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ABSTRACT The term “machine learning” especially refers to algorithms that derive mappings, i.e., input–
output transforms, by using numerical data that provide information about considered transforms. These
transforms appear in many problems related to classification/clustering, regression, system identification,
system inversion, and input signal restoration/separation. We here analyze the connections between all these
problems in the classical and quantum frameworks. We then focus on their most challenging versions, in-
volving quantum data and/or quantum processing means, and unsupervised, i.e., blind, learning.We consider
the general single-preparation quantum information processing (SIPQIP) framework that we have recently
proposed. It involves methods that can work with a single instance of each (unknown) state, whereas usual
methods are quite cumbersome because they have to very accurately create many copies of each (known)
state. In our previous papers, we applied the SIPQIP approach to only one task [blind quantum process
tomography (BQPT)], but it opens the way to a large range of other types of methods. In this article, we,
therefore, propose various new SIPQIPmethods that efficiently perform tasks related to system identification
(blind Hamiltonian parameter estimation (BHPE), blind quantum channel identification/estimation, and
blind phase estimation), system inversion and state estimation (blind quantum source separation (BQSS),
blind quantum entangled state restoration (BQSR), and blind quantum channel equalization), and classifica-
tion. Numerical tests show that our SIPQIP framework, moreover, yields muchmore accurate estimation than
the usual multiple-preparation approach. Our methods are especially useful in a quantum computer, which
we propose to more briefly call a “quamputer”: BQPT and BHPE simplify the characterization of quamputer
gates; BQSS and BQSR yield quantum gates that may be used to compensate for the nonidealities that alter
states stored in quantum registers and open the way to very general self-adaptive quantum gates.

INDEX TERMS Blind Hamiltonian parameter estimation (BHPE), blind quantum process tomog-
raphy (BQPT), blind quantum source separation (BQSS), blind quantum state restoration (BQSR),
blind/unsupervised quantum machine learning, Heisenberg exchange coupling, quantum classification,
quantum computer (quamputer), single-preparation quantum information processing (SIPQIP), spin-based
qubits.

I. INTRODUCTION
Classical machine learning is currently a booming field [1],
and various quantum machine learning extensions are also
being considered [2]–[5]. The processing tasks that involve
data-driven learning include not only widespread classifica-
tion/clustering [1], [3], [6]–[10] and regression [6], [7], [9]
but also especially: 1) classical system identification [11]–
[13] and its quantum extension, called (nonblind [14]–[23]

or blind [24]–[26]) quantum process tomography (QPT)1; 2)
system inversion and signal restoration; and 3) blind source
separation (BSS), e.g., based on independent component
analysis (ICA) [30]–[36] (with a close connection with prin-
cipal component analysis (PCA) [37]–[39]) and quantum

1Methods based on machine learning with neural networks have also
been proposed for a partly related task, namely, quantum state tomogra-
phy [27]–[29].
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TABLE I Application-Dependent Terminology of Classical and Quantum
Machine Learning Tasks (i.e., Data-Driven Learning/Adaptation Methods)
Related to System Identification, System Inversion, Signal Restoration,
and Source Separation (Apart From Classification/Clustering and
Regression, Addressed in Section V). This Yields Nonblind and Blind (i.e.,
Supervised and Unsupervised) Variants. The Sections of This Article
Mainly Dealing With the Blind (i.e., Unsupervised) Quantum
Single-Preparation Versions of These Methods Are Mentioned

extensions of BSS/ICA [40]–[45]. Moreover, in various ap-
plication fields, these tasks are given different names (see
the summary in Table 1), especially channel identification
or channel estimation [12], (channel) equalization [12], [46],
dereverbation [47], deconvolution [48], deblurring [48], or
cocktail party problem [49].
Beyond their apparent diversity, the above data process-

ing tasks share major features that are analyzed in detail in
Appendix A and that may be summarized as follows. They
involve mappings from input data to output data, and these
mappings are derived from a set of known values of these
input and/or output quantities, depending whether that learn-
ing is performed in the so-called supervised or unsupervised
(i.e., nonblind or blind) modes, whose definitions depend on
the considered task and are also analyzed in Appendix A.
These approaches are developed in order to characterize the
mapping performed by a given natural or artificial system
and/or in order to build an artificial system that performs a
mapping (i.e., a data transformation) suited to the considered
application.
In this article, we investigate a variety of the above-defined

data processing tasks, and we focus on advanced configu-
rations from the following points of view. First, we only
consider a quantum framework in terms of the nature of the
data to be processed and/or of the means used to process
them. Second, we almost only address unsupervised learn-
ing, which is more challenging than supervised learning be-
cause it consists of learning mappings without known values
(but with a few known properties) for the input or output of
that mapping. The overview of classical and quantum ma-
chine learning provided in Appendix A includes references
to the currently quite limited set of works from the litera-
ture, which is dedicated to that quantum and unsupervised

learning framework that we tackle in this article. Moreover,
we here proceed beyond that framework, by adding another
feature: We focus on what we call “single-preparation op-
eration,” as defined in the following. So, to summarize, the
investigations reported in this article fall in the pre-existing
field of unsupervised quantum machine learning, and our
original contribution in this article consists of various pro-
cessing methods based on our single-preparation concept,
to be contrasted with the “multiple-preparation methods”
defined in the following, which are usually employed in the
literature.
More precisely, our single-preparation concept (detailed

in Section II) may be defined as follows. Various quantum
machine learning methods from the literature, e.g., intended
for system identification (i.e., say, QPT) or system inversion,
use multiple-preparation approaches in the sense that, for
each quantum state value that they consider, they estimate
the probabilities of corresponding measurement outcomes
by using the sample frequencies of these outcomes over a
set of measurements, which requires a set of copies of the
considered quantum state, to perform one measurement for
each copy (see details in Appendix B). In contrast, we have
very recently introduced a statistical approach, which yields
much higher flexibility since it avoids the burden of very ac-
curately preparing many ideally identical copies of the same
known state, by allowing one to replace these copies by a set
of states whose values are possibly different and unknown
but only requested to belong to a general known class [26],
[50]. The definition of this single-preparation concept is sum-
marized in Section II-A. This concept is quite general, but,
in [26] and [50], we only detailed its application to a single
data processing task, namely, single-preparation blind (i.e.,
unsupervised) QPT, which is summarized in Appendix C. In
this article, we aim at showing how this single-preparation
processing concept may be applied to a variety of other
quantum information processing (QIP) tasks of interest, thus
yielding a general “single-preparation quantum information
processing” (SIPQIP) framework.
The terminology used in this article deserves the follow-

ing comments. Quantum mechanics (QM) considers that an
isolated quantum system may be either in a pure state—the
result of some preparation—described by a ket with deter-
ministic coefficients (in the Schrödinger picture), or more
generally in a state called a mixed state or a statistical mix-
ture, usually described by a density operator. When devel-
oping our methods, first in the blind quantum source separa-
tion (BQSS) field and then in the blind quantum process to-
mography (BQPT) field, we were led to distinguish between
what we hereafter call a “deterministic-coefficient pure state”
(the usual pure state of QM) and a “random-coefficient pure
state,” described by a ket with random-valued coefficients
when developed over an orthonormal basis of fixed vectors.
The relationships between a random-coefficient pure state
and a mixed state have been analyzed in [51]. Deterministic-
coefficient pure states may also be considered as a specific
subset of random-coefficient pure states, corresponding to
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the case when the random variables that define the ket co-
efficients of random-coefficient pure states reduce to fixed
values, i.e., with “no uncertainty.” In the context of BQSS
or BQPT, depending on the considered method, the system
of interest is initialized either in a deterministic-coefficient
or in a random-coefficient pure state. Most of the methods
proposed in this article are based on qubits initialized with
random-coefficient pure states. Such an initialization is also
called a state preparation hereafter.
The remainder of this article is organized as follows. In

Section II, we define the single-preparation quantum pro-
cessing concept, which is our original, very recent, and gen-
eral feature then used in all the processing methods proposed
for the first time in this article. These methods deal with var-
ious problems related to quantum system identification (see
Section III), quantum system inversion and state restoration
(see Section IV), and quantum classification (see Section V).
Finally, Section VI contains conclusions about the process-
ing tasks addressed in this article and a discussion of potential
extensions of the proposed methods to other QIP problems.

II. SINGLE-PREPARATION QIP
The standard use of quantum state preparation and measure-
ments in QIP [14] was defined in [26] and [50]. In Appendix
B, we summarize its main features required in this article,
and we introduce the corresponding notations, which are
used hereafter. As explained in Appendix B, that approach is
called “multiple-preparation QIP” because it requires many
copies of the same quantum state. This is, therefore, con-
straining, especially in the framework of blind QIP, where
the processing methods should operate with unknown values
of some quantum states (e.g., unknown inputs of the process
to be identified with QPT). Indeed, being able to operate
without requiring known values of quantum states in blind
methods is attractive, but then requesting many copies of
each such state to be available is still a limitation, because it
still requires some form of control of these states. We would
like to avoid that limitation, in order to simplify the practi-
cal operation of the considered methods and to make them
“blinder.” We hereafter provide a solution to this problem.

A. SINGLE-PREPARATION QIP BASED ON PROBABILITY
EXPECTATIONS
The description of “multiple-preparation QIP” in
Appendix B was provided for an arbitrarily selected
deterministic-coefficient pure quantum state. We had
to extend that framework to random-coefficient pure
quantum states when we developed our first class of
BQSS methods (see, e.g., [40]–[42] and [51]) and
associated BQPT methods (see, e.g., [24], [25], and
[51]). The concept of random-coefficient pure states may
be summarized as follows (see [51] for more details).
Whereas the coefficients ck in (27) are fixed parameters
for deterministic-coefficient pure states, they become
complex-valued random variables for random-coefficient

pure states. Therefore, the probabilities P(Ak ) in (28) also
become random variables for random-coefficient pure states.
We here analyze how to estimate the expectations of the

above-defined random variablesP(Ak ), denoted asE{P(Ak )},
which will then be repeatedly used in the original methods
proposed in this article. This may be done either with a
natural extension of the approach defined in Appendix B
(see details in [26] and [50]) or, preferably, by using the
original and more flexible, single-preparation, approach that
we introduced in [26] and [50]. We applied that approach
in detail to a single QIP task (namely, BQPT) in [26] and
[50], whereas, in this article, we show that it also applies to
a wide range of other QIP tasks. For the sake of clarity, we
here first summarize the principle of this single-preparation
approach. In practice, to estimate any expectation E{P(Ak )},
one replaces the expectation operator E{.} by a sample mean,
i.e., essentially by “a sum.” More precisely, one employs the
normalized sum of values that reads

E ′{P(Ak )} =
∑N

n=1 P(Ak, n)

N
(1)

where one uses only a finite number N of states |ψ (n)〉 and
P(Ak, n) are the associated values of the above-defined prob-
ability P(Ak ).

Moreover, in (1), each probability P(Ak, n) is replaced by
a sample frequency, i.e., essentially by “a sum.” More pre-
cisely, one uses a sum of 1 and 0, depending whether the con-
sidered event occurs or not for each trial defined by a prepa-
ration of the considered quantum state and by a measurement
of the associated spin components. This summation is here
again followed by a normalization, by the total number of
trials. Each probability P(Ak, n) in (1) is, thus, replaced by
the following approximate value:

P′(Ak, n,K) = N (Ak, n,K)

K
(2)

whereN (Ak, n,K) is the number of occurrences of event Ak
for the state |ψ (n)〉 when performing measurements for a set
of K copies of that state |ψ (n)〉.

When combining the above two approximations,E{P(Ak )}
is estimated by a (normalized) “sum of sums,” which reads

E ′′{P(Ak )} =
∑N

n=1N (Ak, n,K)

NK
. (3)

This two-level sum may then be reinterpreted as
a single global sum, as follows. In (3), the quantity∑N

n=1N (Ak, n,K) is equal to the number of occurrences of
eventAk for the complete considered set of L = NKmeasure-
ments. That number of occurrences is hereafter denoted as
N (Ak,L). The quantity E ′′{P(Ak )} in (3) is, thus, the relative
frequency of occurrence of event Ak over these L measure-
ments. These measurements may be called “trials,” using
standard probabilistic terms [52]. The quantity E ′′{P(Ak )} in
(3) may also be expressed as

E ′′{P(Ak )} = N (Ak,L)

L
(4)
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=
∑L
�=1 11(Ak, �)

L
(5)

where 11(Ak, �) is the value of the indicator function of event
Ak for trial �. That function is equal to 1 if Ak occurs during
trial �, and 0 otherwise. When using (5), one now considers
the L = NK trials as organized as a single series, with trials
indexed by �. One, thus, fuses the above-defined two levels of
summation into a single one. In that approach, one, therefore,
does not take into account that, in this series, each block
of K consecutive trials uses the same state |ψ (n)〉. In [26]
and [50], we proved that the number K of used copies of
each state |ψ (n)〉 may be freely decreased, and even set to
one, while keeping the same total number L of trials. Setting
K = 1, moreover, yields better performance [26], [50]. One,
thus, obtains the proposed single-preparation framework, re-
ferred to as SIPQIP. Moreover, the proposed estimator (5) of
E{P(Ak )} is attractive because it is asymptotically efficient in
the conditions defined in [26] and [50].
It should be clear that this procedure for estimating

E{P(Ak )}, and hence the resulting SIPQIP methods, can be
freely used with either one instance or several (e.g., many)
copies per state. This SIPQIP terminology, therefore, means
that these methods allow one to use a single instance of
each state. In contrast, so-called multiple-preparation QIP
methods can achieve good performance only by forcing one
to use many state copies.

