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Quantum process tomography (QPT) methods aim at identifying a given quantum process. QPT is a major
quantum information processing tool, since it allows one to characterize the actual behavior of quantum gates,
which are the building blocks of quantum computers. The present paper focuses on the estimation of a unitary
process. This class is of particular interest because quantum mechanics postulates that the evolution of any
closed quantum system is described by a unitary transformation. The standard approach of QPT is to measure
copies of a particular set of predetermined (generally pure) states after they have been modified by the process
to be identified. The main problem with this setup is that preparing an input state and setting it precisely to a
predetermined value is challenging and thus yields errors. These errors can be decomposed into a sum of centered
errors (i.e., whose average on all the copies is zero) and systematic errors that are the same for all the copies. The
latter is often the main source of error in QPT. The algorithm we introduce works for any input states that make
QPT theoretically possible (i.e., unless there are several solutions due to, e.g., a lack of diversity in the input
states). The fact that we do not require the input states to be precisely set to predetermined values means that
we can use a trick to remove the issue of systematic errors by considering that some states’ copies are unknown
but measured before they go through the process to be identified. We achieve this by splitting the copies of
each input state into several groups and measuring the copies of the kth group after they have successively been
transferred through k instances of the process to be identified (each copy of each input state is used for only a
single measurement). Using this approach, we can compute estimates of the measured states before and after
they go through the process without using the knowledge we might have about the initial states. We test our
algorithm with simulated data, and we assess its performance with a CNOT gate on a trapped-ions qubit quantum
computer.
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I. INTRODUCTION

Quantum process tomography aims at identifying the quan-
tum process associated with a physical quantum gate. It was
first introduced in Refs. [1] and [2]; the former came up
with the name quantum process tomography (QPT). They use
copies of a set of known input states that are transformed
by the process. Those transformed states are then measured
and estimated using quantum state tomography (QST aims at
estimating a quantum state using measurements). This method
scales poorly when the number of qubits increases. This
is unsurprising because, in general, a quantum process has
d4 − d2 independent real parameters, with d the dimension
of the Hilbert space (for an nqb-qubit system d = 2nqb , see [3],
p. 391).

This method and others inspired by it would later be called
standard QPT (SQPT), in contrast to nonstandard QPT that
uses ancilla qubits and weak measurements (see [4] for a
survey). Shabani et al. [5] proposed a method that follows the
SQPT approach and scales better with the number of qubits
by assuming that the process matrix is sparse. This approach is
very popular [6–8], but we chose not to use it for the following
reason. Almost all useful processes have unitary target values
(they are not unitary in practice because the implementation is
not perfect but they are close to their target), and we think that,
in general, assuming it is actually unitary (or equivalently that
the rank of its process matrix is 1) is a better regularization

hypothesis than assuming that its process matrix is sparse. A
rank 2 process matrix with two similar eigenvalues can be
considered sparse, but the associated process is not a good
approximation for a process that represents a unitary gate.

Thus, like Refs. [9–11], we choose to restrict ourselves to
unitary processes. This class is of particular interest because
the evolution of any closed quantum system is described by a
unitary transformation. Baldwin et al. [9] study the tomogra-
phy of unitary processes (and near-unitary ones). They use
the work of Reich et al. [10] to choose their input states.
Reich et al. studied the tomography of unitary processes; they
established a necessary and sufficient condition to be able to
distinguish a unitary process from any other process (unitary
or not), but did not explicitly propose a QPT algorithm. In [11]
the authors also study unitary processes. Their algorithm is
adapted to a universal single-qubit gate set. A major advantage
of the algorithm in [11] is that it is robust to faulty input states
and faulty measurements. In our opinion, its main drawback is
that it is defined only for single-qubit gates, which need QPT
the least: Keith et al. [12] remark that “single-qubit gates have
been demonstrated with high fidelity, but entangling gates
have lower fidelities.”

