergence to a unique point is
not guaranteed and may depend on initialization (see Donoho &
Stodden 2003 on these latter aspects). When applying NMF to
astronomical hyperspectral data, the above drawbacks become
critical and can jeopardize the integrity of the results.

In this paper, we evaluate possibilities to improve application
of BSS to hyperspectral positive data by hybridizing NMF with
sparsity-based algorithms. Here, we focus on synthetic data, so
as to perform a detailed comparison of the performances of the
proposed approaches. A first application on real data of one of
the methods presented here is provided in Foschino et al. (2019).
The proposed methods should be applicable to any hyperspectral
dataset fulfilling the properties that we will describe hereafter.
The paper is organized as follows. In the next section we present
the adopted mathematical model for hyperspectral astronomi-
cal data, using tow possible conventions, spatial or spectral. We

describe the mixing model and associated “blind signal sepa-
ration” (BSS) problem. In Sect. 3, we describe the preliminary
steps (preprocessing steps) that are required before applying the
proposed algorithms. In Sect. 4 we describe in details the three
methods that are used in this paper, that is, NMF (with an exten-
sion using a Monte-Carlo approach referred to as MC-NMF) and
two methods based on sparsity (Space-CORR and Maximum
Angle Source Separation, MASS). We then detail how MC-NMF
can be hybridized with the latter two methods.

In Sect. 5, a comparative performance analysis of studied
methods is performed. We conclude in Sect. 6.

2. Data model and blind source separation problem

The observed data consist of a spectral cubeC(px, py, f ) of dimen-
sion Px × Py × N where (px, py) define the spatial coordinates
and f is the spectral index. To help one interpret the results, the
spectral index is hereafter expressed as a Doppler-shift velocity
in km/s, using v = c × ( f − f0)/ f0, with f the observed fre-
quency, f0 the emitted frequency and c the light speed. We assume
that all observed values in C are nonnegative. We call each vector
C(px, py, .) recorded at a position (px, py) “spectrum ” and we call
each matrix C(., ., v) recorded at a given velocity “spectral band”.
Each observed spectrum corresponding to a given pixel results
from a mixture of different kinematic components that are present
on the line of sight of the instrument. Mathematically, the
observed spectrum obtained for one pixel is then a combination
(which will be assumed to be linear and instantaneous) of elemen-
tary spectra.

In order to recover these elementary spectra, one can use
methods known as Blind Source Separation (BSS). BSS con-
sists in estimating a set of unknown source signals from a set of
observed signals that are mixtures of these source signals. The
linear mixing coefficients are unknown and are also to be esti-
mated. The observed spectral cube is then decomposed as a set
of elementary spectra and a set of abundance maps (the contri-
butions of elementary spectra in each pixel).

Considering BSS terminology and a linear mixing model, the
matrix containing all observations is expressed as the product of
a mixing matrix and a source matrix. Therefore, it is necessary
here to restructure the hyperspectral cube C into a matrix and to
identify what we call “observations”, “samples”, “mixing coef-
ficients”, and “sources”. A spectral cube can be modeled in two
different ways: a spectral model where we consider the cube as
a set of spectra and a spatial model where we consider the cube
as a set of images (spectral bands) , as detailed hereafter.

2.1. Spectral model

For the spectral data model, we define the observations as being
the spectra C(px, py, .). The data cube C is reshaped into a new
matrix of observations Obs (variables defined in this section are
summarized in Table 1), where the rows contain the Px×Py = M
observed spectra of C arranged in any order and indexed by m.
Each column of Obs corresponds to a given spectral sample with
an integer-valued index also denoted as v ∈ {1, . . . ,N} for all
observations. Each observed spectrum obs(m, .) is a linear com-
bination of L (L � M) unknown elementary spectra and yields
a different mixture of the same elementary spectra:

obs(m, v) =

L∑
`=1

map(m, `) spec(`, v) (1)

m ∈ {1, . . . ,M}, v ∈ {1, . . . ,N}, ` ∈ {1, . . . , L},
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where obs(m, v) is the vth sample of the mth observation,
spec(`, v) is the vth sample of the `th elementary spectrum and
map(m, `) defines the contribution scale of elementary spectrum
` in observation m. Using the BSS terminology, map stands for
the mixing coefficients and spec stands for the sources. This
model can be rewritten in matrix form:

Obs = Map × Spec, (2)

where Map is an M × L mixing matrix and Spec is an L × N
source matrix.

2.2. Spatial model

For the spatial data model, we define the observations as being
the spectral bands C(., ., v). The construction of the spatial model
is performed by transposing the spectral model (2). In this con-
figuration, the rows of the observation matrix ObsT (the trans-
pose of the original matrix of observations Obs) contain the N
spectral bands with a one-dimensional structure. Each column of
ObsT corresponds to a given spatial sample index m ∈ {1, . . . ,M}
for all observations (i.e., each column corresponds to a pixel).
Each spectral band ObsT (v, .) is a linear combination of L (L �
N) unknown abundance maps and yields a different mixture of
the same abundance maps:

ObsT = SpecT ×MapT , (3)

where ObsT is the transpose of the original observation matrix,
SpecT is the N × L mixing matrix and MapT is the L×M source
matrix. In this alternative data model, the elementary spectra in
SpecT stand for the mixing coefficients and the abundance maps
in MapT stand for the sources.

2.3. Problem statement

In this section, we denote the mixing matrix as A and the source
matrix as S, whatever the nature of the adopted model (spatial
or spectral) to simplify notations, the following remarks being
valid in both cases.

The goal of BSS methods is to find estimates of a mixing
matrix A and a source matrix S, respectively denoted as Â and Ŝ,
and such that:

X ≈ ÂŜ . (4)

However this problem is ill-posed. Indeed, if {Â, Ŝ } is a solu-
tion, then {ÂP−1, PŜ } is also a solution for any invertible matrix
P. To achieve the decomposition, we must add two extra con-
straints. The first one is a constraint on the properties of the
unknown matrices Â and/or Ŝ. The type of constraint (indepen-
dence of sources, nonnegative matrices, sparsity) leads directly
to the class of methods that will be used for the decomposition.
The case of linear instantaneous mixtures was first studied in the
1980s, then three classes of methods became important:

– Independent component analysis (ICA; Cardoso 1998;
Hyvärinen et al. 2001): It is based on a probabilistic formal-
ism and requires the source signals to be mutually statistically
independent. Until the early 2000s, ICA was the only class of
methods available to achieve BSS.

– Nonnegative matrix factorization (NMF; Lee & Seung
1999): It requires the source signals and mixing coefficients val-
ues to be nonnegative.

– Sparse component analysis (SCA; Gribonval & Lesage
2006): It requires the source signals to be sparse in the con-
sidered representation domain (time, time-frequency, time-scale,
wavelet...).

The second constraint is to determine the dimensions of Â
and Ŝ. Two of these dimensions are obtained directly from obser-
vations X (M and N). The third dimension, common to both
Â and Ŝ matrices, is the number of sources L, which must be
estimated.

Here, we consider astrophysical hyperspectral data that have
the properties listed below. These are relatively general proper-
ties that are applicable to a number of cases with Herschel-HIFI,
ALMA, Spitzer, JWST, etc:

– They do not satisfy the condition of independence of the
sources. In our simulated data, elementary spectra have, by
construction, similar variations (Gaussian spectra with different
means, see Sect. 5.1). Likewise, abundance maps associated with
each elementary spectrum have similar shapes. Such data involve
nonzero correlation coefficients between elementary spectra and
between abundance maps. Hence ICA methods will not be dis-
cussed in this paper.

– These data are nonnegative if we disregard noise. Each
pixel provides an emission spectrum, hence composed of pos-
itive or zero values. Such data thus correspond to the conditions
of use of NMF that we detail in Sect. 4.1.

– If we consider the data in a spatial framework (spatial
model), the cube provides a set of images. We can then formulate
the hypothesis that there are regions in these images where only
one source is present. This is detailed in Sect. 4.2. This hypoth-
esis then refers to a “sparsity” assumption in the data and SCA
methods are then applicable to hyperspectral cubes. On the con-
trary, sparsity properties do not exist in the spectral framework
in our case, as discussed below.

– If the data have some sparsity properties, adding the non-
negativity assumption enables the use of geometric methods.
The geometric methods are a subclass of BSS methods based on
the identification of the convex hull containing the mixed data.
However, the majority of geometric methods, which are used in
hyperspectral unmixing in Earth observation, are not applicable
to Astrophysics because they set an additional constraint on the
data model: they require all abundance coefficients to sum to
one in each pixel, which changes the geometrical representation
of the mixed data. On the contrary, in Sect. 4.3, we introduce
a geometric method called MASS, for Maximum Angle Source
Separation (Boulais et al. 2015), which may be used in an astro-
physical context (i.e., for data respecting the models presented
above).

The sparsity constraint required for SCA and geometric
methods is carried by the source matrix S. These methods may
therefore potentially be applied in two ways to the above-defined
data: either we suppose that there exist spectral indices for which
a unique spectral source is nonzero, or we suppose that there
exist some regions in the image for which a unique spatial source
is zero. In our context of studying the properties of photodisso-
ciation regions, only the second case is realistic. Thus only the
mixing model (3) is relevant. Therefore, throughout the rest of
this paper, we will only use that spatial data model (3), so that
we here define the associated final notations and vocabulary: let
X = ObsT be the (N × M) observation matrix, A = SpecT the
(N × L) mixing matrix containing the elementary spectra and
S = MapT the (L×M) source matrix containing the spatial abun-
dance maps , each associated with an elementary spectrum.