B. SINGLE-PREPARATION QIP BASED ON SAMPLE
MEANS OF PROBABILITIES
As explained in Section II-A, the framework introduced in
that section is intended for a formalism based on random-
coefficient pure states, which we use in most of this arti-
cle. In addition, we employ the more standard formalism of
deterministic-coefficient pure states in Section V. In that sec-
tion, the considered QIP task eventually boils down to esti-
mating the mean, over a finite number (i.e., the sample mean)
of deterministic-coefficient pure states, of the (hence deter-
ministic) probabilities, respectively, associated with each of
these states. Although this framework is conceptually dif-
ferent from the one of Section II-A, it eventually yields the
same implementation as will now be shown. Here again, each
of the considered probabilities is replaced by (2) in practice
(whereas the corresponding theoretical probability value is
the limit of (2) when K tends to infinity, in the frequen-
tist approach to probabilities). The difference with respect
to Section II-A then appears when combining all these el-
ementary probability estimates (2). This difference occurs
because we here directly aim at handling a finite number of
quantum states, so that we directly use the quantity in (1) and
its estimate (4), instead of first considering the correspond-
ing expectation E{P(Ak )}. The remainder of the analysis of
Section II-A then also applies to the framework considered
here. Our SIPQIP concept, therefore, also applies to this
framework and, thus, here again yields the above-defined
advantages.

III. QIP TASKS RELATED TO SYSTEM IDENTIFICATION
As explained in Section I and Appendix A, the quantum ver-
sion of system identification is often referred to as QPT. It is
of major importance, especially for characterizing the actual
behavior of quantum gates (see, e.g., [14], [17], [18], [20],
[21], and [23]), which are the building blocks of a quantum
computer, which, by the way, we propose to more briefly call
a “quamputer.” We introduced blind and single-preparation
extensions of QPT in our previous papers (see [50] for a par-
tial version and [26] for complete extensions). The practical
versions of these BQPTmethods that we detailed are targeted
at a device composed of two distinguishable [45] qubits im-
plemented as electron spins 1/2, which are internally coupled
according to the cylindrical-symmetry Heisenberg model.
BQPT is the only task related to system identification, for

which we detailed SIPQIP solutions in our previous papers.
In the present section, we introduce new SIPQIP methods
for other QIP tasks also related to system identification.
Since several of these and subsequent methods proposed in
this article build upon our aforementioned single-preparation
BQPT methods, we summarize the major features of the
latter methods in Appendix C, for the sake of readability.

A. BLIND HAMILTONIAN PARAMETER ESTIMATION
(BHPE)
1) PROPOSED METHOD
As shown in [26], the behavior of the device composed of
two Heisenberg-coupled qubits that we mentioned above is
primarily defined by its Hamiltonian. The associated process
matrixM involved in BQPT [see also (13)–(17)] then follows
when considering the evolution of the state of that system
from a fixed time t0 to a fixed time t. Therefore, beyond
the estimation of the process matrix M, a related QIP task
consists of estimating the primary unknown parameters of
the Hamiltonian of the studied device, namely, the principal
values Jxy and Jz of the exchange tensor (similar considera-
tions are also provided in [53]). This type of task (for the pa-
rameters of this or other Hamiltonians) is called Hamiltonian
parameter estimation (HPE) hereafter and also especially
in [53]–[55]. Such parameter estimation problems are also
addressed but often referred to as Hamiltonian identification,
e.g., in [22], [56], [57], and partly [58]. To our knowledge, in
the literature, this task has been studied only in the nonblind
or “controlled” mode and/or using multiple preparations in
approaches that are closely connected with the conventional
QPT [58] or that are based on specific protocols. These pro-
tocols include periodical sampling (hence with a potentially
quite high total number of required state preparations) [22],
[53], [57], use of a closed-loop [56] or optimal feedback [55]
structure, or curve fitting with respect to the experimental
results obtained for various angles of the magnetic field [54].
In contrast, we, hereafter, investigate a single-preparation
and blind (without control) version of this HPE task, based
on measurements along the Oz and Ox axes, which we did
not address in our previous papers. This approach has direct
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connections with the above-defined single-preparation and
blind version of QPT. It yields the same type of attractive
features as for QPT. It avoids the burden of very accurately
and repeatedly preparing predefined states to estimate the
unknown parameters of the considered Hamiltonian. Here
again, we show how to develop such an extension for the
specific class of Hamiltonians corresponding to Heisenberg
coupling with unknown Jxy and Jz. However, this should
again be considered only as an example, which the reader
may then extend to other types of Hamiltonians. Similarly,
various investigations in the literature considered specific
parameterized Hamiltonians, with a limited number of un-
known parameters, as the core of the proposed approaches
or to illustrate them (see, e.g., [22] and [53], [54] and
[56]–[58]). Other early works related to Hamiltonian identi-
fication and associated control tasks, e.g., include [59]–[61].
The BHPEmethod that we propose builds upon the BQPT

algorithm summarized in Appendix C, but it requires subse-
quent developments for the following reason. As explained
in Appendix C, the BQPTmethod is strongly connected with
estimating the quantities exp[i Jxy(t−t0)

�
] and exp[i Jz(t−t0)2� ], us-

ing some types of measurements. The estimation of these
very quantities would define their phase arguments Jxy(t−t0)

�

and Jz(t−t0)
2� , only up to additive integer multiples of 2π ,

which would yield the indeterminacies of this estimation
procedure from the point of view of BHPE. More precisely,
using the data provided by the considered measurements, the
above BQPT method yields the indeterminacies that consist
of the additive constants k̂xyπ and 2̂kzπ of (44) and (46).
It, thus, does not provide a unique solution with respect to
Ĵxyτ1
�

and Ĵzτ2
�

and, hence, Ĵxy and Ĵz. Therefore, it does not
solve the HPE problem considered here (related comments
may be found in [53]). For instance, let us consider the test
conditions defined in Appendix E, including the available
prior knowledge about the range of values to which Jxy is
guaranteed to belong. Then, a single run of our BQPTmethod
yields 32 acceptable determinations of Jxy in that range and
no means to know which of these numerous potential solu-
tions corresponds to the actual value Jxy.

We here aim at developing a BHPE method that takes
advantage of the above BQPT algorithm so as to estimate Ĵxy
and Ĵz without indeterminacies. The trick that we propose
to this end is based on estimating each of the parameters
Jxy and Jz by using two values of the above-defined time
interval (t − t0), instead of one in the fundamental principle
of the above BQPT method. This trick also has relationships
with the practical approach that we used in [26], for BQPT
only: Starting from a basic BQPT method that uses a single
value of (t − t0) and that, thus, yields some indetermina-
cies with respect to M, we then moved to a more advanced
BQPT method, which uses several values of (t − t0) and,
thus, avoids all indeterminacies with respect toM (this is the
method summarized in Appendix C). However, for BQPT,
we, thus, eventually used several values of (t − t0) for the
complete practical procedure but only one value for each part

of that BQPT method, e.g., associated with the phase factor
involving one of the parameters Jxy and Jz (see (44) and (46),
respectively). Instead, for BHPE, we here move to two values
of (t − t0) per parameter Jxy and Jz. These values are, thus,
exploited in a new way that we describe hereafter.
Let us first consider the estimation of Jxy. To this end, we

use the procedure of the first part of the BQPT method of
Appendix C. We apply it twice, with τ1 of Appendix C suc-
cessively replaced by two values denoted as τ11 and τ12. We
combine (41) and (44), with τ1 replaced by τ11 and similarly
with an additional index “1” for the other variables, whose
values are specific to that first application of the procedure.
This yields

Ĵxy1 = Jxy + �

τ11

(
�Ed1 − �̂Ed1 +�kxy1π

)
(6)

with

�kxy1 = k̂xy1 − kxy1. (7)

This shows that the procedure applied with the time interval
τ11 yields a regular 1-D grid of possible estimates Ĵxy1 of Jxy
(associated with the values of k̂xy1), with a step equal to �π

τ11
.

Similarly, the second application of that procedure, with a
time interval τ12, yields

Ĵxy2 = Jxy + �

τ12

(
�Ed2 − �̂Ed2 +�kxy2π

)
(8)

with

�kxy2 = k̂xy2 − kxy2. (9)

The corresponding estimates Ĵxy2 of Jxy, therefore, form a
regular grid with a step equal to �π

τ12
.

We here aim at exploiting the differences between the
above two2 grids of values. As a preliminary stage, let us
consider the ideal case, i.e., when

�̂Ed1 = �Ed1 and �̂Ed2 = �Ed2. (10)

Then, the above two grids share at least one value, equal
to Jxy and obtained when k̂xy1 and k̂xy2 are, respectively, set
to kxy1 and kxy2, which results in �kxy1 = 0 and �kxy2 = 0.
Moreover, let us consider the case when τ12/τ11 is set to an
irrational value. Then, the above grids only share the value
Jxy. This occurs because (6) and (8) show that, when (10)
is met, the values of k̂xy1 and k̂xy2 that are such that the
corresponding estimates Ĵxy1 and Ĵxy2 are equal are those that
meet �kxy1/τ11 = �kxy2/τ12 so that, when �kxy1 and �kxy2
are nonzero, this requires τ12/τ11 to be equal to the rational
value �kxy2/�kxy1. So, when (10) is met and τ12/τ11 is set
to an irrational value, a simple criterion for determining Jxy
is: It is the only value shared by the above two grids. This
behavior has a relationship with the influence of the sampling
period when sampling a sine wave, as, e.g., detailed in [62].
Oppenheim and Schafer [62], thus, also indirectly show that

2This approach might be further extended to more than two grids to make
it more robust.
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the above attractive behavior of our grids is obtained only if
τ12/τ11 is irrational.

The above criterion must, then, be modified when moving
to practical situations, because the available estimates �̂Ed1
and �̂Ed2 are somewhat and independently shifted with re-
spect to the corresponding actual values. Therefore, to esti-
mate Jxy, instead of looking for values of both grids, which
are identical in the ideal case, this here suggests to compare
each value Ĵxy1 of the first grid to each value Ĵxy2 of the second
grid in order to derive the couple of closest values. Moreover,
in practical configurations, one usually has prior knowledge
about a range of values to which Jxy and, hence, its relevant
estimates are guaranteed to belong. This known range may
be exploited in such a way that the values of Ĵxy1 and Ĵxy2,
which are the closest to one another in this range, are also
those which are the closest to Jxy: To this end, one may use
the method detailed in Appendix D. From these two specific

values, an estimate of Jxy is eventually derived as
Ĵxy1 + Ĵxy2

2
.

Similarly, the parameter Jz is estimated by using the proce-
dure of the second part of the BQPT method of Appendix C,
based on (45) and (46). This procedure is here applied twice,
with different values of the parameter τ2 of Appendix C. The
resulting method is described in Appendix D.

2) TEST RESULTS
The physical implementation of qubits is an emerging topic,
which is beyond the scope of this article. We, therefore,
assessed the performance of the proposed BHPE method
by means of numerical tests performed with data derived
from a software simulation of the considered configuration.
Each elementary test consists of the following stages. We
first create a set of N input states |ψ (t0)〉. Each such state
is obtained by randomly drawing its six parameters r j, θ j,
and φ j, with j ∈ {1, 2} and then using (32)–(34) (the state
(32) is defined by the above six parameters, but only the
four parameters r j and φ j − θ j have a physical meaning).
We then transfer these states |ψ (t0)〉 through the quantum
process to be identified (see details in [26]). This uses given
values of the parameters of the considered Hamiltonian and,
hence, of the matrixM of the studied quantum process. This
yields the states |ψ (t )〉. More precisely, we eventually use
simulated measurements of spin components associated with
these states |ψ (t )〉. For measurements along the Oz-axis,
this means that we use the model (35)–(37) with a given
value of the parameter v, corresponding to the above val-
ues of the parameters of the considered Hamiltonian. For
each of the N states |ψ (t0)〉, corresponding to parameter
values (r1, r2,�I ), (35)–(37), thus, yield the corresponding
set of probability values (p1zz, p2zz, p4zz), which are used as
follows. We use K prepared copies of the considered state
|ψ (t0)〉 to simulate K random-valued two-qubit spin compo-
nent measurements along the Oz-axis, drawn with the above
probabilities (p1zz, p2zz, p4zz). We then derive the sample
frequencies of the results of these K measurements, which
are estimates of p1zz, p2zz, and p4zz for the considered state

FIG. 1. NRMSE of estimation of parameter Jxy versus number K of
preparations of each of the N used states.

|ψ (t0)〉 [see (2)]. Then, computing the averages of these
K-preparation estimates over all N source vectors |ψ (t0)〉
yields (NK)-preparation estimates of probability expecta-
tions E{pkzz} [see (3)]. Spin component measurements for
the Ox-axis are handled similarly (with other state prepa-
rations), thus yielding estimates of probability expectations
E{pkxx}. Both types of estimates of probability expectations
are then used by our BHPEmethod defined in Section III-A1
to derive the estimates Ĵxy and Ĵz.