Unitary processes are easier to handle partly because they
involve “only” d2 independent real parameters (d2 − 1 with-
out the global phase). This number still scales exponentially
with the number of qubits, but is more reasonable than the
d4 − d2 real parameters that [1] identifies. The method of [1]
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is experimentally realistic for only one or two qubits, and
even with two qubits there are 44 − 42 = 240 real parameters.
This lower number of parameters to be estimated for a unitary
process means that QPT can be performed with fewer input
states (d input states in Refs. [9] and [11] vs d2 input states
for the SQPT of [1]). Another advantage of unitary processes
is that they are relatively simple to parametrize. A unitary pro-
cess is uniquely parameterized by a unitary matrix (the matrix
M defined in Sec. II A, to be distinguished from the above-
mentioned process matrix), up to a global phase. In contrast,
the Kraus-operator representation of nonunitary processes is
highly nonunique [13], and assessing the differences between
two Kraus-operator representations (target gate and estimated
gate, for example) is not as straightforward as comparing two
unitary matrices up to a global phase. Unitary processes also
have the advantage of preserving the purity of the input states;
therefore unitary QPT generally assumes that input and output
states are pure. This is an advantage because pure states have
fewer parameters than mixed states and require fewer types of
measurements to be identified (see [14]).

Beyond the number of parameters of quantum processes, a
major issue with algorithms that use the SQPT setup is the fact
that the input states have to be known, and, in the case of the
unitary QPT algorithm in [9], the values of the known input
states are imposed by the method (this is what we mean by
“predetermined”). This is problematic because, to prepare a
quantum state, one generally has to use a quantum gate, and to
know with a high degree of accuracy which state is prepared,
one must known the gate with a high degree of accuracy. This
would require QPT. We are not the first to point out and to
try to get around this problem. Reference [15] first identified
this problem and tried to solve it by designing an algorithm
that simultaneously identifies all the gates involved in the
setup (including the gates used for state preparation) with no
unitarity assumption. Later, gate set tomography (GST) was
introduced [15,16]. It goes a step further, by simultaneously
identifying the initial state, the processes applied to it, and the
types of measurements performed. The identification is possi-
ble only up to significant indeterminacies (called a gauge) and
involves many parameters that make GST very difficult when
d increases.

We also proposed our own solution to this problem: In
2015 we introduced the blind version of QPT (BQPT) [17],
then detailed it in [18] and more recently in [19]. In those
papers we focused on the tomography of the two-qubit
cylindrical-symmetry Heisenberg coupling process. For those
algorithms, the operator has to prepare one or several copies
of an unknown (hence the “blind”) set of initial states [20].
This removes the issue of systematic errors (with respect to a
desired state) during the preparation. The system is identified
by processing output measurements associated with ni differ-
ent unknown input states going through the system. Generally,
we need to perform QST or at least to estimate some measure-
ment outcome probabilities for each of the ni output states.
For the approaches of [17,18], this kind of QST requires nc

copies of each considered output state. Therefore for each one
of the ni states the same experiment has to be repeated nc

times with the same input state value, thus yielding ni × nc

input state preparations in total. A more recent paper [19] also
proposes “single-preparation BQPT methods,” i.e., methods

which can operate with only one instance of each considered
input state, i.e., nc = 1. Finally, in Refs. [21] and [22] we
introduced semiblind setups that are generalized by the setup
that is presented in the present paper. The idea is to split
the initial states copies into ns (ns = d for [21] and ns = 2
for [22]) groups, and measure the copies of the kth group,
after they have gone through the process k (or k − 1 for [22])
times. Thanks to this trick, we can use a QST algorithm to
identify the states before and after they go through the process.
Therefore, we can estimate the unitary process without having
to trust the values of the states it is applied to because they are
estimated via QST. We use the term “semiblind” because the
constraints on the input states are very loose, but some copies
of some states are measured before they are transformed by
the process to be identified (each copy is measured only once).