Moreover, we note that in the case of the NMF, the spectral
and spatial models are equivalent but the community generally
prefers the more intuitive spectral model.

Before thoroughly describing the algorithms used for the
aforementioned BSS methods, we present preprocessing stages
required for the decomposition of data cubes.
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3. Data preprocessing

3.1. Estimation of number of sources

An inherent problem in BSS is to estimate the number L of
sources (the dimension shared by the Â and Ŝ matrices). This
parameter should be fixed before performing the decomposi-
tion in the majority of cases. Here, this estimate is based on the
eigen-decomposition of the covariance matrix of the data. As in
Principal Component Analysis (PCA), we look for the minimum
number of components that most contribute to the total variance
of the data. Thus the number of high eigenvalues is the number of
sources in the data. Let ΣX be the (N × N) covariance matrix of
observations X:

ΣX =
1
M

XcXT
c =

N∑
i=1

λieieT
i , (5)

where λi is the ith eigenvalue associated with eigenvector ei and
Xc is the matrix of centered data (i.e. each observation has zero
mean: xc(n, .) = x(n, .) − x̄(n, .) ).

The eigenvalues of ΣX have the following properties (their
proofs are available in Deville et al. 2014):

Property 1. For noiseless data (X0 = AS ), the ΣX matrix has
L positive eigenvalues and N − L eigenvalues equal to zero.

The number L of sources is therefore simply inferred from
this property. Now, we consider the data with an additive spa-
tially white noise E, with standard deviation σE , i.e., X = X0 +E.
The relation between the covariance matrix ΣX0 of noiseless data
and the covariance matrix ΣX of noisy data is then:

ΣX = ΣX0 + σ2
E IN , (6)

where IN is the identity matrix.

Property 2. The eigenvalues λ of ΣX and the eigenvalues λ0
of ΣX0 are linked by:

λ = λ0 + σ2
E . (7)

These two properties then show that the ordered eigenvalues λ(i)
of ΣX for a mixture of L sources are such that:

λ(1) ≥ . . . ≥ λ(L) > λ(L+1) = . . . = λ(N) = σ2
E . (8)

But in practice, because of the limited number of samples and
since the strong assumption of a white noise with the same stan-
dard deviation in all pixels is not fulfilled, the equality λ(L+1) =

. . . = λ(N) = σ2
E is not met. However, the differences between

the eigenvalues λ(L+1), . . . , λ(N) are small compared to the dif-
ferences between the eigenvalues λ(1), . . . , λ(L). The curve of the
ordered eigenvalues is therefore constituted of two parts. The
first part, ΩS , contains the first L eigenvalues associated with a
strong contribution in the total variance. In this part, eigenval-
ues are significantly different. The second part, ΩE , contains the
other eigenvalues, associated with noise. In this part, eigenvalues
are similar.

The aim is then to identify from which rank r = L + 1 eigen-
values no longer vary significantly. To this end, we use a method
based on the gradient of the curve of ordered eigenvalues (Luo
& Zhang 2000) in order to identify a break in this curve (see
Fig. 5).

Moreover, a precaution must be taken concerning the dif-
ference between λ(L) and λ(L+1). In simulations, we found that
in the noiseless case, it is possible that the last eigenvalues of
ΩS are close to zero. Thus, for very noisy mixtures, the dif-
ferences between these eigenvalues become negligible relative

to the noise variance σ2
E . These eigenvalues are then associated

with ΩE and therefore rank r where a “break” appears will be
underestimated.

The procedure described by Luo & Zhang (2000) is as fol-
lows:
1. Compute the eigen-decomposition of the covariance matrix

ΣX and arrange the eigenvalues in decreasing order.
2. Compute the gradient of the curve of the logarithm of the L

first (typically L = 20) ordered eigenvalues:

∇λ(i) = ln(λ(i)/λ(i+1)) i ∈ 1, . . . , L. (9)

3. Compute the average gradient of all these eigenvalues:

∇λ =
1

(L − 1)
ln(λ(1)/λ(L)). (10)

4. Find all i satisfying ∇λ(i) < ∇λ to construct the set {I} =

{i | ∇λ(i) < ∇λ}.
5. Select the index r, such that it is the first one of the last con-

tinuous block of i in the set {I}.
6. The number of sources is then L = r − 1.

3.2. Noise reduction

The observed spectra are contaminated by noise. In synthetic
data, this noise is added assuming it is white and Gaussian. Noise
in real data may have different properties, however the aforemen-
tioned assumptions are made here in order to evaluate the sen-
sitivity of the method to noise in the general case. To improve
the performance of the above BSS methods, we propose differ-
ent preprocessing stages to reduce the influence of noise on the
results.

The first preprocessing stage consists of applying a spectral
thresholding, i.e., only the continuous range of v containing sig-
nal is preserved. Typically many first and last channels contain
only noise and are therefore unnecessary for the BSS. This is
done for all BSS methods presented in the next section.

The second preprocessing stage consists of applying a spa-
tial thresholding. Here, we must distinguish the case of each
BSS method because the SCA method requires to retain the spa-
tial structure of data. For NMF, the observed spectra (columns
of X) whose “normalized power” is lower than a threshold αe
are discarded. Typically some spectra contain only noise and are
therefore unnecessary for the spectra estimation step (Sect. 4.1).
In our application, we set the threshold to αe = max

i
‖X(., i)‖ ×

0.2 (∀i ∈ {1, . . . ,M}). For the SCA method, some definitions are
necessary to describe this spatial thresholding step. This proce-
dure is therefore presented in the section regarding the method
itself (Sect. 4.2).

Finally, synthetic and actual data from the HIFI instrument
contain some negative values due to noise. To stay in the assump-
tion of NMF, these values are reset to ε = 10−16.

4. Blind signal separation methods

4.1. nonnegative matrix factorization and our extension

NMF is a class of methods introduced by Lee & Seung (1999).
The standard algorithm iteratively and simultaneously computes
Â and Ŝ , minimizing an objective function of the initial X matrix
and the ÂŜ product. In our case, we use the minimization of the
Euclidean distance δ = 1

2‖X − ÂŜ ‖2F , using multiplicative update
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rules:

Â← Â � (XŜ T ) � (ÂŜ Ŝ T ) (11)

Ŝ ← Ŝ � (ÂT X) � (ÂT ÂŜ ), (12)

where � and � are respectively the element-wise product and
division.

Lee and Seung show that the Euclidean distance δ is non
increasing under these update rules (Lee & Seung 2001), so that
starting from random Â and Ŝ matrices, the algorithm will con-
verge toward a minimum for δ. We estimate that the convergence
is reached when:

1 −
δi+1

δi < κ, (13)

where i corresponds to the iteration and κ is a threshold typically
set to 10−4.

The main drawback of standard NMF is the uniqueness of
the decomposition. The algorithm is sensitive to the initialization
due to the existence of local minima of the objective function
(Cichocki et al. 2009). The convergence point highly depends on
the distance between the initial point and a global minimum. A
random initialization without additional constraint is generally
not satisfactory. To improve the quality of the decomposition,
several solutions are possible:

– Use a Monte-Carlo analysis to estimate the elementary
spectra and then rebuild the abundance maps (Berné et al. 2012).

– Further constrain the convergence by altering the initializa-
tion (Langville et al. 2006).

– Use additional constraints on the sources and/or mixing
coefficients, such as sparsity constraints (Cichocki et al. 2009),
or geometric constraints (Miao & Qi 2007).

The addition of geometric constraints is usually based on
the sum-to-one of the abundance coefficients for each pixel

(
L∑̀
=1

sm(`) = 1). This condition is not realistic in an astrophysi-

cal context, where the total power received by the detectors vary
from a pixel to another. Therefore, this type of constraints cannot
be applied here. A standard type of sparsity constraints imposes
a sparse representation of the estimated matrices Â and/or Ŝ in
the following sense: the spectra and/or the abundance maps have
a large number of coefficients equal to zero or negligible. Once
again, this property is not verified in the data that we consider
and so this type of constraint cannot be applied. However, the
above type of sparsity must be distinguished from the sparsity
properties exploited in the SCA methods used in this paper. This
is discussed in Sects. 4.2 and 4.3 dedicated to these methods.

Moreover, well-known indeterminacies of BSS appear in the
Â and Ŝ estimated matrices. The first one is a possible permu-
tation of sources in Ŝ. The second one is the presence of a scale
factor per estimated source. To offset these scale factors, the esti-
mated source spectra are normalized so that:∫

a`(v) dv = 1 ` ∈ {1, . . . , L} (14)

where a` is the `th column of A. This normalization allows the
abundance maps to be expressed in physical units.

To improve the results of standard NMF, we extend it as fol-
lows. First, the NMF is amended to take into account the nor-
malization constraint (14). At each iteration (i.e. each update
of Â according to (11)), the spectra are normalized in order to
avoid the scale indeterminacies. Then NMF is complemented by
a Monte-Carlo analysis described hereafter. Finally, we propose

an alternative to initialize NMF with results from one of the SCA
methods described in Sects. 4.2 and 4.3.

The NMF-based method used here (called MC-NMF here-
after), combining standard NMF, normalization and Monte-
Carlo analysis, has the following structure:

– The Monte-Carlo analysis stage gives the most probable
samples of elementary spectra and error bars associated with
these estimates provided by the normalized NMF.

– The combination stage recovers abundance map sources
from the above estimated elementary spectra and observations.