In these tests, the above parameters N and K were varied
as described further in this section, whereas the numerical
values of the other parameters were fixed as explained in
Appendix E. We, thus, used the same values for the param-
eters of the considered Hamiltonian in all tests. For each
considered set of conditions defined by the values of N and
K, we performed 100 above-defined elementary tests, with
different sets of states |ψ (t0)〉, in order to assess the statistical
performance of the considered BHPE method over up to 100
estimations of the same set {Jxy, Jz} of parameter values.
More precisely, all 100 estimates of Jxy were real-valued and
were kept. In contrast, for some test conditions, some esti-
mates of Jz were complex-valued (because they were derived
from trigonometric equations, where some estimates of sines
or cosines may be situated out of the interval [−1, 1]). Since
these false values can actually be detected and rejected in
practice, the estimation performance for Jz was computed
only over its real-valued estimates.
The considered performance criteria are defined as fol-

lows. Separately for each of the parameters Jxy and Jz, we
computed the normalized root-mean-square error (NRMSE)
of that parameter over all considered estimates, defined as
the ratio of its root-mean-square error to its actual (posi-
tive) value. The values of these two performance criteria are
shown in Figs. 1 and 2, where each plot corresponds to a fixed
value of the product NK, i.e., of the complexity of the BHPE
method in terms of the total number of state preparations.
Each plot shows the variations of the considered performance
criterion versus K, hence with N varied accordingly, to keep
the considered fixed value of NK.
Figs. 1 and 2 first show that the proposed BHPE method

is able to operate with a number K of preparations per state
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FIG. 2. NRMSE of estimation of parameter Jz versus number K of
preparations of each of the N used states.

|ψ (t0)〉 decreased down to one, as expected. Moreover, for
a fixed value of NK, the errors decrease when K decreases,
which is expected to be due to the fact that the number N
of different used states, thus, increases, allowing the estima-
tion method to better explore the statistics of the considered
random process. The magnitude of the error reduction from
the highest value of K down to K = 1 is often quite large,
especially for Jxy, that is, between one and two orders of
magnitude even when disregarding the “discontinuity” in
some plots discussed hereafter. This means that the proposed
SIPQIP framework is then of high interest not only in terms of
simplicity of operation of QIP methods, but also with respect
to their accuracy.
Moreover, some of the plots contain the aforementioned

type of discontinuity. For example, in Fig. 1, the NRMSE
of Jxy for the fixed value NK = 100 000 abruptly decreases
from around 2 × 10−2 when K = 200 to around 2 × 10−4

when K = 100. This behavior is normal: It is due to the
intrinsically discontinuous nature of the specific type of esti-
mation algorithm used here for Jxy (the same considerations
apply to Jz, as confirmed by Fig. 2). More precisely, in condi-
tions when Jxy is estimatedwith a low accuracy, the following
phenomenon may occur for one or several runs of the esti-
mation procedure: That procedure may select a false deter-
mination of the estimate of Jxy, that is, a value corresponding
to false (i.e., nonzero) values of �kxy1 in (6) and �kxy2 in
(8). The estimated value of Jxy is, thus, strongly shifted,
because, e.g., the corresponding values on the first grid (6)
are shifted by multiples of the step �π

τ11
, as explained above.

For the numerical values considered here, the corresponding
step for the determinations of Ĵxy/kB is �π

τ11kB
� 0.048 K, as

compared to the actual value of Jxy/kB equal to 0.3 K in these
tests. Therefore, a shift equal to one step, i.e., obtained with
�kxy1 = 1, corresponds to a relative error for Ĵxy/kB, and,
hence, for Ĵxy, around 16% for the considered estimate of
Jxy. The overall error for 100 estimates then depends on the
number of runs, where such false determinations are selected,
but as long as at least one of them is selected, the NRMSE
of Jxy is lower bounded to a significant value. In contrast,
in conditions when Jxy is estimated with a better accuracy,
the correct determination of Jxy is selected for all 100 runs

of the procedure and the NRMSE of Jxy is no longer lower
bounded: It regularly decreases when NK increases or when
K decreases. This is precisely what occurs in the aforemen-
tioned example of Fig. 1 with NK = 100 000: We manually
checked all 100 estimates of Jxy (not shown here), which
proved that one of them corresponds to a false determination
(with a shift equal to a single step in the aforementioned grid)
for K = 200 and no false determination for K = 100. The
main conclusion of this analysis is that, when using enough
state preparations, the proposed procedure avoids false de-
terminations and, thus, has the usual behavior, with perfor-
mance regularly increasing when the conditions (values of
NK and/or K) are improved.

By considering a wide range of test conditions, Figs. 1 and
2 show that a wide range of estimation accuracies may be ob-
tained for Jxy and Jz. Focusing on the most interesting cases,
namely, when K = 1, the NRMSE of Jxy can, e.g., here be
made equal to 2.75 × 10−2 = 2.75% for only N = 104 state
preparations or 8.46 × 10−5 for N = 105 or 2.74 × 10−5 for
N = 106. Similarly, when K = 1, the NRMSE of Jz can, e.g.,
be made equal to 7.66% for N = 105 or 2.17% for N = 106

or 9.07 × 10−5 forN = 107. The “very low”NRMSEvalues,
corresponding to the absence of false determinations and
to the parts “below possible discontinuities” in the plots of
Figs. 1 and 2, are, thus, achieved for N higher than 104 for
Jxy and 106 for Jz.
All above results show that, for given values of K and N,

the parameter Jxy is often estimated much more accurately
than Jz. This is reasonable for the following reason. Jxy is
estimated by using only measurements along the Oz-axis,
which lead to a relatively simple data model and, hence, a
simple estimation procedure, which is likely to yield good es-
timation accuracy. In contrast, Jz is estimated by combining
measurements along theOx andOz axes, and those along the
Ox-axis involve a more complex data model, which yields
an estimation procedure with possibly degraded estimation
accuracy. It should also be noted that we here used a sim-
ple protocol by considering the same values of the set of
parameters {K,N} in the series of state preparations used
for estimating Jxy and Jz. But one might instead use lower
values of the number N of state preparations (preferably with
K = 1) in the series of preparations performed for estimating
Jxy than in those used for Jz, in order to balance the estimation
accuracies achieved for Jxy and Jz while reducing the total
number of state preparations (the BQPT method used here
yields related considerations, which were detailed in [26]).
As explained in Section I, when considering parameter es-

timation tasks such as those related to BHPE, one may move
from the most conventional configurations to the most ad-
vanced ones by considering three stages: One may first move
from the classical to the quantum framework, then from
nonblind to blind configurations, and finally from multiple-
preparation methods to single-preparation ones. If aiming at
comparing the performances of all these types of approaches,
we already compared the last two, i.e., most advanced, ap-
proaches above: In the framework of blind quantummethods,
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the results that we provided forK = 1 correspond to the most
advanced, i.e., single-preparation, approach, whereas those
for K �= 1 (especially K � 1) correspond to the somewhat
more standard, i.e., multiple-preparation, approach, although
it still deals with methods that are advanced in the sense that
they are blind, i.e., unsupervised.
Staying in the quantum framework, the remaining version

of HPE that may be considered is the most conventional,
i.e., nonblind, one. To perform such a comparison in a fair
way, one should, however, keep in mind that blind methods
anyway have the major qualitative advantage of not requiring
known process input states, and that this might be obtained
at the expense of lower accuracy. Having this difference in
mind, a quantitative performance comparison may then be
performed however. The question is then: Which nonblind
HPE method should be used in this comparison? One might
first think of using very generic nonblind HPE methods, i.e.,
methods that would apply to a large class of Hamiltonians,
if any. However, using such a method in the present per-
formance comparison might be considered not to be fair,
because the price to pay for making such methods able to
apply to a wide class of Hamiltonians, thus without requir-
ing (nor using, if any) detailed prior knowledge about the
considered Hamiltonian, is that these generic methods would
most likely be very complex, as compared with the dedicated
BHPE method that we proposed above for the Heisenberg
model. Therefore, a more relevant comparison would be per-
formed by testing a nonblind HPE method dedicated to the
Heisenberg model, preferably with processing stages that are
(nonblind but) similar to those used in our blind method, e.g.,
in terms of the types of spin components that are measured.
To our knowledge, no such methods have been reported in
the literature. However, in our paper [26] dealing with QPT
instead of HPE, in addition to putting the emphasis on blind
methods, we also introduced a nonblind QPT method ded-
icated to the process resulting from the Heisenberg Hamil-
tonian. We then compared the performance of our blind and
nonblind QPT methods, thus showing that the blind one is
more attractive. As for HPE methods, these results from [26]
directly imply that our blind HPE method described above is
more attractive than its nonblind counterpart, because both
methods estimate the parameters Jxy and Jz that then define
the process estimated by QPT methods, so that the perfor-
mances of HPE and QPT methods are directly connected.
For a more quantitative comparison, the reader is, therefore,
referred to our results for QPT in [26].

B. CHANNEL ESTIMATION AND PHASE ESTIMATION
In Section I and Appendix A, we explained that, in the classi-
cal framework, the same information processing task is given
different names, depending on the considered application
field. In particular, the system identification task in the field
of automatic control corresponds to the channel estimation
task in the field of communications. The same phenomenon
occurs in the quantum framework. In particular, QPT, and
hence our blind (and possibly single-preparation) extension

addressed in Appendix C, is often stated to be the quantum
counterpart of classical system identification (see, e.g., [14,
p. 389]). QPT applies to general quantum systems, not neces-
sarily defined by a small set of parameters, and could, there-
fore, be called nonparametric system identification. But the
HPE task, and hence our blind (and single-preparation) ex-
tension introduced in Section III-A, is also closely connected
with system identification, and more precisely with paramet-
ric system identification. This results from the fact that it es-
timates a small set of parameters (e.g., the principal values of
the exchange tensor in the case of Heisenberg coupling that
was considered above as an example), and these parameters
then completely define the behavior of that system, including
the resulting process matrix in the associated QPT task.
Moreover, although a different terminology is used for

other QIP tasks, some of these tasks actually address the
same type of problems as above. This first concerns the quan-
tum channel estimation task: As explained, e.g., in [63], a
map from the density operator associated with a quantum
state to another density operator is often called a quantum
channel, as a reference to classical communication scenarios.
The identification of such a map may, therefore, be called
quantum channel estimation and is closely linked to the QPT
problem that we considered above, possibly in its blind and
single-preparation form. Similarly, a standard QIP procedure
is phase estimation. In [14, p. 221], it is defined as the esti-
mation of the phase 	 of an eigenvalue e2π i	 of a unitary
operator. This task is, therefore, related as follows to both
investigations reported in Appendix C and Section III-A.
First, as explained in Appendix C, the considered (B)QPT
problem essentially consists of estimating the parameters
exp[i Jxy(t−t0)

�
] and exp[i Jz(t−t0)2� ] and, hence, the exponential

terms of the diagonal representation D of the considered
operator [see (13)–(17)]. This is, therefore, equivalent to es-
timating the phases of these exponentials, up to a multiple
of 2π . Moreover, the method introduced in Section III-A is
directly connected with removing the additive indeterminacy
due to this multiple of 2π .
This discussion shows that the blind and single-

preparation extensions that we proposed above in this
article for QIP tasks related to system identification are
expected to be of importance not only for the scientific
communities focused on QPT and HPE, but also for quantum
scientists who investigate a variety of related problems, such
as quantum channel estimation and phase estimation.
Moreover, in this section, we restricted ourselves to
problems related to the characterization (i.e., identification)
of the considered quantum process itself. As explained in
Section I and Appendix A, related QIP problems consist of
building processing systems, with quantum and/or classical
means, which essentially implement the inverse of an
initially unknown quantum process. This corresponds to
the quantum source separation (QSS) and related tasks,
which we investigate in the next section, still aiming
at extending the considered configurations to blind and
single-preparation ones.
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IV. QIP TASKS RELATED TO SYSTEM INVERSION AND
STATE RESTORATION
A. BLIND QUANTUM SOURCE SEPARATION
A rather general version of the BQSS problem addressed here
may be defined as follows. A set of qubits with indices j
are independently prepared with states |ψ j〉. The state |ψ〉
of the system composed of these qubits is, thus, equal to
the tensor product of the above single-qubit states |ψ j〉. This
state |ψ〉 is then transformed, i.e., mapped to another state
|ψ ′〉 = M(|ψ〉), where the mapping functionM, e.g., corre-
sponds to temporal evolution with coupling between qubits,
as detailed in the following. In the blind configuration, the
user is given a set of transformed states |ψ ′〉 but does not
know the corresponding set of original states |ψ〉, and hence
the source states |ψ j〉, nor the mapping functionM. The user
then eventually wants to restore the information contained in
(at least part of) the source states. This information is ob-
tained either in quantum form, by deriving estimates of these
states |ψ j〉, or in classical form, typically by eventually using
a classical computer to derive estimates of the coefficients of
the states |ψ j〉 in a given basis.
This generic problem is connected with various applica-

tion fields. The first one, on which we focus hereafter, is
related to the operation of quamputers. In such a future quam-
puter, data will be stored in registers of qubits for subsequent
use. Due to nonidealities of the physical implementation of
such a register, the qubits that form it may have undesired
coupling with one another, such as Heisenberg coupling, e.g.,
if considering quamputer implementations related to spin-
tronics. As time goes on, the register state will, therefore,
evolve in a complicated way due to this undesired qubit cou-
pling, thus making the final value of that register state not
directly usable in the target quantum algorithm executed on
that quamputer. BQSS may then be used as a preprocessing
stage, to restore the initial register state, before providing it
to the target application of that quamputer.
To analyze this BQSS problem in more detail, we here-

after focus on a basic case, from which the reader may then
extend this analysis to other configurations. In the considered
case, the device (e.g., the qubit register) is restricted to two
qubits, implemented as electron spins 1/2, and the unde-
sired coupling that exists between them is again based on
the cylindrical-symmetry Heisenberg model detailed in [26].
Using the notations of [26], the initial state |ψ (t0)〉 of the
device (e.g., the state stored at time t0 in the register), which
corresponds to state |ψ〉 in the above general definition of
BQSS, may be represented by the column vector C+(t0) of
the components of |ψ (t0)〉 in the standard basis, defined by

C+(t0) = [α1α2, α1β2, β1α2, β1β2]
T (11)

where T stands for transpose. Similarly, the final state |ψ (t )〉
of the device (e.g., the only state available to the user, at a
later time t, in the register), which corresponds to state |ψ ′〉
in the above general definition of BQSS, may be represented
by the column vector C+(t ) of the components of |ψ (t )〉 in
the standard basis. The effect of coupling is then represented

by the relationship

C+(t ) = MC+(t0) (12)

where M is a unitary matrix, which corresponds to the con-
sidered Heisenberg process and that may, therefore, be de-
fined as follows [26], [41]:

M = QDQ−1 = QDQ (13)

with

Q = Q−1 =

⎡
⎢⎢⎢⎣
1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2
0

0 0 0 1

⎤
⎥⎥⎥⎦ (14)

and D equal to⎡
⎢⎢⎣
e−iω1,1(t−t0) 0 0 0

0 e−iω1,0(t−t0) 0 0
0 0 e−iω0,0(t−t0) 0
0 0 0 e−iω1,−1(t−t0)

⎤
⎥⎥⎦ .