In the current paper, we introduce a unitary QPT algo-
rithm that uses nonpredetermined input states; this is a step
beyond [9]. We also provide a necessary and sufficient con-
dition (like in [10]) on the measured states that guarantees
that QPT is possible (i.e., that M can be identified up to a
global phase). This condition happens to be very loose, and
it can be met with weakly constrained input states. Further-
more we succeeded in proving that our QPT algorithm works
whenever this constraint is satisfied. This is remarkable as
it guarantees that when we are unable to perform QPT with
our algorithm, it is because QPT is impossible for any QPT
algorithm.

Our QPT algorithm could work with an SQPT setup, i.e.,
with predetermined input state values. But since it works with
(almost) any set of values, we chose to use the trick of mea-
suring some of the copies of the states before they go through
the process to remove the issue of systematic errors. This trick
alone is not really a new idea (it is present in GST and [15],
for example, with a different algorithm that estimates the gates
used for the preparation of the states rather than the states
themselves), but it is possible only with a QPT algorithm that
does not have to use a particular set of predetermined input
states. While such QPT algorithms can be found in the liter-
ature ([1,6–8], for example), none of them have been tailored
for unitary processes. Therefore, as mentioned above, they
suffer from the drawbacks of increased complexity compared
to our approach: more parameters to estimate, more input
states, no pure states.

We focus on mitigating the impact of the systematic errors
because, as [11] pointed out, the systematic errors are, in prac-
tice, the only errors (on the input states) if the gates that are
used for the input state preparation are unitary. This is because
the input states are prepared by initializing all qubits at |0〉,
which yields a pure state (we assume that the assignment to
|0〉 is at least repeatable), and the unitary gates applied to
|0〉 ⊗ · · · ⊗ |0〉 for the preparation of the input states (those
“state-preparation gates” are to be distinguished from the uni-
tary gate to be identified by QPT) preserve the purity of their
input state. The pure states provided by the state-preparation
unitary gates can have wrong values (this is the systematic
error), but they do not change every time we repeat the exper-
iment by definition (otherwise they would be mixed states).
Assuming that the gates used for the preparation of the input
states are unitary is reasonable, because if unitary gates cannot
be realized, then unitary QPT is pointless. Reference [15] also

062410-2



UNITARY QUANTUM PROCESS TOMOGRAPHY WITH … PHYSICAL REVIEW A 108, 062410 (2023)

highlighted the importance of systematic errors for general
QPT.

We intended to use a pure state QST algorithm from the
literature for our QST-based QPT method, but there are sur-
prisingly few articles about pure state QST. The work of
Goyeneche et al. [23] is closest to fit our needs, but, un-
fortunately, it uses entangled measurements that cannot be
performed by measuring each qubit individually. We want
to use measurements that are as simple as possible because,
as stressed in [15], we can never be sure that the model we
have for the measurements is accurate. But the simpler, the
measurement the more we can rely on the model. In [14] we
introduced two original QST setups that use only unentangled
measurements. In the present paper, we use one of them to
perform QST for each measured state. We chose unentangled
measurements because single-qubit gates are more reliable
than multiqubit gates, and unentangled measurements can be
realized with single-qubit quantum gates and a measurement
in the computational basis. Like all QPT algorithms that do
not rely on GST, we choose to consider that those measure-
ments are realized without errors (or at least, that the errors in
the measurements are small enough for the QPT estimate to be
reasonably accurate). We assume that some kind of measure-
ment calibration like in [12,24,25] (also known as quantum
detector tomography or quantum measurement tomography)
has been performed.

Our contributions in the present paper are as follows. Sec-
tion II explains how to achieve unitary QPT using only the
results of the QST of the measured states. This QPT could
work with any QST algorithm, but we recommend using the
measurements and QST algorithm described in Appendix A.
In Sec. III we provide a necessary and sufficient condition
on the measured states for unitary QPT to be possible, and
we show that our QPT algorithm always works when this
condition is satisfied (in the absence of QST error). In Sec. IV
we present our recommendations on how to prepare the initial
states to be sure that the above-mentioned condition is sat-
isfied. In Sec. V we apply our algorithm to simulated data.
Finally, in Sec. VI we assess the performance of our algorithm
for data from two trapped-ion qubits.