These two stages are described hereafter:

1. Monte-Carlo analysis. Assuming that the number of
sources L is known (refer to Sect. 3.1 for its estimation), NMF is
ran p times, with different initial random matrices for each trial
(p is typically equal to 100). In each run, a set of L elementary
spectra are identified. The total number of obtained spectra at the
end of this process is p × L. These spectra are then grouped into
L sets {ω1, ω2, . . . , ωL}, each set representing the same column
of Â. To achieve this clustering, the method uses the K-means
algorithm (Theodoridis & Koutroumbas 2009) with a correla-
tion criterion, provided in Matlab (kmeans). More details about
the K-means algorithm are provided in Appendix B.

To then derive the estimated value â`(v) of each elementary
spectrum, at each velocity v in a set ω`, we estimate the proba-
bility density function (pdf) fω` ,v from the available p intensities
with the Parzen kernel method provided in Matlab (ksdensity).
Parzen kernel (Theodoridis & Koutroumbas 2009) is a para-
metric method to estimate the pdf of a random variable at any
point of its support. For more details about this method, refer to
Appendix B.

Each estimated elementary spectrum â` is obtained by select-
ing the intensity u that has the highest probability at a given
wavelength:

â`(v) = argmax
u

fω` ,v(u) ` ∈ {1, . . . , L}. (15)

The estimation error at each wavelength v for a given ele-
mentary spectrum â` is obtained by selecting the intensities
whose pdf values are equal to max( fω` ,v)/2. Let

[
α`(n), β`(n)

]
be

the error interval of â`(v) such that:

fω` ,n(â`(n) − α`(n)) = fω` ,n(â`(n) + β`(n)) =
1
2

max
(
fω` ,n

)
. (16)

The two endpoints α`(n) and β`(n) are respectively the lower
and upper error bounds for each velocity. We illustrate this pro-
cedure in Fig. 1 showing an example of pdf annotated with the
different characteristic points defined above.

2. Combination stage. This final step consists of estimating
the L spatial sources from the estimation of elementary spectra
and observations, under the nonnegativity constraint. Thus for
each observed spectrum of index m ∈ {1, . . . ,M}, the sources are
estimated by minimizing the objective function:

J(ŝm) =
1
2
‖xm − Âŝm‖

2
2. ŝm > 0, (17)

where xm is the mth observed spectrum (i.e., the mth column of
X) and ŝm the estimation of spatial contributions associated with
each elementary spectrum (i.e., the mth column of Ŝ). This is
done by using the classical nonnegative least square algorithm
(Lawson 1974). We here used the version of this algorithm pro-
vided in Matlab (lsqnonneg). The abundance maps are obtained
by resizing the columns of Ŝ into Px × Py matrices (reverse pro-
cess as compared with resizing C).
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Fig. 1. Probability density function fω` ,n of intensities of the set ω` at a
given velocity v.

Summary of MC-NMF method

Requirements: All points in C are nonnegative.
1. Identification of the number of sources L (Sect. 3.1).
2. Noise reduction (Sect. 3.2).
3. NMF:

– Random initialization of Â and Ŝ .
– Update Â and Ŝ using (11) and (12). At each iteration,

the column of Â are normalized according to (14).
– Stop updating when the convergence criterion (13) is

reached.
4. Repeat Step 3. p times for Monte-Carlo analysis.
5. Cluster normalized estimated spectra to form L sets.
6. In each set, compute the pdf of p intensities at each velocity

and use (15) to estimate the elementary spectra Â. The error
bars of this estimate are deduced from the pdf using (16).

7. Reconstruct the spatial sources Ŝ with a nonnegative least
square algorithm: see (17).

4.2. Sparse component analysis based on single-source
zones

SCA is another class of BSS methods, based on the sparsity of
sources in a given representation domain (time, space, frequency,
time-frequency, time-scale). It became popular during the 2000s
and several methods then emerged. The first SCA method used
in this paper is derived from TIFCORR introduced by Deville &
Puigt (2007). In the original version, the method is used to sep-
arate one-dimensional signals, but an extension for images has
been proposed by Meganem et al. (2010). This type of method is
based on the assumption that there are some small zones in the
considered domain of analysis where only one source is active,
i.e., it has zero mean power in these zones called single-source
zones. We here use a spatial framework (see model (3)), so that
we assume that spatial single-source zones exist in the cube C.

The sparsity considered here does not correspond to the same
property as the sparsity mentioned in Sect. 4.1. In order to clarify
this distinction, we introduce the notion of degree of sparsity.
Sparse signals may have different numbers of coefficients equal
to zero. If nearly all the coefficients are zero, we define the signal
as highly sparse. On the contrary, if only a few coefficients are
zero, we define the signal as weakly sparse.

The sparsity assumption considered in Sect. 4.1 corresponds
to the case when the considered signal (spectrum or abundance
map) contains a large number of negligible coefficients. This
therefore assumes a high sparsity, which is not realistic in our

context. On the contrary, the sparsity assumption used in the
BSS method derived from TIFCORR considered here only con-
sists of requiring the existence of a few tiny zones in the consid-
ered domain (spatial domain in our case) where only one source
is active. More precisely, separately for each source, that BSS
method only requires the existence of at least one tiny zone (typ-
ically 5 × 5 pixels) where this source is active, and this corre-
sponds to Assumption 1 defined below. We thus only require
a weak spatial sparsity. More precisely, we use the joint spar-
sity (Deville 2014) of the sources since we do not consider the
sparsity of one source signal alone (i.e., the inactivity of this
signal on a number of coefficients) but we consider the spatial
zones where only one source signal is active , whereas the others
are simultaneously inactive. This constraint of joint sparsity is
weaker than a constraint of sparsity in the sense of Sect. 4.1,
since it concerns a very small number of zones (at least one
for each source). The “sparse component analysis method” used
hereafter might therefore be called a “quasi-sparse component
analysis method”.

The method used here, called LI-2D-SpaceCorr-NC and pro-
posed by Meganem et al. (2010) (which we just call SpaceCorr
hereafter), is based on correlation parameters and has the follow-
ing structure:

– The detection stage finds the single- source zones.
– The estimation stage identifies the columns of the mixing

matrix corresponding to these single- source zones.
– The combination stage recovers the sources from the esti-

mated mixing matrix and the observations.
Before detailing these steps, some assumptions and definitions
are to be specified. The spectral cube C is divided into small
spatial zones (typically 5 × 5 pixels), denoted Z. These zones
consist of adjacent pixels and the spectral cube is scanned spa-
tially using adjacent or overlapping zones. We denote X(Z) the
matrix of observed spectra in Z (each column of X(Z) contains
an observed spectrum).

First of all, as explained in Sect. 3.2, preprocessing is nec-
essary to minimize the impact of noise on the results. For this
particular method, we must keep the spatial data consistency.
The aforementioned spatial thresholding is achieved by retain-
ing only zones Z whose power is greater than a threshold.
Typically some zones contain only noise and are therefore
unnecessary for the spectra estimation step (detection and esti-
mation stages of SpaceCorr). As for the NMF, we set the thresh-
old to αn = max

Z
‖X(Z)‖F × 0.2.

Definition 1. A source is “active” in an analysis zone Z if its
mean power is zero in Z.

Definition 2. A source is “isolated” in an analysis zone Z if
only this source is active in Z.

Definition 3. A source is “accessible” in the representation
domain if at least one analysis zone Z where it is isolated exists.

Assumption 1. Each source is spatially accessible.
If the data satisfy this spatial sparsity assumption, then we

can achieve the decomposition as follows:

4.2.1. Detection stage

From expression (3) of X and considering a single-source zone Z
where only the source s`0 is present, the observed signals become
restricted to:

xv(m) = av`0 s`0 (m) m ∈ Z, (18)
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where xv is the vth row of X and s`0 the `0th row of S . We
note that all the observed signals xv in Z are proportional to
each other. They all contain the same source s`0 weighted by
a different factor av`0 for each observation whatever the con-
sidered velocity v. Thus, to detect the single-source zones, the
considered approach consists of using the correlation coeffi-
cients in order to quantify the observed signals proportionality.
Let R{xi, x j}(Z) denote the centered cross-correlation of the two
observations xi and x j in Z:

R{xi, x j}(Z) =
1

Card(Z)

∑
m∈Z

xi(m)x j(m) ∀i, j ∈ {1, . . . ,N},

(19)

where Card(Z) is the number of samples (i.e., pixels) in Z. On
each analysis zone Z, we estimate the centered correlation coef-
ficients ρ{xi, x j}(Z) between all pairs of observations:

ρ{xi, x j}(Z) =
R{xi, x j}(Z)√

R{xi, xi}(Z) × R{x j, x j}(Z)
∀i, j ∈ {1, . . . ,N}.

(20)

We note that these coefficients are undefined if all sources are
equal to zero. So we add the following condition:

Assumption 2. On each analysis zone Z, at least one source
is active.

For each zone Z we obtain a correlation matrix ρ. In Deville
(2014), the authors show that for linearly independent sources, a
necessary and sufficient condition for a source to be isolated in a
zone Z is:

|ρ{xi, x j}(Z)| = 1 i, j ∈ {1, . . . ,N}, i < j. (21)

To measure the single-source quality qZ of an analysis zone,
the matrix ρ is aggregated by calculating the mean qZ =

|ρ{xi, x j}(Z)|, over i and j indices , with i < j. The best single-
source zones are the zones where the quality coefficient qZ is the
highest. To ensure the detection of single-source zones, the coef-
ficient qZ must be less than 1 for multi-source zones. We then set
the following constraint:

Assumption 3. Over each analysis zone, all active sources
are linearly independent if at least two active sources exist in
this zone.