(15)

The four real (angular) frequencies ω1,1 to ω1,−1 in (15)
depend on the physical setup. In [41], it was shown that they
read

ω1,1 = 1

�

[
GB− Jz

2

]

ω1,0 = 1

�

[
−Jxy + Jz

2

]
(16)

ω0,0 = 1

�

[
Jxy + Jz

2

]

ω1,−1 = 1

�

[
−GB− Jz

2

]
. (17)

The first class of BQSS methods that we previously devel-
oped for handling this configuration (see especially [40]–
[42]) is a quantum extension of classical ICA. This class
is the “least quantum” one, in the sense that, starting from
the available quantum states |ψ (t )〉, it first converts them
into classical-form data (probability estimates) by means of
measurements and then processes the latter data with only
classical means. It, therefore, significantly differs from the
new class of methods that we aim at introducing in this article
since that new class mainly uses quantum processing means.
We, therefore, skip the details of the aforementioned first
class and refer the reader to, e.g., [40]–[42]. A major limita-
tion of that class of methods should, however, be mentioned:
It requires each state |ψ (t0)〉 to be prepared many times,
both in the so-called adaptation and inversion phases, whose
definitions are detailed further for the new class of methods
proposed in this article and may be summarized as follows
(this also corresponds to the general features that we provide
in Appendix A for classical and quantum machine learning
methods). The adaptation (or training) phase is first used
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FIG. 3. Global (i.e., mixing + separating) configuration, with a feedback
separating system that includes a quantum-processing inverting block
and a classical-processing adapting block. Each quantum state |�〉 is
used only once (no cloning): See [45].

to select an adequate behavior for the proposed separating
system, i.e., to learn the (direct and) inverse mapping. The
inversion phase then corresponds to the final, useful, opera-
tion of that system, after learning. The aforementioned need
for many copies of the states |ψ (t0)〉 makes our first class of
BQSS methods “less blind” because, although these states
|ψ (t0)〉 are allowed to be unknown from the point of view of
the adaptation procedure, some control is required so that the
same value is repeatedly prepared for each of these states.
A solution to the above problem was introduced, but only

for the inversion phase, in our second class of BQSS meth-
ods, especially described in [43]–[45]. We now detail it since
we take advantage of it in the new, fully SIPQIP, methods that
we introduce further in this article for BQSS. The complete
operation of that second class of BQSS methods again con-
sists of the aforementioned two successive phases. We here
first describe the inversion phase. During that phase, each
state |ψ (t )〉 available as the input of the separating system
is directly used in quantum form, i.e., without performing
measurements, so that this separating system outputs a quan-
tum state |	〉 that should ideally be equal to the multiqubit
source state |ψ (t0)〉 that one aims at restoring. That part of the
separating system, called the inverting block, is thus a global
quantum gate, which corresponds to the upper right box in
Fig. 3 (that is, it consists of the cascade of (sub)gates Q, D̃,
andQ, as justified hereafter). This inverting block, thus, only
requires a single instance of its input state |ψ (t )〉 to derive its
corresponding output state |	〉.

This inverting block is designed as follows. We exploit the
fact that, although the actual value of the mixing matrixM of
(12) is not known in the blind configuration, one knows that
it belongs to the class of unitary matrices defined by (13),
where Q = Q−1 is a known, fixed, matrix and D is a diag-
onal matrix, whose diagonal entries have unit modulus (and
a structure that is disregarded in this approach), as shown
by (14) and (15). We, therefore, use an inverting block of
the separating system, which is adaptive (or tunable), i.e.,
such that some of the values of the parameters that define

its behavior may be modified. More precisely, this block
is designed so that it is able to implement the inverse of
any transform in the above-defined class, depending on its
parameter values. Its operation is, therefore, represented by
a unitary matrix defined as

U = QD̃Q (18)

with

D̃ =

⎡
⎢⎢⎣
eiγ1 0 0 0
0 eiγ2 0 0
0 0 eiγ3 0
0 0 0 eiγ4

⎤
⎥⎥⎦ (19)

where γ1 to γ4 are free real-valued parameters. This inverting
block is, thus, the cascade of three simpler quantum gates, as
shown in the upper right box of Fig. 3. The implementation
of each gate corresponding to the matrixQ, as a combination
of even simpler gates, was detailed in [41]. Moreover, the
adaptive gate corresponding to (19) was introduced in [45],
and its implementation was also detailed there. In [45] and in
the new use of that gate introduced further in this article, the
values of the parameters γ1 to γ4 are controlled by classical-
form signals. These parameters may, e.g., be independent,
known but arbitrary, increasing, functions of control volt-
ages. Such control voltages are, e.g., used in the real device
described in [64].
Before the above-defined inversion phase, the complete

operation of that second class of BQSS methods, therefore,
requires an adaptation phase, during which a set of states
|ψ (t )〉 is used to adapt the matrix D̃, i.e., to learn the inverse
mapping. The method used to this end in [45] is based on
the probabilities of measurements associated with a set of
output states |	〉 of the inverting block of Fig. 3. These
probabilities are essentially used to measure the degree of
entanglement of these states |	〉. The matrix D̃ is adapted so
as to essentially make these states |	〉 unentangled so that
this type of methods performs an “unentangled component
analysis” [45], as opposed to the aforementioned classical
and quantum PCA and ICA. The complete structure of the
resulting separating system is shown in Fig. 3. Unlike in the
inversion phase, during the adaptation phase, this structure
requires many copies of each of its input states |ψ (t )〉, in or-
der to derive the corresponding copies of the output states |	〉
and, hence, the corresponding probability estimates based on
sample frequencies of measurement outcomes. This second
class of BQSS methods is, thus, “more quantum” than the
first one, first because it uses quantum processing means in
the inverting block, and second because it is based on the
quantum concept of entanglement, which has no classical
counterpart.
In this article, we introduce a third and new class of BQSS

methods. This new class proceeds further than the previous
two, by using the SIPQIP framework in all the operation of
the separating system, i.e., by using a single preparation of
each state also during the adaptation phase. To this end, we
exploit the structure of thematrixD, defined in (15)–(17).We
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FIG. 4. Global (i.e., mixing + separating) configuration, with a
feedforward separating system that includes a quantum-processing
inverting block and a classical-processing adapting block. Each quantum
state |ψ(t )〉 is used only once (no cloning): See text.

take into account the fact that the matrix D̃ of the separating
system should ideally be set to the inverse ofD. Therefore, by
replacing Jxy and Jz by their estimates Ĵxy and Ĵz in (15)–(17),
we set D̃ as in (19), but here with the following structure for
the phases of its diagonal elements:

γ1 = GBτ3
�

− Ĵzτ3
2�

γ2 = − Ĵxyτ3
�

+ Ĵzτ3
2�

(20)

γ3 = Ĵxyτ3
�

+ Ĵzτ3
2�

γ4 = − GBτ3
�

− Ĵzτ3
2�

(21)

where τ3 is the value of the time interval (t − t0) used in
the inversion phase of the proposed BQSS method. In this
new BQSS method, we take advantage of the BQPT method
that we described in Appendix C. When applying the latter
method with time intervals (t − t0) set according to (29) with
a freely selected value of τ1, we get (44) and (46), which
shows that all the quantities in (20) and (21) required to
assign γ1 to γ4 are known or can be estimated. The adaptation
phase of the proposed BQSS method, therefore, consists of
the following three steps. One first applies the above BQPT
method. One then uses (20) and (21) to derive the selected
values of γ1 to γ4. One finally uses the supposedly known
correspondence function, which makes it possible to convert
these values of γ1 to γ4 into the practical control signals (e.g.,
voltages) of the gates implementing the matrix D̃, which
make these gates operate with these desired values of γ1 to
γ4. The resulting global configuration is shown in Fig. 4.
Each state |ψ (t )〉 is, thus, used only once (see also [45] about
the no-cloning theorem). During the adaptation phase, these
states are sent to the part of the system, which performs mea-
surements and BQPT (dashed line and lower part of Fig. 4);

then, during the inversion phase, they are sent to the inverting
block (dash-dotted line and upper right part of Fig. 4).
Thanks to the properties of the BQPT method reused here

as a building block of the proposed BQSSmethod, the output
of the latter method does not depend on the values used in
(44) and (46) for the integers k̂xy and k̂z. This may be seen
by inserting (44)–(46) in (20) and (21) and then in (19), with
(29), which shows that the terms of (44)–(46) that include k̂xy
and k̂z yield terms in (20) and (21) that are integer multiples
of 2π , and that, therefore, have no influence on the value of
D̃.

B. BLIND QUANTUM (ENTANGLED) STATE RESTORATION
In the classical framework, the concept of BSS intrinsically
refers to situations involving several (unknown) source sig-
nals, created by several “sources” that may be some kinds of
“objects.” Such a situation may be mathematically described
by gathering all the values of these source signals, e.g., at
a given time, as the elements of an overall source vector.
In our quantum extensions of this classical BSS, we started
from a similar situation, involving several objects, such as
qubits implemented as spins 1/2, and we first independently
considered the “signal value,” i.e., the initial quantum state
|ψ j(t0)〉, of each of them [see (30)]. We then “gathered”
these individual states by defining the state of the complete
system [see (31)] as the tensor product of the states |ψ j(t0)〉,
somehow as the quantum counterpart of the above vector
of classical signal values. However, the quantum framework
opens the way to much richer situations. This is due to the
fact that the possible states of a complete system are not
restricted to the tensor products of the individual states of
independent parts of this system: They also include entan-
gled states. An extension of the above BQSS problem is,
therefore, blind quantum state restoration (BQSR), aiming at
restoring a possibly entangled deterministic-coefficient pure
state of a multiqubit system, starting from an altered version
of it. One, thus, conceptually considers a single arbitrary
multiqubit source state, instead of several single-qubit source
states. In particular, this includes restoring the possibly en-
tangled initial state |ψ (t0)〉 of a multiqubit system, from the
state |ψ (t )〉 of that system at a later time.
We here investigate this extension of BQSS to possibly

entangled source states, by considering the use of such states
in the second phase of the operation of this system, i.e., in the
above-defined inversion phase, after the transform performed
by this system has been fixed by means of the adaptation
phase. We claim that the BQSS system defined in Fig. 4 is
directly able to perform the considered BQSR task, since
it operates as follows. An unknown state |ψ (t0)〉 is created
and then modified by an operator represented by the matrix
M, thus yielding the state |ψ (t )〉. The latter state is the state
processed by the new separating system that we designed
in Section IV-A. The transform performed by this system is
represented by the matrixU = QD̃Q [see (18)]. But, during
the adaptation phase of that separating system that occurred
before this inversion phase,U was made equal to the inverse
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of M (up to estimation errors) by the proposed adaptation
method. Therefore, when applying that separating transform
U to |ψ (t )〉, the output state of the separating system be-
comes equal to |ψ (t0)〉 (up to estimation errors), and this
analysis does not depend at all whether |ψ (t0)〉 is entangled
or not. In particular, if the proposed BQSS (and hence BQSR)
method is used to restore the initial state of a qubit register by
compensating for the undesired coupling between its qubits,
as discussed above, this means that this method also applies
when an entangled state is stored in this qubit register.