II. PROPOSED QST-BASED QUANTUM PROCESS
TOMOGRAPHY METHOD

A. Notations and data model

An nqb-qubit pure state |ϕ〉 can be decomposed in the d-
element computational basis |0 . . . 0〉, |0 . . . 01〉, |0 . . . 10〉,...,
|1 . . . 1〉 (d = 2nqb). The components of |ϕ〉 in the basis can be

stored in a d-element vector v = [
v1
...

vd

]. The components v j are

complex and
∑d

j=1 |v j |2 = 1. The global phase of |ϕ〉 has no
physical meaning.

In the rest of the paper we will use the vector notation
instead of the kets (except for |0〉, which will still be used for
one qubit). Contrary to most papers dealing with QPT, we will
not use mixed states or density matrices as we are considering
pure states in a closed system. We need the system to be
closed, because all processes of a closed system are unitary.

FIG. 1. QPT setup. The “double arrows” symbolize that some
copies are measured (straight arrow) and the others are fed through
the next gate.

The unitary matrix that characterizes the process to be
identified is denoted as M, and it is unique up to a global
phase. Most often, the gate is physically realized by apply-
ing a constant Hamiltonian H to the input state in a closed
system. After a time delay �t the state vector is multiplied by
M = exp −i

h̄ H�t according to the Schrödinger equation (h̄ is
the reduced Plank constant, i is the imaginary unit, exp is the
matrix exponential).

The QPT algorithm that we use relies on estimates of the
measured states. Those estimates are computed with a QST
algorithm. In Appendix A we summarize the QST algorithm
that we recently introduced in [14] that relies on only one-
qubit Pauli measurements performed in parallel on each qubit.
A total of 2nqb + 1 types of those measurements need to be
performed on each measured state.

B. QPT setup

Our QPT algorithm is designed to be robust to systematic
errors on the initial states. To this end, we assume that the ini-
tial states are unknown but that measurements are performed
at different time steps; see Fig. 1. The number of initial
states is ni. They are measured after waiting �t , 2�t ,...or
ns�t (ns is the maximum number of time delays), and the
state vector is multiplied by the matrix M associated with
the process from one time delay to the next. The number of
types of measurements that are performed on each qubit is
called nt . With the QST algorithm of Appendix A, we need
nt = 2nqb + 1. One instance of a measurement alone does not
bring much information on the state: We know only which
one of the d possible outcomes has occurred. This is why we
choose to perform each type of measurement nc times in to
estimate the probabilities of all outcomes. Each copy of the
input states can be measured only once, therefore we need
nsnt nc copies of each one of the ni input states, for a total of
ninsnt nc prepared input states.

The initial states (v1, . . . , vni ) are never measured directly.
We could imagine a similar setup where they are measured
and the number of considered time delays is decreased by
one (in fact, we used this approach in [22] with ns = 2 and
ni = d). We chose not to use this approach here because some
current quantum computers do not allow one to measure some
states right after they are prepared. This is the case for the
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computer we used in Sec. VI. This is explained in Sec. VI
(more precisely in the description of Fig. 11) where we detail
the implementation of our algorithm on a cloud quantum
computing platform.

The results of the experiment are the measurement counts.
For each one of the ni × ns measured states with each one of
the nt types of measurements, we count the number of times
each one of the d outcomes occurred. Those d counts sum to
nc, and each one of those groups of d measurement counts can
be modeled as a random variable that follows a multinomial
distribution with nc trials and the probabilities of the d out-
comes are determined by the value of the associated measured
state and the type of measurement. Table II in Appendix D
shows an example of measurement counts for a given QPT
setup with ni = 4, ns = 2, nt = 5.