The detection stage therefore consists in keeping the zones
for which the quality coefficient is above a threshold defined by
the user.

4.2.2. Estimation stage

Successively considering each previously selected single-source
zone, the correlation parameters R{xi, x j}(Z) between pairs of
bands allow one to estimate a column of the mixing matrix A
up to a scale factor:

R{x1, xv}(Z)
R{x1, x1}(Z)

=
av`0

a1`0

v ∈ {1, . . . ,N}. (22)

The choice of the observed signal of index 1 as a reference is
arbitrary: it can be replaced by any other observation. In practice,
the observation with the greatest power will be chosen as the
reference in order to limit the risk of using a highly noisy signal
as the reference.

Moreover, to avoid any division by zero, we assume that:

Assumption 4. All mixing coefficient a1` are zero.
As for MC-NMF, the scale factor 1

a1`0
of the estimated spec-

trum is then compensated for, by normalizing each estimated
spectrum so that

∫
a`(v) dv = 1. We thus obtain a set of potential

columns of Â. We apply clustering (K-means with a correlation
criterion) to these best columns in order to regroup the estimates
corresponding to the same column of the mixing matrix in L
clusters. The mean of each cluster is retained to form a column
of the matrix Â.

4.2.3. Combination stage

The source matrix estimation step is identical to that used for
the NMF method (see previous section). It is performed by min-
imizing the cost function (17) with a nonnegative least square
algorithm.

Summary of SpaceCorr method

Requirements: Each source is spatially accessible. On each
zone Z, at least one source is active and all active sources are
linearly independent. All mixing coefficient a1` are zero.
1. Identification of the number of sources L (Sect. 3.1).
2. Noise reduction (Sect. 3.2).
3. Compute the single-source quality coefficients qZ =

|ρ{xi, x j}(Z)| for all analysis zones Z.
4. Keep the zones where the quality coefficient is above a

threshold.
5. For each above zone, estimate the potential column of Â with

(22) and normalize it so that
∫

a`(v) dv = 1.
6. Cluster potential columns to form L sets. The mean of each

cluster forms a final column of Â.
7. Reconstruct sources Ŝ with a nonnegative least square algo-

rithm: see (17).

The efficiency of SpaceCorr significantly depends on the size
of the analysis zones Z. Too little zones do not allow one to
reliably evaluate the correlation parameter ρ{xi, x j}(Z), hence to
reliably evaluate the single-source quality of the zones. Con-
versely, too large zones do not ensure the presence of single-
source zones. Furthermore, the size of the zones must be com-
patible with the data. A large number of source signals or a
low number of pixels in the data can jeopardize the presence
of single-source zones for each source.

Thus, it is necessary to relax the sparsity condition in order to
separate such data. The size of these single-source zones being a
limiting factor, we suggest to reduce them to a minimum, i.e.,
to one pixel: we assume that there exists at least one single-
source pixel per source in the data. To exploit this property, we
developed a geometric BSS method called MASS (for maximum
angle source separation; Boulais et al. 2015), which applies to
data that do not meet the SpaceCorr assumptions. We note how-
ever that MASS does not make SpaceCorr obsolete. SpaceCore
generally yields better results than MASS for data with single-
source zones. This will be detailed in Sect. 5.3 devoted to exper-
imentations.

4.3. Sparse component analysis basd on single-source
pixels

The MASS method (Boulais et al. 2015) is a BSS method based
on the geometrical representation of data and a sparsity assump-
tion on sources. For this method, we assume that there are at
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least one pure pixel per source. The spectrum associated with a
pure pixel contains the contribution of only one elementary spec-
trum. This sparsity assumption is of the same nature as the one
introduced for SpaceCorr (i.e., spatial sparsity), but the size of
the zones Z is here reduced to a single pixel. Once again, we use
the spatial model described in Sect. 2.2. With the terminology
introduced in Sect. 4.2 for the SpaceCorr method, we here use
the following assumption:

Assumption 1′. For each source, there exist at least one pixel
(spatial sample) where this source is isolated (i.e., each source is
spatially accessible).

Before detailing the MASS algorithm, we provide a geomet-
rical framework for the BSS problem. Each observed spectrum
(each column of X) is represented as an element of the RN vector
space:

xm = Asm, (23)

where xm is a nonnegative linear combination of columns of
A. The set of all possible (i.e., not necessarily present in the
measured data matrix X) nonnegative combinations x∗ of the L
columns of A is

C(A) = {x∗ | x∗ = As∗, s∗ ∈ RL
+}. (24)

This defines a simplicial cone whose L edges are spanned by the
L column vectors a` of A:

E` = {x∗ | x∗ = αa`, α ∈ R+}, (25)

where E` is the `th edge of the simplicial cone C(A). We notice
that the simplicial cone C(A) is a convex hull, each nonnegative
linear combination of columns of A is contained within C(A).

Here, the mixing coefficients and the sources are nonnega-
tive. The observed spectra are therefore contained in the sim-
plicial cone spanned by the column of A, i.e., by the elemen-
tary spectra. If we add the above-defined sparsity assumption
(Assumption 1′), the observed data matrix contains at least one
pure pixel (i.e., a pixel containing the contribution of a unique
column of A) for each source.

The expression of such a pure observed spectrum, where
only the source of index `0 ∈ {1, . . . , L} is nonzero, is restricted
to:

xm = a`0 s`0m (26)

where a`0 is the `0th column of A. Since s`0m is a nonnega-
tive scalar, (26) corresponds to an edge vector of the simplicial
cone C(A) defined (25). Therefore, the edge vectors are actually
present in the observed data.

To illustrate these properties, we create a scatter plot of data
in three dimensions (Fig. 2). These points are generated from
nonnegative linear combinations of 3 sources. On the scatter
plot, the blue points represent the mixed data (i.e., the columns
of X), the red points represent the generators of data (i.e., the
columns of A). As previously mentioned, the observations xm
are contained in the simplicial cone spanned by the columns
of the mixing matrix A. Moreover, if the red points are among
the observed vectors (i.e., if Assumption 1′ is verified), the sim-
plicial cone spanned by A is the same as the simplicial cone
spanned by X.

From these properties, we develop the MASS method ,
which aims to unmix the hyperspectral data. It operates in two
stages. The first one is the identification of the mixing matrix
A and the second one is the reconstruction of source matrix S .
If the data satisfy the spatial sparsity assumption, then we can
achieve the decomposition as follows:

Fig. 2. Scatter plot of mixed data and edges E` of the simplicial cone
in the three-dimensional case. The columns of X are shown in blue and
those of A in red.

4.3.1. Mixing matrix identification

Identifying the columns of the matrix A (up to scale indetermi-
nacies) is equivalent to identifying each edge vector of the sim-
plicial cone C(A) spanned by the data matrix X. The observed
vectors being nonnegative, the identification of the edge vectors
reduces to identifying the observed vectors which are furthest
apart in the angular sense.

First of all, the columns of X are normalized to unit length
(i.e. ‖xm‖ = 1) to simplify the following equations. The identifi-
cation algorithm operates in L − 1 steps. The first step identifies
two columns of Â by selecting the two columns of X that have
the largest angle. We denote xm1 and xm2 this pair of observed
spectra. We have:

(m1,m2) = argmax
i, j

cos−1(xi
T x j) ∀i, j ∈ {1, . . . ,M}. (27)

Moreover, the cos−1 function being monotonically decreasing on
[0, 1], Eq. (27) can be simplified to:

(m1,m2) = argmin
i, j

xi
T x j ∀i, j ∈ {1, . . . ,M}. (28)

We denote Ã the sub-matrix of Â formed by these two columns:

Ã = [xm1 , xm2 ]. (29)

The next step consists of identifying the column which has
the largest angle with xm1 and xm2 . This column is defined as the
one which is furthest in the angular sense from its orthogonal
projection on the simplicial cone spanned by xm1 and xm2 . Let
ΠÃ(X) be the projection of columns of X on the simplicial cone
spanned by the columns of Ã:

ΠÃ(X) = Ã(ÃT Ã)−1ÃT X. (30)

To find the column of X which is the furthest from its projection,
we proceed in the same way as to identify the first two columns.
Let m3 be the index of this column:

m3 = argmin
i

xi
Tπi ∀i ∈ {1, . . . ,M}, (31)

where πi is the ith column of ΠÃ(X). The new estimate of
the mixing matrix is then Ã = [xm1 , xm2 , xm3 ]. This projection
and identification procedure is then repeated to identify the L
columns of the mixing matrix. For example, the index m4 can be
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identified by searching the column of X which forms the largest
angle with its projection on the simplicial cone spanned by the
columns of Ã = [xm1, xm2, xm3]. Finally, the mixing matrix is
completely estimated:

Â = [xm1 , . . . , xmL ]. (32)

However, this mixing matrix estimation is very sensitive to
noise since Â is constructed directly from observations. In order
to make the estimate more robust to noise and to consider the
case when several single-source vectors, relating to the same
source, are present in the observed data, we introduce a tolerance
margin upon selection of the columns. Instead of selecting the
column that has the largest angle with its projection (or both first
columns which are furthest apart), we select all columns which
are nearly collinear to the identified column. For each column
xm`

previously identified according to Eq. (32), we construct the
setA`:

A` = {xi | xT
m`

xi ≥ κ} i ∈ {1, . . . ,M}, ` ∈ {1, . . . , L}, (33)

where κ is the tolerance threshold of an inner product (thus
included in [0, 1]). It must be chosen close to 1 to avoid selecting
mixed observations (typically κ = 0.99). The column of the new
mixing matrix Â is obtained by averaging the columns in each
setA`, which reduces the influence of noise:

Â = [Ā1, . . . , ĀL], (34)

where Ā` is the average column of the set A`. Thus, we obtain
an estimate of the mixing matrix A up to permutation and scale
factor indeterminacies.