C. BLIND QUANTUM CHANNEL EQUALIZATION
As discussed in Sections I and III-B and in Appendix A, in
the classical and quantum frameworks, the same information
processing task is given different names depending on the
considered application field. This is also true for the generic
QIP problem, related to system inversion, that we initially de-
fined for nonentangled states at the beginning of Section IV-
A, that we then extended to possibly entangled states in Sec-
tion IV-B, and that may be summarized as follows: A user is
given a set of transformed states |ψ ′〉 = M(|ψ〉), but does
not know the original states |ψ〉, nor the mapping function
M; the user wants to restore the original states |ψ〉. Whereas
we illustrated that QIP task with one type of application in
Sections IV-A and IV-B, we anticipate that it will have vari-
ous other applications as the quite general field of QIP keeps
on growing. In particular, this problem too may be rephrased
as a quantum communication scenario. The above user is
then the receiver, who only knows the received states |ψ ′〉,
which have been altered by the channelM.Without knowing
that channel, the receiver aims at restoring the emitted states
|ψ〉 that he does not know either (or the information, in
classical form, contained in these states |ψ〉). This, therefore,
corresponds to the blind quantum channel equalization prob-
lem. The generic methods that we proposed in Sections IV-A
and B also allow one to solve this problem,moreover with the
advantages of the proposed SIPQIP framework.

V. CONTRIBUTING TO QUANTUM CLASSIFICATION
We now come back to the other main aspect of machine
learning discussed in Appendix A, namely, classification.
In the classical framework, many classification algorithms
receive data that consist of vectors, which contain features
that characterize the “objects” to be classified [65]. These
algorithms heavily rely on computing the dot (i.e., scalar or
inner) product vTj vk of two column vectors v j and vk, or on
computing the distance ||v j − vk|| between the associated
two data points [65]. These two quantities are, moreover,
directly connected, since

||v j − vk||2 = ||v j||2 + ||vk||2 − 2vTj vk. (22)

In particular, for any unit-norm vectors, this yields

||v j − vk||2 = 2(1 − vTj vk ). (23)

Using the signal/data processing terminology, vTj vk is also
the basic, i.e., noncentered and nonnormalized, correlation

parameter of the data vectors v j and vk, whereas their non-
centered correlation coefficient (also called the cosine simi-
larity [65]) is

ρ(v j, vk ) =
vTj vk

||v j||.||vk|| . (24)

These two correlation parameters coincide for unit-norm
vectors. The correlation coefficient ρ(v j, vk ) is, e.g., widely
used for data characterization and classification by the Earth
observation (i.e., remote sensing) community. Each of the
vectors v j and vk then typically defines a spectrum, which
consists of the light reflectance values of a material at a
set of “frequencies” (in fact, narrow spectral bands) [34].
More precisely, one then computes the arccosine of ρ(v j, vk ),
which is equal to the angle between v j and vk [65] and is,
therefore, called the “spectral anglemapper” (SAM) between
these vectors [66]. A low value of that SAM corresponds to
a high value of the “spectral similarity” of the considered
materials, i.e., of their similarity in terms of the shape of the
variations of their reflectance functions with respect to fre-
quency (where this shape does not refer to their global scale:
That scale has no influence on (24) and, hence, on SAM).
Similar approaches are used in the field of Astrophysics,
with spectral data vectors that consist of luminance values
(i.e., direct light flux from the observed object), instead of
reflectance.
Let us now consider the situation when data that are ini-

tially in classical form are to be classified by using a quantum
classifier, in order to achieve higher classification speed [10],
[65], [67]. This first requires one to transform the initial
classical data into quantum states. To this end, each classical-
form vector is stored in a qubit register with index r, which
consists of Q qubits. Each individual qubit is, thus, indexed
by r and q ∈ {1, . . . ,Q}. Its state space is denoted as Erq, and
a basis of this space is composed of the two kets |krq〉rq with
krq ∈ {0, 1}. All deterministic-coefficient pure states of the
qubit register r then belong to the space Er1 ⊗ . . . ErQ and
read

|ψr〉 =
∑
S (kr• )

crkr1...krQ |kr1〉r1 ⊗ · · · ⊗ |krQ〉rQ (25)

where ⊗ is the tensor product and the compact notation
S (kr•) means the set of all values of the ordered set of Q
integers krq corresponding to the fixed value r and to all val-
ues q ∈ {1, . . . ,Q}, again with krq ∈ {0, 1}. Besides, the 2Q
complex-valued coefficients crkr1...krQ are indexed by the in-
dex r of the considered register and by all integers krq, which
define to which basis state each coefficient crkr1...krQ corre-
sponds. These coefficients are such that |ψr〉 has unit norm.
Let us then consider a classical-form complex-valued unit-
norm vector v j with dimension 2Q (or lower: zero-valued
components are then added to v j to reach 2Q components).
This vector may be stored in a ket |ψr〉 defined by (25), by
setting the coefficients crkr1...krQ of |ψr〉, respectively, to the
values of the components of v j (a common phase reference
may be used for all considered kets). If the norm of v j is not
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equal to one, it may be handled separately, while v j/||v j|| is
stored in |ψr〉, as stated in [67].
The above-defined kets (25) may then be employed in

quantum classifiers, which often use: 1) the dot product
〈ψ1|ψ2〉 of such kets; 2) the squared modulus of this dot
product, which is called the overlap of these kets (see [65,
p. 120], [68], or [69]); or 3) the distance between the points
associated with such kets, as, e.g., discussed in [10], [65],
and [67]. The dot product formally associated with two states
(25), respectively, stored in registers with indices r = 1 and
r = 2 is defined as if these kets belonged to the same state
space. This dot product, therefore, reads

〈ψ1|ψ2〉 =
∑
S (kr• )

c∗1kr1...krQc2kr1...krQ (26)

where ∗ stands for complex conjugate. Some quantum cir-
cuits were proposed in the literature for computing the cor-
responding state overlap. A widely used approach, called
the swap test, was proposed in [70] to essentially test the
equality of two states. The quantity used to this end is the
probability of an outcome of a measurement performed at
the output of the considered circuit. This quantity is equal
to 0 if the considered states are equal and essentially equal
to 1/2 otherwise (more precisely, it is higher than a bound
close to 1/2 if the states are far enough from one another).
Beyond this binary decision, this probability is a continuous-
valued quantity, which may be shown to be linearly related
to the overlap of the considered quantum states (part of the
corresponding calculations are provided in [65] and [70]).
Another approach for computing the overlap of quantum
states is based on the circuit of [68, Fig. 6(B)]. The behavior
of that circuit is only briefly defined in [68]. That article
outlines how to express the overlap associated with the den-
sity operators of the two multiqubit inputs of the consid-
ered circuit as the result of classical postprocessing applied
to the results of measurements performed at the output of
that circuit. Our own calculations (to be detailed elsewhere),
performed for deterministic-coefficient pure input states |ψ1〉
and |ψ2〉, confirm that the squared modulus of (26) may be
expressed as a (multistage) linear combination of probabil-
ities of outcomes of measurements performed at the output
of that quantum circuit. In Appendix F, we show how the
above quantum circuits may be further exploited in order
to compute dot products 〈ψ1|ψ2〉, not only their (squared)
moduli.
The above dot products or overlaps may be used in var-

ious ways in the general framework of quantum classifica-
tion. More specifically, we, hereafter, show how enhanced
approaches may be developed by combining quantum clas-
sification principles that use dot products or overlaps with
our SIPQIP, i.e., single-preparation, concept. We illustrate
this approach with a first original contribution to single-
preparation quantum classification, which will be extended
in future papers. In this contribution, we focus on the second
phase of the operation of a classifier, that is on the “resolution
phase” defined in Appendix A, which takes place after the

(unsupervised or supervised) learning phase. This is, by the
way, similar to what we did for BQSS, by first applying
our SIPQIP concept to the second phase of operation, i.e.,
the inversion phase, before we extended it to the first, i.e.,
adaptation, phase, as explained in Section IV-A.
In the proposed approach, we consider the situation when

the classical-form vectors to be classified are characterized
by their shapes, not their magnitudes, e.g., as in the Earth
observation and Astrophysics applications outlined at the be-
ginning of the present section. Therefore, these vectors may
initially be rescaled to have unit norm, so that this norm is not
an issue when transforming these classical vectors into quan-
tum states. We, hereafter, address the general situation when
the considered classification problem involves C classes, in-
dexed by c, with c ∈ {1, . . . ,C}. Moreover, we consider the
usual case when the classical-form data vectors, and, hence,
the associated dot products of kets, are real-valued.
To describe how classification is here performed, let us

first consider the nonrealistic situation when each class with
index c is initially defined by a single known classical-form
vector vc1 and, hence, a single associated quantum state
|ψc1〉. We consider the analysis of a new “object” of the con-
sidered application (e.g., the spectrum of an unknown mate-
rial in the above Earth observation or Astrophysics applica-
tions), represented by a quantum state |φ〉. A basic method
for classifying that object consists of separately estimating
its dot product 〈φ|ψc1〉 with each of the states |ψc1〉 and in
deciding that this object belongs to the class that yields the
highest estimated value of the dot product 〈φ|ψc1〉, i.e., the
best similarity with |φ〉. This approach may be simplified as
follows in the case when the components of the considered
classical-form data vectors are nonnegative, which, e.g., ap-
plies to the reflectance or luminance values that compose
the aforementioned spectra. In that case, the square root of
the overlap |〈φ|ψc1〉|2 coincides with the corresponding dot
product 〈φ|ψc1〉. This overlap is, therefore, sufficient for
measuring similarity in that case (as opposed to the sign
indeterminacy that it yields with respect to the dot product
for possibly negative data). The above classifier then operates
equivalently by deciding that the considered object belongs
to the class that yields the highest estimated value of overlap
|〈φ|ψc1〉|2. This is attractive because an overlap is computed
more easily that the corresponding dot product, as shown in
Appendix F.
An improved variant of the above classification method

employs a user-defined threshold in addition, in order to
achieve the rejection capability defined in Appendix A. In
this approach, if the highest of the above dot products (or
overlaps, in the simplified version) remains lower than this
threshold, the considered object is “rejected.” This means
that the classifier then decides that it is not able to classify that
object because it is not similar enough to any of the classes
of objects that are known in the considered problem.
All these classifiers are based on computing overlaps, be-

cause their decisions are either directly based on such over-
laps or based on dot products, which may be derived from
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overlaps, as explained in Appendix F. Each of these overlaps,
such as |〈φ|ψc1〉|2, is typically estimated by using the sample
frequency estimate(s) of one or several types of probabilities
associated with overlap in the quantum circuits that were
defined above for estimating overlaps. This then means that,
for each class c, many copies (typically 105, as explained in
Appendix B) of the state |ψc1〉 must be prepared to estimate
these probabilities.
Now, consider the realistic version of the above problem,

when each class with index c is initially defined by a full set
of classical-form vectors vc j, with a vector index j ranging
from 1 to a maximum value that may depend on the class.
These vectors are then transformed into quantum states |ψc j〉.
The above classifiers may be extended as follows for this
situation, focusing on their version that directly bases its
decisions on overlaps, for the sake of clarity. For each class,
one may first compute a full set of (estimates of) overlaps
|〈φ|ψc j〉|2 and these quantities should then be reduced to a
single parameter that characterizes the overall similarity of
the considered class with |φ〉. A natural parameter that may
be used to this end is the mean of all overlaps |〈φ|ψc j〉|2
associated with the considered class. Here again, in practice,
only an estimate of this mean overlap is obtained, by using
various quantum state preparations and measurements. How-
ever, unlike in the above nonrealistic scenario, this may here
be achieved with two quite different approaches. The first
approach, which might be considered as the most natural one
if disregarding our previous contributions in this article, con-
sists of separately estimating each of the overlaps |〈φ|ψc j〉|2
as above, therefore typically preparing 105 copies of each
state |ψc j〉 (and of |φ〉), and then computing (on a classical
computer) the mean of these estimated overlaps. This is an
application of the standard, multiple-preparation, approach
defined in Appendix B. However, we stress that we here only
aim at computing themean of this finite set of overlaps so that
we only need to estimate the mean(s) of the corresponding
set(s) of probabilities (as explained above, this involves one
or several types of probabilities, depending on the considered
quantum circuit). In Section II-B, we showed that this may
be performed much more efficiently by using our SIPQIP
framework. This heremeans decreasing the number of prepa-
rations per state |ψc j〉 and taking advantage of the averaging
of measurement results that is then performed over all these
states (thus still requesting one copy of |φ〉 per measure-
ment). This number of preparations per state may even be
decreased down to one if enough different states |ψc j〉 are
available to reach a high enough estimation accuracy: In [26]
and Section III-A2 of the present article, we analyzed the
numerical performance achieved by this SIPQIP approach
for the BQPT and BHPE tasks, and we plan to investigate it
for classification in future papers. In the literature, quantum
classifiers have especially been considered for big-data, i.e.,
large-scale, applications [10], [67]. In such applications, the
aforementioned large number of states |ψc j〉 will actually be
available and our SIPQIP framework will take full advantage
of it (besides, it can also attractively operate with a somewhat

lower total number of states |ψc j〉 and a number of prepara-
tions per state somewhat higher than one).