C. Main algorithm

We assume that QST is performed properly for the mea-
sured states of Fig. 1. The measured states are denoted with
the following convention:

v j,k = Mkv j, j ∈ {1, . . . , ni}, k ∈ {1, . . . , ns}, (1)

and {̂v j,k} j,k are their estimates. Those QST estimates each
have a phase indeterminacy θ

QST
j,k and a QST error ε

QST
j,k such

that E (||εQST
j,k ||2) −→

nc→+∞ 0 (E is the expected value):

v̂ j,k = Mkv je
iθQST

j,k + ε
QST
j,k

j ∈ {1, . . . , ni}
k ∈ {1, . . . , ns}. (2)

For the rest of this paper, when we refer to the “QST
error,” we mean ε

QST
j,k , not θ

QST
j,k . For the rest of this section,

we consider that there is no QST error: ε
QST
j,k = 0 unless stated

otherwise. In Sec. II A we stated that the global phases of the
states have no physical meaning since states that differ by only
a global phase are the same. This is why we do not consider
θ

QST
j,k to be an “error”: it affects our QST estimate even in the

ideal case with an infinite number of measurements and with
no source of error.

We know that

v j,k+1 = Mv j,k j ∈ {1, . . . , ni}, k ∈ {1, . . . , ns − 1}. (3)

For the sake of simplicity, we define

X = [v1,1, . . . , v1,ns−1, v2,1, . . . ., vni,ns−1],

Y = MX = [v1,2, . . . , v1,ns , v2,1, . . . ., vni,ns ],

X̂ = [̂v1,1, . . . , v̂1,ns−1, v̂2,1, . . . ., v̂ni,ns−1],

Ŷ = [̂v1,2, . . . , v̂1,ns , v̂2,1, . . . ., v̂ni,ns ].

(4)

With those notations, (3) becomes Y = MX, and we ignore
the setup of Fig. 1 and imagine that we are dealing with the
simpler setup of Fig. 2 (with the convention that x� is the �th
column of X).

This representation is closer to the SQPT setup (known
initial states, measured output). In fact, the only difference is
that here the virtual input states (states on the left-hand side of
Fig. 2) are not set to predetermined values, but are prepared
with unknown quantum gates (including the gate that we are
trying to identify). Those input states are estimated from the

FIG. 2. Virtual QPT setup.

measurements. The algorithm that we will now describe could
work with an SQPT setup with known predetermined input
states X and measured output states Y. But not all SQPT
algorithms would work with the “real” original setup (Fig. 1)
because they often require the input states to be set to prede-
termined values.

When we state that the virtual input states (i.e., the states
represented by the columns of X) “are informationally com-
plete” or “the process is identifiable,” we mean that there is
only one unitary quantum process that transforms the virtual
input states represented by the columns of X into the virtual
output states represented by the columns of Y. If this is not
the case, then there are several quantum processes which are
compatible with the measured states in the columns of X and
Y, i.e., there are several solutions to the QPT problem, and
any QPT algorithm would fail to find a unique solution.

One could think that the problem of finding the unitary
process that transforms X into Y is a simple linear least
square problem with a unitarity constraint. But this is not the
case because the columns of X and Y are known only up to
global phases. Those global phases are not physical, but, when
solving for M up to a global phase, the difference between the
phases of the columns of X and those of Y matter.

Let us define the relative phases between the x� and the y�:

ξ� = θ
QST
j,k − θ

QST
j,k+1,

j ∈ {1, . . . , ni}, k ∈ {1, . . . , ns − 1}
� = k + (ns − 1)( j − 1)
� ∈ {1, . . . , ni(ns − 1)}

.

We can rewrite (3) with X̂ and Ŷ (which are known from
the QST):

eiξ� ŷ� = Mx̂� � ∈ {1, . . . , ni(ns − 1)}, (5)

where x̂� and ŷ� are the �th columns of X̂ and Ŷ, respectively.
For any index �0, changing M to M.e−iξ�0 and ξ� to ξ� −

ξ�0 ∀� does not change the equality (5). Therefore, we can
also assume that a given �0 (we explain how to choose it in
Sec. II D) is such that ξ�0 = 0 taking into account the fact that
M can be recovered up only to a global phase.