4.3.2. Source matrix reconstruction

The source matrix estimation step is identical to those used for
the NMF and SpaceCorr methods. It is performed by minimizing
the cost function (17) with a nonnegative least square algorithm.

Summary of MASS method

Requirements: For each source, there exist at least one pixel
(spatial sample) where this source is isolated. All points in C are
nonnegative.
1. Identification of the number of sources L (Sect. 3.1).
2. Noise reduction (Sect. 3.2).
3. Normalization of the observed spectra xm to unit length.
4. Selection of the two columns of X that have the largest angle

according to (28).
5. Repeat L−2 times the procedure of projection (30) and iden-

tification (31) to obtain the whole mixing matrix Â.
6. Normalization of the columns of Â so that

∫
a`(v) dv = 1.

7. Reconstruct the sources Ŝ using a nonnegative least square
algorithm: see (17).

4.4. Hybrid methods

The BSS methods presented above have advantages and draw-
backs. NMF and its extended version, MC-NMF, are attractive
because they explicitly request only the nonnegativity of the
considered data (as opposed, e.g., to sparsity). However, with-
out additional assumptions, they e.g. do not provide a unique
decomposition, as mentioned above. The SpaceCorr method is
influenced by the degree of spatial sparsity present in the data.
Indeed, in practice, the assumption of perfectly single-source
zones (qZ = 1) may not be realistic. In such conditions, the

zones Z retained for the unmixing are contaminated by the
presence, small but not negligible, of other sources. However,
SpaceCorr provides a unique decomposition and the algorithm
does not require initialization. MASS then allows one to reduce
the required size of single-source zones to a single pixel, but
possibly at the expense of a higher sensitivity to noise.

In order to take advantage of the benefits and reduce the
drawbacks specific to each of these methods, we hereafter
combine them. The spectra and abundance maps estimated
with SpaceCorr may not be perfectly unmixed, i.e. elementary,
but provide a good approximation of the actual components.
To improve the decomposition, these approximations are then
refined by initializing MC-NMF with these estimates of elemen-
tary spectra or abundance maps from SpaceCorr (the choice of Â
or Ŝ initialized in this way will be discussed in Sect. 5.3). Thus
the starting point of MC-NMF is close to a global minimum of the
objective function, which reduces the possibility for MC-NMF to
converge to a local minimum. The variability of results is greatly
reduced, which leads to low-amplitude error bars.

Thus we obtain two new, hybrid, methods: MC-NMF initial-
ized with the spectra obtained from SpaceCorr, which we call
SC-NMF-Spec, and MC-NMF initialized with the abundance
maps obtained from SpaceCorr, which we call SC-NMF-Map.

Similarly, two other new hybrid methods are obtained by
using the MASS method, instead of SpaceCorr, to initialize
MC-NMF: initializing MC-NMF with the spectra obtained with
MASS yields the MASS-NMF-Spec method, whereas initializ-
ing MC-NMF with the maps obtained with MASS yields the
MASS-NMF-Map method.

5. Experimental results

5.1. Synthetic data

To evaluate the performance of all considered methods, we gen-
erate data cubes containing 2, 4 or 6 elementary spectra (Fig. 3)
which have 300 samples. The spectra are simulated using Gaus-
sian functions (that integrate to one) with same standard devi-
ation σSpec (cases with different standard deviations were also
studied and yield similar results). To obtain the different ele-
mentary spectra of a mixture, we vary the mean of the Gaussian
functions. Thus we simulate the Doppler-Shift specific to each
source.

The spatial abundance maps are simulated using 2D Gaus-
sian functions, each map having the same standard deviation
σMap on the x and y axes. For each 2D Gaussian, we define its
influence zone as the pixel locations between its peak and a dis-
tance of 3σMap. Beyond this distance, the corresponding spatial
contributions will be assumed to be negligible. To add spatial
sparsity, we vary the spatial position of each 2D Gaussian to get
more or less overlap between them (see Fig. 4). The distance d
between two peaks is varied from 6σMap down to 2σMap with
a 1σMap step. The extreme case 2σMap still yields single-source
zones to meet the assumptions of SpaceCorr. Thus we build 5
different mixtures of the same sources, each involving more or
less sparsity.

Moreover, to ensure the assumption of linear independence
of sources (i.e., abundance maps from the point of view of
SpaceCorr), each map is slightly disturbed by a uniform mul-
tiplicative noise. Thus the symmetry of synthetic scenes does
not introduce linear relationships between the different maps.
Finally, we add white Gaussian noise to each cube, to get a signal
to noise ratio (SNR) of 10, 20 or 30 dB, unless otherwise stated
(see in particular Appendix C.8 where the case of low SNRs is
considered).
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Fig. 3. From left to right: two, four, or six elementary spectra used to create the synthetic data.

Fig. 4. Spatial positions of different 2D Gaussian functions for four
sources. The left map shows the case without overlap (d = 6σMap) and
the right map shows the case with maximum overlap (d = 2σMap). The
intermediate cases (d = 5σMap, d = 4σMap and d = 3σMap) are not
represented.

It is important to note, finally, that the objective here is not
to produce a realistic simulated astrophysical scene or simulated
dataset, but rather to have synthetic data that fulfill the statistical
properties listed in Sect. 2.3, and in which we can vary simple
parameters to test their effect on the performances of the method.
We also note that Guilloteau et al. (2019) are currently devel-
oping a model of scene and instruments to provide a realistic
synthetic JWST hyperspectral datasets, and the present method
could be tested on these upcoming data.

5.2. Estimation of number of sources

We tested the method used to estimate the number of sources
(Sect. 3.1) on our 45 synthetic data cubes. For each of them,
we found the true number of sources of the mixture. These
results are unambiguous because the difference between λ(L) and
λ(L+1) clearly appears. We can easily differenciate the two parts
ΩS and ΩE on each curve of ordered eigenvalues. We illustrate
the method for a mixture of 4 sources in Fig. 5. A “break” is
clearly observed in the curve of ordered eigenvalues at index
r = 5. The number of sources identified by the method is cor-
rect, L = r − 1 = 4.

5.3. Unmixing

5.3.1. Quality measures

We now present the performance of the different BSS methods
introduced in Sect. 4: MC-NMF, SpaceCorr, MASS and their
hybrid versions. To study the behavior of these methods, we
apply them to the 45 synthetic cubes. We use two measures of
error as performance criteria, one for maps and the other for
spectra. The Normalized Root Mean Square Error (NRMSE)
defines the error of estimated maps:

NRMSE` =
‖s` − ŝ`‖
‖s`‖

. (35)

Fig. 5. Example of identification of number of sources for a synthetic
mixture of four sources with SNR = 10 dB and d = 2σMap.

The spectral angle mapper (SAM) normalized root mean square
error defines the error of estimated spectra. This usual measure-
ment in hyperspectral imaging for Earth observation is defined
as the angle formed by two spectra:

SAM` = arccos
 aT

` â`
‖a`‖.‖â`‖

 . (36)

The Monte Carlo analysis associated with the NMF makes
it possible to define the spread of the solutions given by each of
the K runs of the NMF. For each estimated source, we construct
the envelope giving the spread of the solutions around the most
probable solution according to (16). The amplitude of the enve-
lope is normalized by the maximum intensity in order to obtain
the error bars as a percentage of the maximum intensity. This
normalization is arbitrary and makes it possible to express the
spread of the MC-NMF independently from the spectral inten-
sity. We first denote as NMCEB` (for Normalized Monte Carlo
Error Bar) the normalized error associated with the `th elemen-
tary spectrum:

NMCEB`(n) =
α`(n) + β`(n)

U`
∀n ∈ {1, . . . ,N}, (37)

where U` = max
n
{a`(n)} is the maximal intensity of the `th ele-

mentary spectrum. To quantify the total spread of MC-NMF
solutions for a data cube, the above parameter is then maximized
along the spectral axis:

NMCEBmax
` = max

n
{NMCEB`(n)}. (38)

For clarity, we hereafter detail two examples of mixtures of
four sources with SNR = 20 dB. The results for other mixtures
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with an SNR of 10, 20, or 30 dB lead to the same conclusions
and are available in Appendix C. More specifically, some addi-
tional tests with a very low SNR (1, 3, or 5 dB) are also reported
in Appendix C.8 for the preferred two methods. Their relative
merits are then modified as expected, as compared to the above
cases involving significantly higher SNRs.

5.3.2. Results

The first example is a case of a highly sparse mixture (d =
6σMap), whose map is shown in the leftmost part of Fig. 4. The
second example concerns a weakly sparse mixture (d = 2σMap),
whose map is shown in the rightmost part of Fig. 4. Again to sim-
plify the figures, we present only one component but the results
are similar for the remaining 3 components.

The results in the most sparse case are given in Figs. A.1
and A.2. The first figure illustrates the performance of the MC-
NMF, SpaceCorr or MASS methods used alone and the second
figure shows the results of the resulting four hybrid meth-
ods. Similarly, the results in the least sparse case are given in
Figs. A.3 and A.4.