VI. CONCLUSION
The term “machine learning” especially refers to algorithms
(and associated systems) that derive mappings, i.e., input–
output transforms, by using numerical data that provide in-
formation about the transform, which is of interest in the
considered application. The data processing tasks to be per-
formed in these applications not only include classification
and regression but also system identification, system inver-
sion, and input signal restoration (or source separation when
considering several signals). Whereas these problems have
been and are still widely investigated in a purely classical
framework, part of them are currently being extended to con-
figurations, which involve quantum-form data and/or quan-
tum processing means. Within this general quantum frame-
work, we here tackled the most challenging configurations
from two points of view. First, almost all this article is de-
voted to unsupervised, i.e., blind, configurations, which have
not been addressed in the literature for most of the tasks
considered here. Unsupervised learning is very attractive be-
cause, as detailed in Section I and Appendix A, it avoids the
need for known “reference values” (e.g., input values for sys-
tem identification) to learn the required mappings. Second,
we here mainly aim at extending a variety of aspects of quan-
tum machine learning by introducing new algorithms, which
can operate with only one instance of each prepared state
(where the term “preparation” is used for both deterministic-
coefficient and random-coefficient pure states, as explained
in Section I). This approach first avoids the burden of having
to prepare many ideally identical copies of each used state
in order to compute statistical parameters separately for each
such state. Moreover, this approach yields much better per-
formance than the multiple-preparation approach for a given
total number of state preparations, as shown for BQPT in
our very recent paper [26] and confirmed here by our new
results for BHPE. Our original single-preparation approach
also compares favorably with the multiple-preparation ap-
proach from the following point of view, in the framework
of unsupervised learning. Using the multiple-preparation ap-
proach in that framework means allowing the “reference val-
ues” to be unknown but still requesting that the same (un-
known) reference value be prepared many times. This still
requires significant control in the considered quantum learn-
ing procedure so that this procedure is “less unsupervised.”
Our single-preparation approach avoids this problem and is,
therefore, attractive.
The above concepts, thus, result in a general SIPQIP

framework. Whereas our recent papers [26], [50] introduced
that single-preparation concept itself but only showed how
to apply it to a single task (BQPT), our new contributions in
this article consist of describing how it can be attractively
used to perform a large range of other QIP tasks: BHPE,
blind quantum channel identification/estimation, blind phase
estimation, BQSS, blind quantum entangled state restoration,
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and blind quantum channel equalization, classification. We,
moreover, provide a quantitative evaluation of the resulting
numerical performance. For the tasks related to the blind,
i.e., unsupervised, version of system identification (includ-
ing HPE), system inversion, and signal restoration (includ-
ing source separation), we applied the proposed approach to
a concrete example, related to spintronics, which involves
Heisenberg coupling between two qubits. Starting from the
explicit algorithms and system architectures that we detailed
for this configuration, the reader may then adapt them to
other types of processes. We will also extend this approach
to other processes in the future. Similarly, we provided a first
illustration of the application of this SIPQIP framework to
quantum classification, and we plan to report extensions of
this approach in future papers.
Moreover, when aiming at compensating for undesired

Heisenberg coupling between qubits, we defined two quan-
tum system architectures: See Fig. 3 for a feedback structure
and Fig. 4 for a feedforward structure. These architectures
open the way to the much more general concept of “self-
adaptive quantum gates,” i.e., gates with two features:

1) some means for controlling the values of parameters
that define the quantum state transform that such a gate
performs within a predefined class of transforms;

2) an autonomous (i.e., blind or unsupervised) algorithm,
which controls the adaptation of these parameter val-
ues, so as to achieve a predefined condition. That con-
dition could consist of ensuring output disentangle-
ment, as in the above example. It could instead be
a counterpart of disentanglement, depending on the
available data and on the type of undesired behavior
that one wants to compensate for.

Such gates would especially be of interest for a quantum
computer that, by the way, we proposed to more briefly call
a “quamputer”: By adequately selecting the aforementioned
adaptation condition and designing an associated adaptation
algorithm, one could create a self-adaptive quantum gate that
automatically compensates for a given type of nonideality
(instead of undesired Heisenberg coupling in the above ex-
ample) that occurs, e.g., in a gate that precedes the considered
self-adaptive gate. This would allow practical future quam-
puters to operate correctly despite these nonidealities, thanks
to their internal compensation means.

APPENDIX A
CLASSICAL AND QUANTUM MACHINE LEARNING
APPROACHES FOR DATA MAPPING
Many classical and quantum information processing systems
aim at applying transforms, defined by mathematical func-
tions, to their input data, in order to map them to output
data. These transforms are often called mappings or maps,
both in the classical [6] and quantum [63] information pro-
cessing literature (quantum maps are also called quantum
channels [63], with a reference to communications). In ba-
sic systems, the considered transform is predefined by the

human system designer, depending on the target application.
In contrast, more advanced systems, which are considered
hereafter, are referred to as (self-)adaptive systems since they
adapt their behavior (i.e., the mapping they perform) to the
data they receive [71], [72], by means of algorithms that per-
form the so-called adaptation, training, or (machine) learn-
ing [1], [6]–[9]. In other applications, input–output mappings
are also learnt from data but with other goals, especially
to characterize the behavior of a given natural medium or
artificial system, as detailed in the following. The classical
and quantum versions of machine learning, thus, involve var-
ious types of applications and associated types of transforms,
which are analyzed in more detail hereafter.
Machine learning is first used in classical classification

and regression systems, whose transforms map a set of input
quantities (each of which has its own nature) to output quan-
tities, which often have a different nature from input ones.
This is especially true for classification systems [1], [6]–[9],
which receive a set of input quantities that are most often
continuous valued, whereas their (possibly thresholded) out-
puts are binary valued. More precisely, let us first consider
a classification system without the rejection capability that
is defined further. Such a system generally outputsC values,
where C is the number of classes involved in the considered
application. Only one of these outputs is equal to 1, say
output with index c, whereas all other outputs are equal to
0. The index c of the active output defines the decision made
by the classifier: It considers that its input values correspond
to a case when the input belongs to class c. During the final
use of the classifier, called the “resolution phase,” “clas-
sification phase,” or “test phase,” the above output values
are provided to the target application. A typical use of this
framework is optical character recognition (OCR) [6], [8],
[9]. The classifier then receives an image, i.e., a set of pixel
values (or features, i.e., parameters, extracted from them),
where a letter or symbol belonging to a given alphabet is
written. The classifier sets its cth output to 1 if it considers
that this particular input image contains the cth symbol of
that alphabet. Moreover, improved classification algorithms
are able to detect when they consider that the input that they
receive during the resolution phase does not belong to any of
the considered classes, e.g., when the received image is not
similar enough to any character of the considered alphabet
(indeed, an image may contain a shape that is not a character
of any written language). Such a classifier then decides that
it is not able to classify the considered input “object” and it
rejects it. This may be expressed, e.g., by setting allC outputs
to zero or by adding a (C + 1)th output to the classifier, which
is equal to 1 when this classifier succeeds in classifying the
considered input and to 0 otherwise.
Before the above resolution phase, machine learning al-

gorithms are typically used, e.g., in OCR systems, to ini-
tially build an adequate input–output mapping, during the
so-called learning phase, training phase, or adaptation phase
(this possibly includes a so-called validation), by using data
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composed of training examples. In supervised learning ap-
proaches, each example consists of an input (e.g., an image
containing a character for OCR) and its correct class, i.e.,
the associated desired values of the classifier outputs (called
labels), which are provided by a supervisor, i.e., typically a
human expert of the considered application. In contrast, in
unsupervised learning approaches for classification (called
clustering [9]), the system self-organizes by using only in-
puts (e.g., images in the OCR example), i.e., unlabeled data.
Various system architectures and supervised or unsupervised
learning algorithms have, thus, been developed, especially
including (artificial) neural networks [6]–[9] and their re-
cent deep extensions [1], as well as support vector machines
(SVMs) [7]–[9].
Regression systems [6], [7], [9] are similar to the above

classifiers, except that their outputs are continuous-valued.
They typically first use a supervised training phase in order
to learn mappings from data samples, which are examples of
adequate pairs composed of input values and correct corre-
sponding output values in the considered applications. Once
this mapping has been fixed, such a regression system may
eventually be used, e.g., to control an industrial setup in a
factory: The regression system then receives, as its inputs,
different types of measured quantities provided by sensors
available in the factory, and this system maps its inputs
to possibly different types of continuous-valued quantities,
used to drive the actuators that control the industrial setup.
More specifically, regression systems where the inputs and
output(s) have the same nature especially concern prediction
tasks for time series, where the system aims at providing
the expected future value(s) of a quantity (e.g., a currency
exchange rate or streamflow) from its past values.
Whereas the above concepts were initially developed for

classical data, they are currently being extended to quan-
tum data and/or quantum processing means [3], especially
because the QIP [14] community is investigating quantum
extensions of classifiers to handle the huge processing power
and amount of data involved in current real-world applica-
tions. These extensions include the implementation of SVM
classifiers on quantum computers with very low computa-
tional complexity [10]. Besides, the versatile quantum opti-
cal neural networks proposed in [73] can perform different
related tasks, including reinforcement learning.
Although one may first have in mind the above general

classification and regression/prediction tasks when thinking
of classical and quantum machine learning, data-driven al-
gorithms are also widely used in a partly related set of pro-
cessing tasks, called system identification and system inver-
sion, with an extension to source separation. First consid-
ering the classical framework, this, e.g., includes situations
when an electromagnetic or acoustic signal is emitted from
a first location, then transferred through a medium, which
may be seen as an electromagnetic or acoustic “channel”
that transforms its input composed of the emitted signal.
The output of that channel is then the signal received by an
electromagnetic antenna or microphone in a second location.

These and other practical situations yield two types of ma-
chine learning problems. The first one is often called system
identification [11]–[13] and, more specifically, channel iden-
tification or channel estimation in the field of electromagnetic
communications [12]. Its simpler version [13], called the
“nonblind version” by the signal and image processing com-
munity and the “supervised version” by the machine learning
and data analysis community, operates as follows. As in the
above regression task, it uses a set of known continuous-
valued pairs composed of input values and corresponding
output values of the considered “system,” i.e., of the above-
defined channel, in order to estimate, i.e., learn, the unknown
transform (i.e., mapping) performed by this system. It should
be noted that, in the above examples involving electromag-
netic or acoustic signals, the considered “system” is not an ar-
tificial system to be built by human beings in order to perform
a given type of data processing (as in the above classification
and regression tasks), but the “natural system” formed by the
considered electromagnetic or acoustic propagationmedium.
The goal of system identification is then to characterize this
medium.
System identification methods have also been extended

to the more challenging blind, i.e., unsupervised, configura-
tion [11], [12]. In that case, during the learning or estimation
phase, only the values of the system output (i.e., the values
of the received channel output in the above examples) are
known, whereas its input values are unknown. However, the
system input is most often required to have some known
properties, e.g., some known statistical features so that this
configuration is sometimes stated to be semiblind or semisu-
pervised. This problem may, therefore, be seen as a noncon-
ventional form of regression, with only partial knowledge
about the input data. Besides, it should be noted that the
known values are only the output values in blind system iden-
tification, whereas they are only the input values in the above
unsupervised classification problem. Whereas nonblind or
blind system identification is applied to single-input single-
output systems in its basic form, it may then be extended to
multiple-input multiple-output (MIMO) systems.
The second considered machine learning problem, in con-

nection with system identification, deals with system inver-
sion and signal restoration. One then again considers an un-
known “system,” called the direct system, but one here aims
at building an artificial system that essentially performs a
transform equal to (an estimate of) the inverse of that of
the direct system (assuming that direct transform is invert-
ible). This inverse transform is first learnt during the train-
ing/adaptation phase, either directly or by first learning the
direct transform (using system identification methods) and
then deriving its inverse (in low-noise scenarios). Then, in
the “inversion phase,” which corresponds to the final use
of the inversion system, the (estimated) inverse transform is
applied to known output values of the direct system, in order
to recover (estimates of) corresponding unknown input val-
ues of that direct system. This approach, e.g., applies to the
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above two configurations involving channels. The direct sys-
tem then corresponds to the physical propagation medium,
such as an electromagnetic communication channel, which
alters the emitted signal in a initially unknown way. One
then aims at restoring the emitted signal from its altered
received version, by learning an adequate inverse transform
from data samples. In the field of radio frequency commu-
nications, this signal processing task is often referred to as
(channel) equalization [12], [46]. Similarly, the restoration of
an unknown emitted acoustic signal from its received version
altered by reverberation during propagation is often called
dereverbation [47]. More generally speaking, the problem of
restoring a source signal only from an observation, which is a
transformed version of that source signal is called deconvolu-
tion (for a linear-invariant transform) or deblurring in various
fields, such as astronomical image analysis [48]. Whatever
the considered application field, the initial learning proce-
dure for estimating the inverse transform may be applied in
the nonblind or blind mode, i.e., respectively, with known
or unknown input values for the direct system, whereas the
output values of that system are known in both modes. This
“(unknown) system inversion” task may also be extended to
MIMO configurations, in order to restore a set of unknown
signals from a set of their transformed versions.
The blind MIMO system inversion problem is also closely

related to the field of BSS [30]–[36], whose quantum exten-
sion is one of the major topics tackled in this article, together
with quantum extensions of system identification. In BSS,
the goal is also to restore a set of unknown source signals
from a set of available combinations of these signals (called
mixtures in BSS), which result from an unknown transform,
which combines (i.e., mixes) these source signals. However,
in BSS, one most often allows each restored signal to be
equal to a source signal only up to an acceptable residual
transform (called an indeterminacy) because such transforms
cannot be avoided due to the limited constraints that are set
on the considered classes of signals and mixing transforms.
When applied to the separation of acoustic/audio signals
from their mixtures recorded by a set of microphones, BSS
is often referred to as the “cocktail party problem” [49].
The first class of BSS methods that was developed and