In the next section, we explain how to obtain the estimated
phase factors eîξ� . From that, we can define

ỹ� = ŷ�eîξ� � ∈ {1, . . . , ni(ns − 1)}, (6)

with which an estimate of M can easily be found (if ni(ns −
1) � d) as the problem becomes

Ỹ = MX̂ (7)

with

Ỹ = [̃y1, . . . , ỹni (ns−1)]. (8)
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In the absence of systematic error, M̂ = ỸX̂† is a solution
([·]† is the pseudo-inverse). But it is generally not a unitary
solution because of the QST errors. Finding M̂ in the ensem-
ble of d-dimensional unitray matrices [denoted as Ud (C)] that
is the total least square solution of (7) has been solved by
Arun [26] (with the caveat that that work solves, with dif-
ferent notations, Ỹ∗ = X̂∗M, where [·]∗ is the transconjugate,
instead of Ỹ = MX̂). Arun’s solution can be rewritten as

B = ỸX̂∗,
U S V∗ = B,

M̂LS = U V∗,
(9)

where U S V∗ is the singular value decomposition of B.
This is optimal in the total least square sense, meaning that
M̂LS (X̂ + �0

X ) = (Ỹ + �0
Y ) where �X ,�Y are the solutions

to the following optimization problem:{
�0

X ,�0
Y

} = arg min
{X̂+�X ,Ỹ+�Y }∈L

||�X ||2 + ||�Y ||2, (10)

where L is the ensemble of the pairs of d × ni(ns − 1)
matrices linked by a unitary transformation: L =
{X, Y ∈ Cd×ni (ns−1), ∃P ∈ Ud (C), Y = PX}.

We use the total least square approach because both X̂ and
Ỹ are subject to errors. �0

X and �0
Y can be understood as our

estimates of those errors. This approach would be optimal
in the maximum likelihood sense if the errors on X̂ and Ỹ
were Gaussian iid on every component. This is not the case
in practice (especially if ns > 2: in this case, some columns
of X̂ are also in Ỹ up to a phase, thus their errors are highly
correlated), but minimizing the norm of the error is a relevant
approach as a first approximation.

The solution M̂LS is unique if and only if both X̂ and Ỹ have
full rank. This is not explicitly stated in [26], but it is proven
for the orthogonal Procrustes problem in [27], which [26]
showed to be equivalent to the total least squared problem that
we consider.

D. Phase recovery algorithm

The aim of the current section is to find {eîξ�}� given the
vectors, x̂�, ŷ� � ∈ {1, . . . , ni(ns − 1)} such that there exists a
unitary matrix M that realizes (5).

We will use the fact that unitary matrices preserve the dot
product:

x̂∗
�1

x̂�2 = (Mx̂�1 )∗ (Mx̂�2 ) = ŷ∗
�1̂

y�2
ei(ξ�2 −ξ�1 ). (11)

Therefore, for any {�1, �2} pair in {1, . . . , ni(ns − 1)}2, such
that ŷ∗

�1̂
y�2


= 0, we have the following estimate of ξ�2 − ξ�1 :

ξ̂�1,�2 = arg

(
x̂∗

�1
x̂�2

ŷ∗
�1̂

y�2

)
, (12)

where arg is the phase of a complex number. Using (12),
we can compute estimates ξ̂�2 of all the phases ξ�2∀�2 ∈
{1, . . . , ni(ns − 1)} relative to a single phase ξ�0 (by setting
l1 to l0). Using the fact that ξl0 = 0 the estimate of ξ�2 is

ξ̂�2 = ξ̂�0,�2 . (13)

The problem of the choice of l0 remains. To solve it, let us
look at (12) with �1 replaced by �0 (this is how we compute

ξ̂�0,�2 ):

ξ̂�0,�2 = arg

(
x̂∗

�0
x̂�2

ŷ∗
�0̂

y�2

)
. (14)

It assumes that the dot products x̂∗
�0

x̂�2 and ŷ∗
�0̂

y�2
are not zero.