In the most sparse case, the results of MC-NMF are consis-
tent with the previously highlighted drawbacks. On the one hand,
we note a variability of results which leads to significant error
bars. On the other hand, the estimated spectrum yields a signif-
icant error. This corresponds to an overestimation of the max-
imum intensity of the spectrum and an underestimation of the
width of the beam. Furthermore, we observe the residual pres-
ence of close sources, visible on the map of Fig. A.1a.

The SpaceCorr and MASS methods provided excellent
results (see Figs. A.1b–c), which is consistent with the theory.
This first case is in the optimal conditions of use of the method,
since many adjacent observed pixels are single-source.

Regarding hybrid methods, we observe a significant reduc-
tion of the error bars in agreement with the objective of these
methods. However when MC-NMF is initialized with the pre-
viously estimated spectra (see Figs. A.2a–c), we find on the
estimated spectra the same inaccuracy as with MC-NMF used
alone (overestimation of the maximum intensity and underes-
timation of the width of the beam). Initialization with previ-
ously estimated abundance maps gives the best performance ,
with very similar results for the two algorithms based on this
approach (Figs. A.2b–d). For the SC-NMF-Map and MASS-
NMF-Map methods, there is performance improvement, as
compared respectively with SpaceCorr and MASS used alone,
although the latter two methods are already excellent.

In the least sparse case, MC-NMF provides estimated spec-
tra which have almost the same accuracy as in the most sparse
case (see Fig. A.3a). We observe the same deformation of the
estimated beam, a large spread of the solutions and a residual
source on the abundance map.

This time, SpaceCorr does not provide satisfactory results.
Indeed, abundance maps seem to give a good approximation of
ground truth but estimated spectra are contaminated by the pres-
ence of the other spectral components (see Fig. A.3b). This con-
tamination leads to an underestimation of the peak of intensity,
the loss of the symmetry of the beam as well as a positioning
error for the maximum of intensity on the spectral axis. This per-
turbation is explained by the fact that there are few single-source
zones in the cube. Furthermore, the detection step is sensitive to
the fixed threshold for selection of the best single-source zones.
Depending on the choice of the threshold, some “quasi-single-
source” zones may turn out to be used to estimate the columns
of the mixing matrix A.

In this case, the MASS method yields a better estimate than
SpaceCorr (see Fig. A.3c), thanks to its ability to operate with
single-source pixels, instead of complete single-source spatial
zones. The obtained spatial source is correctly located and is cir-
cular (unlike with the SpaceCorr method, where it was slightly
deformed). The estimated spectrum is better than that estimated
by SpaceCorr, however it is slightly noisy because of the sensi-
tivity of MASS to the high noise level (see Appendix C).

Here again, all four hybrid methods significantly reduce the
error bars, as compared with applying MC-NMF alone. Ini-
tializations with SpaceCorr results (Figs. A.4a–b) improve the
results of SpaceCorr without completely removing the residue
of other spectral components (i.e., the estimated spectrum is
still somewhat asymmetric). In addition, we observe again that
when MC-NMF is initialized with the spectra (Figs. A.4a–c), we
obtain the estimated spectra with the same inaccuracy as with
the MC-NMF used alone. The initialization with MASS results
(Figs. A.4c–d) improves the results of MASS by removing the
residual noise of the estimated spectrum. As an overall result, the
initialization of MC-NMF with the abundance maps provided by
MASS (see Fig. A.4d, including a 6.08% NRSME and a 0.034
rad SAM) gives the best performance in this difficult case of
weakly sparse and highly noisy data.

5.3.3. Summary of the results

To conclude on the synthetic tests, we group in Table 2 the
performances obtained by the different methods for the cube
containing four sources with an SNR of 20 dB. The reported
performance values are averaged over all four components and
100 noise realizations.

First, the four hybrid methods presented here highly improve
the spread of the solutions given by MC-NMF used alone. This
point is the first interest to use hybrid methods.

With regard to the decomposition quality achieved by the
SC-NMF and MASS-NMF hybrid methods, the synthetic data
tests show that the Map initialization provides better results than
the “Spec” one in almost all cases, whatever the considered
source sparsity. Therefore, as an overall result, Map initializa-
tion is the preferred option. The only exception to that trend is
that SC-NMF-Spec yields a better result than SC-NMF-Map in
terms of SAM for low-sparsity sources.

The last point to be specified in these tests is the choice of
the method used to initialize MC-NMF with the “Map” initial-
ization selected above, namely SpaceCorr or MASS. The results
of Table 2 refine those derived above from Figs. A.1–A.4, with
a much better statistical confidence, because they are here aver-
aged over all sources and 100 noise realizations, instead of con-
sidering only one source and one noise realization in the above
figures. The results of Table 2, in terms of NRSME and SAM,
thus show that SC-NMF-Map yields slightly better performance
than MASS-NMF-Map in the most sparse case, whereas MASS-
NMF-Map provides significantly better performance in the least
sparse case. This result is not surprising, because SC-NMF-Map
sets more stringent constraints on source sparsity, but is expected
to yield somewhat better performance when these constraints are
made (thanks to the data averaging that it peforms over analysis
zones). In a “blind configuration”, i.e. when the degree of spar-
sity of the sources is not known, the preferred method for the
overall set of data considered here is MASS-NMF-Map because,
as compared with SC-NMF-Map, it is globally better in the sense
that it may yield significantly better or only slightly worse per-
formance, depending on sparsity.
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Table 2. Performance obtained with the considered methods for a cube containing 4 sources with a 20 dB SNR.

d criterion MC-NMF SpaceCorr SC-NMF-Spec SC-NMF-Map MASS MASS-NMF-Spec MASS-NMF-Map

6σMap NRMSE 15.59 % 3.05 % 16.52 % 2.58 % 3.58 % 16.60 % 3.30 %
SAM (rad) 0.077 0.019 0.089 0.015 0.030 0.090 0.018
NMCEBmax 13.65 % – 0.69 % 2.58e–3 % – 0.70 % 4.92e–3 %

2σMap NRMSE 18.25 % 20.59 % 11.76 % 11.67 % 10.37 % 12.82 % 8.36 %
SAM (rad) 0.084 0.145 0.061 0.082 0.077 0.057 0.050
NMCEBmax 22.25 % – 1.51 % 8.93e–2 % – 1.24 % 0.72 %

Notes. Results in bold identify the cases when hybrid methods improve performance, as compared with the MC-NMF, SpaceCorr or MASS
methods used alone. The underlined results identify the best results obtained for each of the two cubes respectively corresponding to d = 6σMap
and d = 2σMap.

It should be noted at this stage that we suspect that what
favors MASS-NMF-Map is related to the dimension of the data
cube, i.e. that this latter method performs better here because
there are, in the synthetic data, more points spatially than spec-
trally (i.e. 104 spatial points vs 300 spectral points). Hence, by
initializing with SCA results the matrix that contains the largest
number of points, MASS-NMF-Map provides a better solution.
On the contrary, in the recent study by Foschino et al. (2019),
the authors have found that MASS-NMF-Spec performs better.
In their specific case case, the (real) data contain only 31 spatial
positions and 6799 spectral points. This suggests that the gen-
eral recommendation is to use the version of the method (Spec
or Map) that initializes the largest number of points in the NMF
with SCA results.

6. Conclusion and future work

In this paper, we proposed different versions of Blind Source
Separation methods for astronomical hyperspectral data. Our
approach was to combine two well-known classes of meth-
ods, namely NMF and Sparse SCA, in order to leverage their
respective advantages while compensating their disadvantages.
We developed several hybrid methods based on this princi-
ple, depending on the considered SCA algorithm (SpaceCorr or
MASS) and depending whether that SCA algorithm is used to
set the initial values of spectra or abundances then updated by
our Monte-Carlo version of NMF, called MC-NMF. In particu-
lar, our MASS-NMF-Map hybrid method, based on initializing
MC-NMF with the abundance maps provided by MASS, yields a
quasi-unique solution to the decomposition of a synthetic hyper-
spectral data cube, with an average error (summarized in Table 2)
which is always better, and often much better, than that of the
MC-NMF, SpaceCorr and MASS methods used separately. Our
various tests on simulated data also show robustness to additive
white noise. Since the initialization of NMF with SCA methods
was here shown to yield encouraging results, our future work
will especially aim at developing SCA methods with lower spar-
sity constraints, in order to further extend the domain where the
resulting hybrid SCA-NMF methods apply. A first application of
the MASS-NMF-Spec method presented in this paper on real data
is presented in Foschino et al. (2019) and shows the potential of
such methods for current and future hyperspectral datasets.
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Appendix A: Additional figures

(a)

(b)

(c)

Fig. A.1. Results of the decomposition for the MC-NMF, SpaceCorr, and MASS methods in the most sparse case (d = 6σMap). Estimated spectrum
is in blue, actual spectrum is in black dashes, and red error bars give the spread of the solutions of MC-NMF. Each subfigure caption contains
the name of the considered BSS method, followed by the NRMSE of the estimated abundance map and the SAM of the estimated spectrum (see
Eqs. (35) and (36)). This also applies to the subsequent figures. (a) MC-NMF (20.81%, 0.107 rad). (b) SpaceCorr (2.69%, 0.019 rad). (c) MASS
(2.07%, 0.019 rad).
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(a)

(b)

(c)

(d)

Fig. A.2. Results of the decomposition for hybrid methods in the most sparse case (d = 6σMap). Estimated spectrum is in blue, actual spectrum is
in black dashes, and red error bars give the spread of the solutions. (a) SC-NMF-Spec (21.47%, 0.102 rad). (b) SC-NMF-Map (2.13%, 0.016 rad).
(c) MASS-NMF-Spec (21.32%, 0.101 rad). (d) MASS-NMF-Map (1.95%, 0.016 rad).
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(a)

(b)

(c)

Fig. A.3. Results of the decomposition for the MC-NMF, SpaceCorr and MASS methods in the least sparse case (d = 2σMap). Estimated spectrum
is in blue, actual spectrum is in black dashes, and red error bars give the spread of the solutions of MC-NMF. (a) MC-NMF (23.63%, 0.126 rad).
(b) SpaceCorr (19.67%, 0.122 rad). (c) MASS (8.84%, 0.051 rad).