that is still of major importance is ICA [32]–[35]. ICA is
a statistical approach, which essentially requires statistically
independent random source signals. Thus, ICA is guaranteed
to restore the source signals up to limited indeterminacies
for the simplest class of mixtures, that is when the available
signals are linear instantaneous (i.e., memoryless) combina-
tions of the unknown source signals [32]–[35]. For such mix-
tures, ICAmay be seen as an extension of more conventional
PCA [37], [38].
PCA and ICA may both be used to perform mappings

from the available P variables to P output variables that are
linear instantaneous mixtures of these available variables. In
other words, they yield a representation of the same data in
a new basis. The selected bases are different in PCA and
ICA. PCA uses one of the bases that are such that the output

variables are uncorrelated. ICA uses one of the bases that are
such that these output variables are statistically independent,
which includes uncorrelatedness but is more constraining
(for non-Gaussian signals). This is the reasonwhy PCA alone
cannot achieve BSS [35] but is often used as a first stage in
ICA algorithms. Outside the framework of ICA, PCA is most
often used as a mapping that projects the available data onto
a lower dimensional space, i.e., with dimensionD lower than
P, by keeping only the firstD coordinates in the output basis,
for visualization (withD = 2, i.e., projection onto a plane, or
D = 3, i.e., 3-D visualization) or compression tasks. Such a
projection may also be used as a preprocessing stage of ICA,
in order to reduce the influence of noise, when the available
mixed signals contain noise and their number P is higher
than the numberM of source signals: One then keeps the first
D = M output components of PCA.
ICA also has connections with the above fields of classifi-

cation and regression in the sense that a significant part of the
algorithms developed in all these fields are based on the same
class of tools, namely, neural networks.More precisely, when
initially developing ICA methods for linear instantaneous
mixtures, one of the very first proposed approaches was the
well-known Hérault–Jutten neural network (see, e.g., [74]–
[78] for its definition and analysis), and extended versions of
that network were then introduced and analyzed (see, e.g.,
[79] and [80]). Neural approaches were then proposed for
specific classes of nonlinearmixtures or without considering
any restrictions on the type of mixture (see, e.g., [81]–[84]).
Finally, the interest in neural methods recently raised again
also in the field of BSS/ICA. For instance, generative adver-
sarial networks were used to perform linear and nonlinear
ICA [85].
The above connected fields of classical system identifi-

cation, system inversion, BSS, and PCA have been partly
extended to the quantum framework as follows. Among
these problems, the one that was first studied is the quan-
tum version of nonblind system identification, especially3

introduced in 1997 in [86] and called QPT by the QIP com-
munity (see, e.g., [14]–[23]). The connection between non-
blind system identification and regression (and hence, to a
lower extent, classification), that we highlighted above, was
by the way mentioned for the quantum framework in [65],
which states “quantum process tomography (QPT) is able
to learn an unknown function within well-defined symmetry
and physical constraints—this is useful for regression anal-
ysis” and further considers “Regression based on quantum
process tomography.”
The quantum version of the aforementioned classical

source separation, called QSS, and especially its blind ver-
sion, or BQSS, were then introduced in 2007 in [40]. Two
main classes of BQSS methods have been developed since
then. The first one may be seen as a quantum extension of
the aforementioned classical ICA methods, since it takes
advantage of the statistical independence of the parameters

3See also [14, p. 398] for the other earliest references.
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that define random-coefficient source quantum states (qubit
states). It is called quantum independent component analysis
(see, e.g., [40] and [41]) or, more precisely, quantum-source
independent component analysis (see, e.g., [42]) to insist on
the quantum nature of the considered source data, whereas
it uses classical processing means (after quantum/classical
data conversion). The second main class of BQSS methods
was introduced in 2013–2014 in [43] and [44] and then espe-
cially detailed in [45]. It is based on the unentanglement of
the considered source quantum states, and it typically uses
quantum processing means to restore these unknown states
from their coupled version. Independently from the above
quantum extensions of BSS/ICA, a quantum version of PCA
was introduced in 2014 in [39]. Finally, the blind extension
of QPT was introduced in 2015 in [24] and then especially
extended in [25] for its multiple-preparation version.
Indeed, the above blind or nonblind QPT and (B)QSS

methods are restricted to “multiple-preparation” operation,
as defined in Section I. Beyond these approaches, this article
describes the general SIPQIP framework that may be built
to obtain a more efficient operation and its application to
various QIP tasks.

APPENDIX B
MULTIPLE-PREPARATION QIP
We here consider an arbitrary number Q of distinguish-
able [45] qubits, physically implemented as spins 1/2. We
investigate the case when the quantum state |ψ〉 of this set
of qubits at a given time is pure and deterministic. As de-
tailed in [26] and [50], the state |ψ〉 then belongs to a 2Q-
dimensional space E . The vectors that form the standard basis
of E are hereafter denoted as |k〉, with k ∈ {1, . . . , 2Q}. The
state |ψ〉 then reads

|ψ〉 =
2Q∑
k=1

ck|k〉 (27)

where ck are complex-valued coefficients, which are fixed
and arbitrary but such that |ψ〉 is normalized [26], [50].

We here consider the experiment that consists of simul-
taneously measuring the spin components of all Q qubits
along the quantization axis. This experiment yields a ran-
dom result. Each of its elementary events, [52] Ak may be
defined as follows. The result of the experiment is equal
to the kth Q-entry vector in the series of 2Q possible val-
ues (in normalized units) equal to [+ 1

2 ,+ 1
2 , . . . ,+ 1

2 ,+ 1
2 ],

[+ 1
2 ,+ 1

2 , . . . ,+ 1
2 ,− 1

2 ] and so on, where these values are,
respectively, associated with the above-defined basis vectors
|k〉. Moreover, the probabilities of these events read

P(Ak ) = |ck|2 ∀ k ∈ {1, . . . , 2Q}. (28)

In practice, to estimate the above probabilities for a given
Q-qubit state, one most often uses the procedure that will
now be defined. That procedure requires one to prepare a
large number of copies of that state, which is typically from
a few thousand up to a few hundred thousand copies [41],

[45]. Therefore we hereafter, call this standard approach
“multiple-preparation QIP.”4 These copies may, e.g., be ob-
tained successively from the same system, by using the “re-
peated write/read” procedure [40]–[42]. The above type of
measurement is first performed for each of these copies. One
then counts the number of occurrences of each of the possible
results [+ 1

2 ,+ 1
2 , . . . ,+ 1

2 ,+ 1
2 ] and so on. The associated

sample relative frequencies are then used as estimates of the
probabilities P(Ak ).

APPENDIX C
BLIND QUANTUM PROCESS TOMOGRAPHY
Various papers from the literature dealing with conventional
(i.e., nonblind and multiple-preparation) QPT are focused
on specific processes or classes of processes (see, e.g., [19],
[21], and [87]). Similarly, the method that we introduced
in [26] and that we aim at summarizing in this appendix is
dedicated to the class of configurations involving two dis-
tinguishable [45] qubits implemented as electron spins 1/2,
which are internally coupled according to the cylindrical-
symmetry Heisenberg model, with unknown principal values
Jxy and Jz of the exchange tensor. We stress that this type
of coupling is only used as a concrete example,5 to show
how to fully implement the proposed general concepts in a
relevant case, but that these concepts and resulting practical
algorithms (for performing BQPT and other QIP tasks de-
tailed further in this article) may then be extended to other
classes of quantum processes and associated applications.
The above Heisenberg model is detailed in [26]. This

shows that the associated quantum process, from its input
(i.e., initial) quantum state |ψ (t0)〉 to its output (i.e., final)
quantum state |ψ (t )〉, is represented by a matrix M, and
that the only quantities that must be estimated in order to
obtain an estimate of M are exp[i Jxy(t−t0)

�
] and exp[i Jz(t−t0)2� ].

The main method proposed in [26] to estimate M uses three
values of the time interval (t − t0), denoted as τ1, τ2, and τ3,
with

τ2 = 2τ1 τ3 = 2τ2. (29)

These values are, respectively, used to first estimate
exp[i Jxyτ1

�
], then estimate exp[i Jzτ22� ], and finally obtain an

estimate of M, which is nonambiguous only from the point
of view of the final use of this process with (t − t0) = τ3
(Deville and Deville [26] discuss the relevance of finally
using a quantum process in conditions, i.e., here with a value
of (t − t0), different from those initially used to identify that
process, e.g., when that process corresponds to a gate of a
quamputer).

4This terminology and the connection between this approach and clas-
sical adaptive processing are discussed in [50]. This is also true for the
approach of Section II-A.

5We do not focus on whether Heisenberg coupling could be used as
a desired phenomenon, to build suitable gates for quamputers, as already
mentioned in [26].
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More precisely, when applying the considered BQPT
method in the purely single-preparationmode, the first part of
this method uses one instance of each output quantum state
|ψ (t )〉. For each such state, it measures the components of
the considered two spins along the Oz-axis. As discussed
in [26] and in Appendix B of the present article, the result
of each such measurement has four possible values, i.e.,
(+ 1

2 ,+ 1
2 ), (+ 1

2 ,− 1
2 ), (− 1

2 ,+ 1
2 ), or (− 1

2 ,− 1
2 ) in normalized

units. Their probabilities are, respectively, denoted as p1zz to
p4zz below. They are hereafter expressed with respect to the
moduli r j and the phases θ j and φ j of the polar representation
of the qubit parameters α j and β j of the single-qubit states

|ψ j(t0)〉 = α j| + 〉 + β j| − 〉 (30)

that define the overall input state |ψ (t0)〉, which reads

|ψ (t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 (31)

= α1α2| + +〉 + α1β2| + −〉
+ β1α2| − +〉 + β1β2| − −〉 (32)

in the 4-D basis B+ = {| + +〉, | + −〉, | − +〉, | − −〉}, and
where ⊗ stands for the tensor product. The aforementioned
polar representation is then defined by

α j = r je
iθ j β j = q je

iφ j , j ∈ {1, 2} (33)

with

q j =
√
1 − r2j , j ∈ {1, 2}. (34)

The above probabilities then read [41], [42]

p1zz = r21r
2
2 (35)

p2zz = r21(1 − r22 )(1 − v2) + (1 − r21 )r
2
2v

2

−2r1r2
√
1 − r21

√
1 − r22

√
1 − v2v sin�I (36)

p4zz = (1 − r21 )(1 − r22 ) (37)

with

�I = (φ2 − θ2) − (φ1 − θ1) (38)

�E = − Jxy(t − t0)

�
(39)

v = sgn(cos�E ) sin�E . (40)

Probability p3zz is not considered hereafter because the
sum of p1zz to p4zz is equal to 1.

Using (t − t0) = τ1 in the first part of this method, (39)
and (40) may then be inverted as

Jxyτ1
�

= −�Ed + kxyπ (41)

with

�Ed = arcsin(v) (42)

where �Ed is a determination associated with the actual
value�E , i.e.,�Ed is equal to�E up to the additive constant
−kxyπ , where kxy is an integer.

The SIPQIP framework defined in Section II-A then
makes it possible to derive an estimate �̂Ed of �Ed as fol-
lows. We consider the case when r1, r2, and �I are random
valued and when these random variables are statistically in-
dependent. Equation (36) then yields

E{p2zz} = E{r21}(1 − E{r22})(1 − v2)

+ (1 − E{r21})E{r22}v2

− 2E{r1
√
1 − r21}E{r2

√
1 − r22}

√
1 − v2v

× E{sin�I}. (43)

In this equation, E{p2zz} is known. In practice, it is esti-
mated by using the SIPQIP approach of Section II-A, i.e.,
by using the sample mean of the estimates of all values of
p2zz, themselves typically estimated with sample frequen-
cies (possibly each reduced to one measurement outcome).
Similarly, E{r21} and E{r22} are known: As detailed in [26],
they may be derived by solving the two equations obtained
by taking the expectation of (35) and (37), which involve
E{p1zz} and E{p4zz}, that are also estimated with the SIPQIP
approach. Finally, the blind version of QPT concerns the case
when the individual values of the input quantum states of
the considered process are unknown, but it allows one to
request some of the statistical parameters of these inputs to
be known. Therefore, we here request the states |ψ (t0)〉 to
be prepared with a procedure, which is such that the value
of E{sin�I}, or at least its sign, is known. Thus, (43) can be
exploited so that the only unknown is v. Paper [26] shows
how to solve this equation. More precisely, two instances of
this equation, with different values of E{sin�I}, are used:
The first one yields an estimate of the absolute value of v

and the second equation provides an estimate of the sign of
v. Combining these two results yields an estimate v̂ of v and,
hence, an estimate �̂Ed of �Ed by using v̂ in (42).
Based on (41), once the above estimate �̂Ed has been

obtained, corresponding shifted estimates of Jxyτ1
�

are derived
as

Ĵxyτ1
�

= −�̂Ed + k̂xyπ (44)

where k̂xy is an integer, which corresponds to kxy in (41). The
value of k̂xy has to be selected without knowing the actual
value of kxy in the fully blind case considered here, i.e., when
no prior information is available about the value of Jxy. But
this is not an issue from the point of view of the considered
BQPT method, because that method is designed so that the
obtained estimate of the process matrixM, for (t − t0) = τ3,
does not depend on the integer value of k̂xy [26]. The simplest
approach, therefore, consists of setting k̂xy = 0 in (44).
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Similarly, [26] shows that

Jzτ2
�

= �	1,0d + 2kzπ + Jxyτ2
�

+ GBτ2
�

(45)

where kz is an integer. This is used to derive the estimate

Ĵzτ2
�

= �̂	1,0d + 2̂kzπ + Ĵxyτ2
�

+ GBτ2
�

(46)

where the SIPQIP framework of Section II-A is again used
to obtain an estimate �̂	1,0d of the quantity �	1,0d that
may be derived from the same type of probability expecta-
tions E{pkzz} as above and from the probability expectations
E{pkxx} of results of additional measurements of spin com-
ponents along the Ox axis (see details in [26]). Besides, k̂z is
an integer whose value has no influence on the final estimate
of the process matrix M, and that may, therefore, be set to

zero. Moreover, Ĵxyτ2
�

is equal to twice the value previously
computed with (44) and the other parameters have known
values.
It should be noted that this QPT method only uses the

known outputs of the considered process and general known
properties of its inputs, not its input values, which are un-
known. This is, therefore, indeed a BQPT method (more-
over operating in the single-preparation mode). In contrast,
nonblind methods are supposed to operate with predefined
values of their input states and are, in practice, very sensitive
to errors in the preparation of these value, as detailed in [26].
Their performance for actual preparations is, therefore, sig-
nificantly degraded, whereas the above blind operation yields
much better accuracy in the tests reported in [26].