In practice, for ξ̂�0,�2 to be a good estimate, we need both
dot products to be as far from zero as possible. Interestingly,
the two dot products are supposed to have the same modulus
[see (11)]; therefore, we choose the index �0 solution of

�0 = arg max
�

(
min

�2

∣∣̂y∗
�̂y�2

∣∣). (15)

With this choice, �0 is such that the smallest dot product is as
high as possible. The optimization is performed by exhaustive
search.

In practice, if the corresponding maximum is 0 i.e., if, for
all the ŷ�, we can find an orthogonal ŷ�2

, then this approach
fails as (14) cannot be written for all the phases. In practice,
two vectors are never going to be truly orthogonal, so in our
implementation of our method, we consider that two unit-
norm vectors are orthogonal when the modulus of their dot
product is smaller than borth initially set to 0.05. And if the
quantity maximized in (15) is greater than this borth, we simply
compute all the phases with (14) and then (13). Otherwise we
apply the following algorithm:

(1) We start by computing the phase differences ξ̂�0,�2 (14)
such that ŷ�2

are not orthogonal (modulus of dot product >

borth) to ŷ�0
. We then have the absolute phase of ŷ�2

using (13).
(2) We call F the set of {̂y�2

}�2 for which we do not have
the phase yet. We define S as the complement of F in {̂y�2

}�2 .
(3) For each element ŷ� f

of F
(a) If all elements of S are orthogonal (modulus of dot

product < borth) to ŷ� f
we change nothing and go to the

next ŷ� f
.

(b) Else, we define ŷ�s
as the element of S that is the

least orthogonal (greatest modulus of dot product) to ŷ� f
.

(c) We compute the relative phase ξ̂�s,� f with (12) and
deduce the phase ξ̂� f : ξ̂� f = ξ̂�0,� f = ξ̂�0,�s + ξ̂�s,� f .

(d) We remove ŷ� f
from F and add it to S .

(4) If F is empty, then the algorithms successfully ends.
(5) If F is not empty but the number of elements in it has

decreased since Step 3, then we go to Step 3.
(6) If F is not empty and the number of elements did

not change, but Cd is spanned by the elements of S , then
we remove the elements of F from Ŷ and the corresponding
elements of X̂, exit the phase recovery algorithm, and go on
to solve (9) without the elements we removed.

(7) If the conditions in Step 5 and 6 are false, and borth is
still 0.05, then we change borth to 0 and go to Step 3.

(8) If borth was already 0 when reaching Step 7, then this
is a failure case and the algorithm ends.

This algorithm cannot stay in an infinite loop for the fol-
lowing reasons:

(1) The maximum number of times we can go from Step 5
to Step 3 without going to Step 6 is the cardinal of F at Step
2 (because the cardinal of F decreases by at least one every
time), which is strictly smaller than ni(ns − 1).
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(2) The maximum number of times we can go from Step
7 to Step 3 is 1.

The algorithm can fail at Step 8, but we will show in
Sec. III A that it always works if the states represented by the
columns of X are informationally complete.

E. Application to the standard QPT setup

The reader might be more familiar with the SQPT setup
where the input states are known and only one time delay is
considered. Our algorithm can easily be adapted to this setup
because, as we stated in Sec. II C, the virtual setup of Fig. 2
is almost the SQPT setup, with nx = ni(ns − 1) input states:
x1, . . . , xnx . The only difference between the two is that, for
the SQPT setup, the input states are considered to be known
(and not estimated by QST). This is not a problem for our QPT
algorithm: in the SQPT setup we can still define the matrices
X̂ (because the input states are known) and Ŷ (because the
output states are estimated by the QST algorithm), compute
Ỹ with the algorithm of Sec. II D, and, finally, compute M̂LS

with (9).