A105, page 15 of 25

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936399&pdf_id=8


A&A 647, A105 (2021)

(a)

(b)

(c)

(d)

Fig. A.4. Results of the decomposition for hybrid methods in the least sparse case (d = 2σMap). Estimated spectrum is in blue, actual spectrum
is in black dashes and red error bars give the spread of the solutions. (a) SC-NMF-Spec (16.20%, 0.082 rad). (b) SC-NMF-Map (10.37%, 0.065
rad). (c) MASS-NMF-Spec (16.69%, 0.080 rad).
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Appendix B: Data processing methods

B.1. K-means method

K-means is a standard unsupervised classification method
(Theodoridis & Koutroumbas 2009) which aims to partition a
set of N vectors x into k sets {σ1, σ2, . . . , σk}. Within each set
σi, a measure of dissimilarity d between vectors x ∈ σi and
cluster representative ci is minimized. The cluster representative
ci (or centroid) is the mean vector in the cluster σi. In our case,
the measure of dissimilarity is 1 minus the correlation between
x ∈ σi and ci:

d(x, ci) = 1 − corr(x, ci). (B.1)

Performing clustering then amounts to minimizing the following
objective function:

J(U,C) =

k∑
i=1

N∑
j=1

Ui jd(x j, ci), (B.2)

where C is the matrix of centroids ci and U is a partition matrix
such that Ui j = 1 if x j ∈ σi and 0 otherwise. Moreover, each
vector belongs to a single cluster (hard clustering):

k∑
i=1

Ui j = 1 j ∈ {1, . . . ,N}. (B.3)

The K-means algorithm is defined as follows:

Algorithm 1: K-means
Input : A set of vectors x, the number of cluster k.
Output: A partition matrix U, a set of centroids C.

1 begin
2 Choose arbitrary initial C0 for the centroids; /* In

practice, k vectors x, randomly selected
*/

3 U ← 0;
4 repeat

/* Update clusters */
5 for j = 1 to N do
6 Determine the closest representative, say ci,

for x j in the sense of d;
7 Ui j ← 1;
8 end

/* Update centroids */
9 for i = 1 to k do

10 Determine ci as the mean of the vectors
x ∈ σi;

11 end
12 until no change in ci’s occurs between two successive

iterations;
13 end

However, a well-known drawback of this algorithm is its sen-
sitivity to the initialization, the final centroids depending on the
choice of initial cluster representatives ci. But for our two clus-

tering steps, a manual initialization is possible and avoids this
drawback:

– As part of Monte-Carlo analysis of NMF (Sect. 4.1), we use
as initial centroids C0 the L spectra estimated by the first
Monte-Carlo trial.

– As part of the estimation step of SpaceCorr (Sect. 4.2),
we use as initial centroids C0 the L farthest spectra in the
sense of the measure d (see Eq. (B.1)), among the potential
columns of the matrix Â.

B.2. Parzen kernel method

The estimation by Parzen kernel or Parzen windows
(Theodoridis & Koutroumbas 2009; Silverman 1998) is a
parametric method for estimating the probability density func-
tion (pdf) of a random variable at any point of its support Ω. Let
(x1, x2, . . . , xN) be an independent and identically distributed
sample of a random variable X with an unknown pdf f . Its
kernel density estimator is:

f̂ (x) =
1

Nh

N∑
i=1

K
( xi − x

h

)
x ∈ Ω, (B.4)

where K is a kernel, i.e., a smooth nonnegative function that inte-
grates to one, and h > 0 is a smoothing parameter called the
bandwidth (or width of window). In our case, we use as the ker-
nel the standard normalized Gaussian function (zero expectation
and unit standard deviation):

K(x) =
1
√

2π
e(− 1

2 x2). (B.5)

The bandwidth h of the kernel is a free parameter which exhibits
a strong influence on the resulting estimate. In the case of a
Gaussian kernel, it can be shown (Silverman 1998) that the opti-
mal choice for h is:

h =

(
4σ̂5

3N

) 1
5

≈ 1.06σ̂N−
1
5 , (B.6)

where σ̂ is the sample standard deviation. The Parzen kernel
algorithm is defined as follows:

Algorithm 2: Parzen Kernel
Input : Sample points X.
Output: The estimated pdf f̂ , a support Ω covering the

range of the data.

1 begin
2 Compute h; /* According to (B.6) */
3 Define the support such that Ω = [min(X),max(X)];

/* In practice, Card (Ω) = 100 */
4 for k = 1 to Card(Ω) do
5 Compute the estimate of f̂ (Ωk); /* According

to (B.4) */
6 end
7 end
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Appendix C: Additional test results

The next figures show the performance of the methods applied
to all cubes. The SAM and the NRMSE values presented in the
following figures are obtained by averaging these measurements
for each method over all 100 noise realizations. We also provide
error bars which define the standard deviation over all noise real-
izations. Each such NMCEB spread measurement is obtained in
two stages. Firstly, for each source, the average spectrum and
the average envelope are defined over all noise realizations. In
a second step, we identify the maximum , first along the spec-
tral axis (n) for a given source (`), and then with respect to all
sources.

To summarize, we associate with each method a first figure
composed of six frames arranged in two rows and three columns.
The first row gives the SAM and the second the NRMSE. The
first column concerns cubes containing 2 sources, the middle
one containing 4 sources and the last one containing 6 sources.
Within each frame, the x axis gives the distance d defining the
overlap between the spatial sources, from d = 6σMap down to
d = 2σMap. In Appendices C.1–C.7, inside each such frame, the
three curves respectively correspond to each of the three main
noise levels tested in this study: blue for 30 dB Signal to Noise
Ratio (SNR), red for 20 dB and black for 10 dB. Similarly, in
Appendix C.8, inside each frame, the three curves respectively
correspond to each of the three additional tested low SNRs: blue
for 5 dB, red for 3 dB and black for 1 dB. For the MC-NMF
method and the hybrid methods, we also provide a second figure,
consisting of 3 frames giving the NMCEB maximum for each of
the 45 cubes.

In conclusion, all of these tests and illustrations aim to quan-
tify several phenomena. First, evaluate the impact of the noise
level and the distance between the sources on the performance
of the methods. Next, quantify the contribution of hybrid meth-
ods compared to the MC-NMF, SpaceCorr and MASS methods
used alone. The study of the error bars of the Monte-Carlo anal-
ysis associated with the NMF makes it possible to evaluate the
spread of the solutions as a function of the noise level, the spar-
sity of the sources and the initialization.

C.1. Results with MC-NMF

The performance of the MC-NMF method is shown in Figs. C.1
and C.2. We will first consider the cases involving four or six
sources. The performance of MC-NMF then has a low sensi-
tivity to the distance d, i.e. to the source joint sparsity. Simi-
larly, the number of sources is a criterion having a relatively
limited effect on the performance of MC-NMF in our simula-
tions. On the contrary, the noise level has a significant effect on
the quality of the solutions given by MC-NMF (although the
noiseless case does not give ideal results). It should be noted
that the amplitude of the error bars of MC-NMF depends on
all the tested parameters (degree of sparsity, number of sources
and noise level). The variability of MC-NMF solutions is often
substantial and the goal of hybrid methods is to reduce this
variability.

We will now focus on the case of 2 sources. For distances
ranging from d = 6σMap down to d = 3σMap (or at least 4σMap),
the same comments as those provided above for 4 or 6 sources
still apply, as expected. On the contrary, further decreasing d
to d = 2σMap results in an unexpected behavior: the SAM and
NRMSE values then strongly decrease. In other words, in this
situation when the sources become more mixed, performance
improves. Several causes can lead to this result, such as the

presence of noise, the symmetry of the maps, the great simi-
larity of the spectra or the number of iterations of the NMF,
although all these features also apply to the cubes containing
4 or 6 sources. To analyze the influence of such features on
the shape of the cost function to be minimized and thus on
performance, we performed the following additional tests for
2 sources:

– No noise in the mixtures.
– Deleting the normalization of the spectra at each iteration of

the NMF.
– Random switching of columns of X.
– Avoiding the symmetry of abundance maps by deforming a

2D Gaussian.
– Avoiding the similarity of the spectra by changing the

nature of the function simulating the line (triangle or square
function).

– Fixed number of iterations of the NMF.
– Deleting the observed spectra having a power lower than

90% of the maximal observed power.
Each of these tests led to the same, unexpected, trend as that
observed in the first column of Fig. C.1. On the contrary, the
expected behavior was observed in the following additional test,
where the sparsity of the sources was varied. The abundance
maps simulated by 2D Gaussians are replaced by a matrix S
of dimension 2 × 100 whose elements are drawn with a uni-
form distribution between 0.5 and 1. The first 25 elements
of the first row are multiplied by a coefficient α. The ele-
ments 26 to 50 of the second row are also multiplied by the
same coefficient α. Thus, depending on the value of α, we
simulate more or less sparsity in the data. In this test, we
observe a decrease of the performance of MC-NMF when α
increases , i.e. when the source sparsity decreases, as expected.
Finally, we performed tests for all the cubes (as well as for
the hybrid methods), where we further decreased the distance
d to d = 1σMap, which corresponds to very low sparsity. The
SAM and NMRSE then considerably increase, which corre-
sponds to the expected behavior of BSS methods. The above-
defined unexpected behavior is therefore only observed in the
specific case involving 2 sources and the intermediate dis-
tance d = 2σMap, and it could be further analyzed in future
work.