APPENDIX D
METHOD FOR ESTIMATING Jxy AND Jz

A. ESTIMATING Jxy

We here consider the problem of estimating the Hamiltonian
parameter Jxy, defined in Section III-A. We focus on the
practical situation with estimation errors for�Ed1 and�Ed2,
and with a known range for Jxy. We, hereafter, show how to
exploit this range in such a way that the values of Ĵxy1 and
Ĵxy2, which are the closest to one another are also those which
are the closest to Jxy. To this end, one takes into account

that �̂Ed1 and �̂Ed2 are always in the interval [−π
2
,
π

2
]

[because they are values of the arcsin function: see (42)].
This, together with the known range of possible values of
Ĵxy1, the known value of τ11, and the corresponding version of
(44), defines the range {̂kmin

xy1 , . . . , k̂
max
xy1 } of integers in which

it is guaranteed that k̂xy1 should be selected. Similarly, the
value of τ12 is to be selected as explained hereafter, and
for the application of the procedure with any given value
τ12, the integer k̂xy2 should be selected in a known interval
{̂kmin
xy2 , . . . , k̂

max
xy2 }. When the estimation errors for �Ed1 and

�Ed2 remain low enough, the values Ĵxy1 and Ĵxy2 of the
grids, respectively, corresponding to�kxy1 = 0 and�kxy2 =
0 both remain close to their theoretical value Jxy. Around
these values, the two grids almost coincide. Then, for larger

values of |�kxy1| and |�kxy2| corresponding to the above-
defined intervals, we here want the associated parts of the
two grids to become more “desynchronized,” i.e., we want
the gaps between the values of the two grids to become larger.
This is obtained by adequately selecting τ12 for an arbitrarily
chosen value τ11, but this should be performedwithout know-
ing where Jxy is in the considered interval. We, therefore, use
a worst-case approach in terms of desynchronization, for the
ideal estimation (10), as follows. The reference point, shared
by both grids, is equal to Jxy and is obtained when�kxy1 = 0
and �kxy2 = 0. We consider the case when this reference
point is the lowest value in both bounded grids, i.e., k̂min

xy1 =
kxy1 and k̂min

xy2 = kxy2. For any given τ11, we select a value τ12,
which is only somewhat larger than τ11, thus considering that
k̂min
xy2 = k̂min

xy1 and k̂max
xy2 = k̂max

xy1 . The values are then somewhat
closer to one another in the second grid than in the first one.
Moreover, we select τ12 so that, when moving toward the
higher values in both bounded grids, the gaps between the
corresponding points of the two grids increase, until they
reach the maximum possible gap for the highest values. This
means that we set τ12 so that the highest value in the first
bounded grid [i.e., the value of Ĵxy1 in (6) corresponding to
k̂xy1 = k̂max

xy1 , moreover taking into account (10)] is equal to
that of the middle of the interval of the second grid defined
as follows: The lower bound of that interval is the highest
value in the bounded part of that grid considered here [i.e.,
the value of Ĵxy2 in (8) corresponding to k̂xy2 = k̂max

xy2 = k̂max
xy1 ,

moreover taking into account (10)] and the higher bound of
that interval is the next value that would be found in that
grid, when moving toward higher values, if that grid were
complete, i.e., this upper bound is equal to the lower bound
plus �π

τ12
. Using (6)–(10), it may easily be shown that the

above desynchronization condition for the highest values of
the two grids yields

�

τ11
(̂kmax
xy1 − k̂min

xy1 )π = �

τ12
(̂kmax
xy1 − k̂min

xy1 + 1

2
)π. (47)

Therefore, for a given value τ11, one should set τ12 so that

τ12

τ11
=
k̂max
xy1 − k̂min

xy1 + 1
2

k̂max
xy1 − k̂min

xy1

(48)

=
2(̂kmax

xy1 − k̂min
xy1 ) + 1

2(̂kmax
xy1 − k̂min

xy1 )
. (49)

The latter expression shows that the value thus obtained in
this practical procedure for a bounded interval on Jxy yields a
rational value of τ12

τ11
(unlike the above preliminary procedure

for the ideal case and without restrictions on the domain of
Jxy).

B. ESTIMATING Jz

The method used for estimating Jz is very similar to the
approach described above for Jxy. It is, therefore, more briefly
outlined hereafter. It uses the procedure of the second part
of the BQPT method of Appendix C, based on (45) and
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(46). This procedure is here applied twice, i.e., with τ2 of
Appendix C successively replaced by two values denoted as
τ21 and τ22. For τ21, combining (45) and (46) and using the
same type of notations as for Jxy yields

Ĵz1 = Jz + �

τ21

[
�̂	1,0d1 −�	1,0d1 + 2�kz1π

]
+ (Ĵxy − Jxy) (50)

with

�kz1 = k̂z1 − kz1 (51)

and where Ĵxy is the estimate of Jxy without any indetermi-
nacy that was obtained in the first part of this HPE method.
This shows that the procedure applied with the time interval
τ21 yields a regular 1-D grid of possible estimates Ĵz1 of Jz,
with a step equal to 2�π

τ21
. Its application with the time interval

τ22 is analyzed in the same way. We here exploit the differ-
ences between these two grids, by transposing the approach
that we described above for Jxy. Thus, first considering the
case with no estimation errors and with Jz equal to the lowest
value of both bounded grids leads one to select τ21 and τ22
so that

�

τ21
2(̂kmax

z1 − k̂min
z1 )π = �

τ22
2(̂kmax

z1 − k̂min
z1 + 1

2
)π (52)

and hence

τ22

τ21
= k̂max

z1 − k̂min
z1 + 1

2

k̂max
z1 − k̂min

z1

(53)

where the integers k̂min
z1 and k̂max

z1 are defined by using the
same approach as for Jxy, here taking into account that
�	1,0d1, and hence, its relevant estimates are guaranteed to
be in the interval [−π, π ] (see the expression of �	1,0d1
in [26]) and that Ĵxy and GB are known.
Then, for the practical situation with estimation errors,

and still with prior knowledge about an interval that contains
the actual value Jz, the method proposed for determining Jz
consists of comparing each value Ĵz1 of the first bounded grid
to each value Ĵz2 of the second bounded grid in order to de-
rive the couple of closest values and then the corresponding

estimate
Ĵz1 + Ĵz2

2
.

APPENDIX E
TEST CONDITIONS
We here define the conditions used for all the tests reported
in Section III-A2. The actual values of the parameters of the
Heisenberg Hamiltonian defined in [26] were first selected
by using the following properties. Conventional electron spin
resonance generally operates at X or Q bands (around 10
and 35 GHz, respectively). For electron spins with g= 2, at
35 GHz, the resonance field is near 1.25 T. In the simulations,
we used the values g= 2 and B = 0.99 T. Concerning the
exchange coupling, we chose Jz/kB � 1 K and Jxy/kB =
0.3 K. These values were motivated by [26], [41, Appendix

E], and [88]. As in [26], we selected part of the parame-
ters defined above and below so as to avoid specific cases
(see [26, footnote 50]), but this here led us to slightly shift
some of these values as compared with those of [26], because
we here have to take these specific cases into account for four
time intervals (τ11, τ12, τ21, and τ22) instead of only three (τ1,
τ2, and τ3) in [26], so that the BHPEmethod proposed here is
somewhat more constraining that the BQPT method of [26].
The parameters of the BHPE method were then set as

follows. The six parameters r j, θ j, and φ j, with j ∈ {1, 2},
of each initial state |ψ (t0)〉 were randomly drawn with a
uniform distribution, over an interval that depends on the
part of the considered BHPE method, in order to meet the
constraints on the statistics of these parameters that are im-
posed by that BHPE method. The parameters q1 and q2 were
then derived from (34).More precisely, the parameter Jxy was
first estimated by applying the procedure of the first part of
the BQPT method of Appendix C successively to each of the
two values τ11 and τ12. For each of these values, as a first
step, to estimate the absolute value of v as detailed in [26],
the qubit parameter values r1 and r2 were selected within
the 20–80% subrange of their 0–100% allowed range defined
in [26], that is, [0.1, 0.4[ for r1 and [0.6, 0.9[ for r2, as in [42].
Besides, φ1 and φ2 were drawn over [0, 2π [, whereas θ1 and
θ2 were fixed to 0 (as stated above, the parameters that have
a physical meaning are φ j − θ j). These data are, thus, such
that E{sin�I} = 0, as required by this step of the considered
BQPTmethod. Then, as a second step, to estimate the sign of
v, as detailed in [26], the same conditions as in the above first
step were used for r j, θ j, and φ j, with j ∈ {1, 2}, except that
φ1 was fixed to 0 and φ2 was drawn over [0, π [. These data
are, thus, such thatE{sin�I} is nonzero and has a known sign
(here, it is positive), as required by this step of the considered
BQPT method. The above two steps were performed with
τ11 = 0.5 ns and then τ12 defined by (48), with k̂min

xy1 = 0

and k̂max
xy1 = 31 because the only prior knowledge about Jxy,

which is provided to this BHPE method is that Jxy/kB is in
the range [0, 1.5K] (the upper bound 1.5 K was selected as
five times the value 0.3 K, which was actually used to create
the data processed in these tests as explained above). For τ12,
the above interval of values of Jxy/kB results in k̂min

xy2 = 0 and

k̂max
xy2 = 32.
The parameter Jz was then estimated by applying the pro-

cedure of the second part of the BQPT method of Appendix
C successively to each of the two values τ21 and τ22, with
τ21 = 0.53 ns, and then τ22 defined by (53), with k̂min

z1 = −13
and k̂max

z1 = 7 because the only prior knowledge about Jz
which is provided to this BHPE method is that Jz/kB is in the
range [� 0.45K,� 2.24K] (these two bounds were selected
as the actual value � 1 K, respectively, divided and multi-
plied by

√
5). For τ22, the above interval of values of Jz/kB

results in k̂min
z2 = −13 and k̂max

z2 = 7. The proposed method
uses measurements along theOz andOx axes. For each of the
parameters r j, θ j, and φ j, with j ∈ {1, 2}, we used the same
statistics for measurements along the Oz and Ox axes. These
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statistics were also the same when using τ21 and τ22, and
they are defined as follows. The proposed method is based
on two instances of (40) of [26]. For the first instance of this
equation, r1 and r2 were drawn over [0.1, 0.4[ and φ1 and
φ2 were drawn over [−π/2, π/2[, whereas θ1 and θ2 were
fixed to 0. For the second instance of the above equation, r1
and r2 were drawn over [0.6, 0.9[, whereas φ1, φ2, θ1, and θ2
were selected in the same way as for the first instance of that
equation.

APPENDIX F
COMPUTING THE DOT PRODUCT OF TWO KETS
In Section V, we considered the situation when two known
unit-norm classical-form vectors v1 and v2 are stored in two
unit-norm kets |ψ1〉 and |ψ2〉, and one then uses quantum
circuits from the literature to compute the corresponding
overlap |〈ψ1|ψ2〉|2. We here propose an extension of this
approach, that has not been reported in the literature to our
knowledge and that allows one to compute the complex-
valued dot product 〈ψ1|ψ2〉 itself, not only its (squared) mod-
ulus. To this end, we first consider the classical-form vector

v3 = μ3(v1 + v2) (54)

whereμ3 is real-valued and selected so that v3 has unit norm.
v3 is stored in the unit-norm ket

|ψ3〉 = μ3(|ψ1〉 + |ψ2〉). (55)

Simple calculations then yield

|〈ψ1|ψ3〉|2 = μ2
3(1 + |〈ψ1|ψ2〉|2 + 2(〈ψ1|ψ2〉). (56)

The aforementioned quantum circuits allow one to compute
the overlaps |〈ψ1|ψ3〉|2 and |〈ψ1|ψ2〉|2, and (56) then yields
(〈ψ1|ψ2〉). Similarly, �(〈ψ1|ψ2〉) is obtained by using the
ket |ψ4〉 corresponding to the vector

v4 = μ4(v1 + iv2) (57)

whereμ4 is real-valued and selected so that v4 has unit norm.
Similar calculations then yield

|〈ψ1|ψ4〉|2 = μ2
4(1 + |〈ψ1|ψ2〉|2 − 2�(〈ψ1|ψ2〉). (58)

The dot product >〈ψ1|ψ2〉 is eventually derived from its
above real and imaginary parts.
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