C.2. Results with SpaceCorr

The performance of the SpaceCorr method is shown in Fig. C.3.
This method gives excellent results if the data are sparse enough,
i.e., if there are a sufficient number of single-source zones,
which here corresponds to a large enough distance d. We also
note that SpaceCorr is not very sensitive to the number of
sources. Its (limited) sensitivity is at least due to the fact that
the number of sources over the considered fixed spatial area
may have an influence on the degree of source sparsity in
terms of available single-source zones. Finally, we emphasize
that SpaceCorr is relatively robust to noise in data. The pres-
ence of residuals in the estimates of the least sparse cases is
due to the small number of single-source zones per source
in the data. In addition, the step of detection of the single-
source zones is sensitive to the choice of the threshold used to
select the best single-source zones. Depending on this thresh-
old, almost single-source zones may be used to estimate the
columns of the mixing matrix, which yields contributions from
other sources. However, the sensitivity of the method to the
choice of this parameter will be attenuated by hybridization with
MC-NMF.
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Fig. C.1. Performances achieved by MC-NMF on the 45 synthetic cubes for 100 realizations of noise with an SNR of 30 dB (in blue), 20 dB (in
red), and 10 dB (in black). The error bars give the standard deviation over the 100 realizations of noise.

2 sources 4 sources 6 sources

Fig. C.2. Spread (NMCEB) of the solutions of MC-NMF obtained on the 45 synthetic cubes with 100 realizations of noise.

C.3. Results with SC-NMF-Spec

Whatever the number of sources, the SC-NMF-Spec hybrid ver-
sion (Fig. C.4) yields results with the same trend as that obtained
by MC-NMF used alone for two sources (Fig. C.1, leftmost col-
umn). Moreover, when considering two sources for both meth-
ods, they yield similar estimation errors for given sparsity and
noise level. Besides, SC-NMF-Spec results in a much lower
spread (Fig. C.5) than MC-NMF (Fig. C.2), especially for four
or six sources. This property is the main goal of hybridization.

C.4. Results with SC-NMF-Map

The SC-NMF-Map hybrid version (Fig. C.6) yields results
with the same trend as that obtained by SpaceCorr used alone
(Fig. C.3), whatever the number of sources. Moreover, SC-NMF-
Map results in significantly lower estimation errors, especially
in difficult cases. The spread of the results given by SC-NMF-
Map (Fig. C.7) becomes negligible, with an improvement of an
order of magnitude over the amplitude of the error bars of the
SC-NMF-Spec hybrid version.

C.5. Results with MASS

MASS gives excellent results in the case of sufficiently sparse
data and in the presence of a reasonable noise level (20 or 30 dB
SNR). It is further noted that for mixtures of two or four sources,
the results are correct even under the least favorable conditions
of sparsity, again with an SNR of 20 or 30 dB.

The main disadvantage highlighted by the synthetic data tests
is the sensitivity of the method to the high level of noise. Indeed,
the performances for the mixtures with a 10 dB SNR are weak,
even under optimal conditions of sparsity. This sensitivity comes
from the structure of the method that performs the estimation of
the mixing matrix by directly selecting the columns from the
observed vectors. The introduction of a tolerance angle in this
selection has an effect at reasonable noise levels but becomes
less effective at higher noise levels. In addition, reducing the tol-
erance threshold would allow greater robustness to noise, to the
detriment of component separation. Non single-source observa-
tions would then be used in the estimation of the columns of the
mixing matrix. The sensitivity of MASS to the noise level can
be mitigated by hybridization with MC-NMF.
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Fig. C.3. Performances achieved by SpaceCorr on the 45 synthetic cubes for 100 realizations of noise with an SNR of 30 dB (in blue), 20 dB (in
red), and 10 dB (in black). The error bars give the standard deviation over the 100 realizations of noise.
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Fig. C.4. Performances achieved by SC-NMF-Spec on the 45 synthetic cubes for 100 realizations of noise with an SNR of 30 dB (in blue), 20 dB
(in red), and 10 dB (in black). The error bars give the standard deviation over the 100 realizations of noise.

C.6. Results with MASS-NMF-Spec

The MASS-NMF-Spec hybrid version (Fig. C.9) yields the same
trends as those obtained by SC-NMF-Spec (Fig. C.4). In com-
parison with the MASS method alone, the main advantage is
an overall improvement of the performance criteria for mix-
tures with 10 dB SNR. The MASS method used alone in this
configuration gave unsatisfactory results. They are markedly
improved during hybridization with MC-NMF. Finally, we note
the major decrease in the spread of the solutions given by MASS-
NMF-Spec (Fig. C.10) compared to that encountered with the

MC-NMF (Fig. C.2) , especially for four or six sources. The
error bars encountered here are of the same order of magnitude
as those obtained with SC-NMF-Spec (Fig. C.5).

C.7. Results with MASS-NMF-Map

The MASS-NMF-Map hybrid version (Fig. C.11) yields the
same trends as those obtained by MASS used alone (Fig. C.8).
Again, there is a noticeable improvement in performance for
mixtures with a 10 dB SNR compared to MASS used alone,
as well as a clear improvement in the spread of the solutions
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Fig. C.5. Spread (NMCEB) of the solutions of SC-NMF-Spec obtained on the 45 synthetic cubes with 100 realizations of noise.
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Fig. C.6. Performances achieved by SC-NMF-Map on the 45 synthetic cubes for 100 realizations of noise with an SNR of 30 dB (in blue), 20 dB
(in red), and 10 dB (in black). The error bars give the standard deviation over the 100 realizations of noise.
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Fig. C.7. Spread (NMCEB) of the solutions of SC-NMF-Map obtained on the 45 synthetic cubes with 100 realizations of noise.

(Fig. C.12) compared to that obtained with the MC-NMF method
alone (Fig. C.2) , especially for 4 or 6 sources.

C.8. Results for very low signal-to-noise ratios

Finally, we performed additional tests for the two methods which
appeared to be the most attractive ones in Sect. 5.3.3, namely
MASS-NMF-Map and SC-NMF-Map. These tests aim at further

analyzing the behavior of these preferred methods for very low
SNRs, that is five, three, and one dB. The results thus obtained
are shown in Figs. C.13 and C.14. This shows that SC-NMF-
Map here yields significantly better performance than MASS-
NMF-Map, as opposed to the results obtained in Sect. 5.3.3
for significantly higher SNRs. This difference is reasonable and
coherent with the comments that we provided in Appendix C.5:
although SC-NMF-Map is constraining in terms of sparsity
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Fig. C.8. Performances achieved by MASS on the 45 synthetic cubes for 100 realizations of noise with an SNR of 30 dB (in blue), 20 dB (in red),
and 10 dB (in black). The error bars give the standard deviation over the 100 realizations of noise.
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Fig. C.9. Performances achieved by MASS-NMF-Spec on the 45 synthetic cubes for 100 realizations of noise with an SNR of 30 dB (in blue), 20
dB (in red), and 10 dB (in black). The error bars give the standard deviation over the 100 realizations of noise.

requirements, it has the advantage of averaging the data over an
analysis zone (instead of using a single point in the basic version
of MASS-based methods), which reduces its sensitivity to noise.
For very noisy data, such as those considered here, this feature
is of utmost importance, so that SC-NMF-Map yields better per-
formance than MASS-NMF-Map.

C.9. Results for asymmetric scenes

Here we test the effect of breaking the symmetry of the spa-
tial scene presented in Fig. 4. We do these by two means, (1)

we decrease the size of some sources, (2) we displace one of
the sources outside the square grid considered so far. These
two cases are illustrated in Fig. C.15. We have considered other
variations as well (e.g. smaller or larger displacement). Over-
all, the analysis of the results shows that the methods pro-
vide results with similar performances as for the standard cases
described in the core of the paper. Hence, the symmetry of the
scene does not appear to be critical, as long as the important
hypotheses required by the methods (positivity and sparsity) are
verified.
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Fig. C.10. Spread (NMCEB) of the solutions of MASS-NMF-Spec obtained on the 45 synthetic cubes with 100 realizations of noise.
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Fig. C.11. Performances achieved by MASS-NMF-Map on the 45 synthetic cubes for 100 realizations of noise with an SNR of 30 dB (in blue),
20 dB (in red), and 10 dB (in black). The error bars give the standard deviation over the 100 realizations of noise.
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Fig. C.12. Spread (NMCEB) of the solutions of MASS-NMF-Map obtained on the 45 synthetic cubes with 100 realizations of noise.
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Fig. C.13. Performances achieved by SC-NMF-Map on the 45 synthetic cubes for 100 realizations of noise with an SNR of 5 dB (in blue), 3 dB
(in red), and 1 dB (in black). The error bars give the standard deviation over the 100 realizations of noise.
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Fig. C.14. Performances achieved by MASS-NMF-Map on the 45 synthetic cubes for 100 realizations of noise with an SNR of 5 dB (in blue), 3
dB (in red), and 1 dB (in black). The error bars give the standard deviation over the 100 realizations of noise.
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Fig. C.15. Two cases of symmetry breaking for the maps: reduction of the size of two spatial sources (left) and displacement of one source (right).
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