III. IDENTIFIABILITY CONDITIONS

A. A necessary and sufficient condition for process identifiability

The QST error {εQST
j,k } j,k is neglected in the current sec-

tion, therefore Ỹ = MX̂, with Ỹ = ŶD(ξ), and D(ξ) is the
diagonal matrix defined by the phases contained in ξ: D(ξ) =
(
eiξ1

. . .

eiξnx

) [nx is the number of columns in X̂, so ni(ns −
1) in the base problem].

Therefore, the QPT problem after QST consists of finding
the unitary matrix M subject to the following condition:

ŶD(ξ) = MX̂, (16)

where X̂ and Ŷ are known from the QST and the elements
ξ1, . . . , ξnx of ξ that define D(ξ) are unknown before the QPT.
X̂ contains our estimates of the virtual input states. Since there
is no QST error, the columns of X̂ are the same as those of X
up to global phases.

The following condition on X is necessary and sufficient
for the states represented by the columns of X to be informa-
tionally complete with the setup of Fig. 1:

∀� ∈ {1, . . . , nx}, rank
(
Fnx

S (x�)
) = d, (17)

where FS is the function that takes as its input a matrix Xin

whose columns are columns of X and that returns the columns
of X (grouped in a matrix in the order in which they appear in
X) that are not orthogonal to at least one column of Xin. Fnx

S
is FS applied nx times, and x� is the �th column of X. This
definition is closely linked to our phase recovery algorithm. If
we change the starting borth to 0, then, at Step 2, the columns
of S match the columns of F1

S (x�0 ). They match them in the
sense that there are as many columns and their positions in Ŷ
and X, respectively, are the same. This is because ŷ�1

⊥ ŷ�2
⇔

x�1 ⊥ x�2 (⊥ means that two vectors are orthogonal). The kth
time we go to Step 5, the columns of S match the columns of
Fk+1

S (x�0 ), and, importantly, the subspaces they span have the
same dimension.

Equation (17) is a condition on the columns of the
matrix X. However, it is very easy to check that we could
have set this condition on the columns of X̂, Y, or Ŷ and have
an equivalent condition. This is because multiplying all the
columns by the same unitary matrix on the left or multiplying
each of them by a different scalar phase factor does not change
the rank or the orthogonality between the columns. We use
X because it is a matrix that contains the input states (of the
virtual setup in Fig. 2), and we prefer to have a condition on
the input states.

Appendix B shows that, in the absence of QST error, (17)
is a necessary (Sec. B 2) and sufficient (Sec. B 1) condition
for the states represented by the columns of X to be informa-
tionally complete (i.e., for M to be identifiable up to a global
phase). Furthermore, the proof of the sufficiency of (17) in
Sec. B 1 also shows that our QPT algorithm always succeeds
if (17) is true.

This is a strong validation of our algorithm: It always
achieves QPT if the setup (i.e., the measured states) makes it
possible and fails only if the states represented by the columns
of X are informationally incomplete (i.e., if QPT is also im-
possible for any other algorithm). Of course, this is true only
if there are no QST errors. When considering non-null QST
errors, we can have issues with setups for which X is poorly
conditioned and for which X contains groups of columns that
are too close to being orthogonal for the phase recovery to
succeed.

B. A simpler sufficient condition

We have established that (17) is a necessary and sufficient
condition for the states represented by the columns of X to be
informationally complete. The condition of (17) is quite cum-
bersome to check however, and we prefer to use the following
sufficient condition (it may be shown that it is not necessary):

rank(X) = d and
∃�0 ∈ {1, . . . , nx}, ∀� ∈ {1, . . . , nx} x�0 
⊥ x�.

(18)

In plain words, X has full rank and there exists a column of X
that is not orthogonal to any of the others.

It is very easy to check that (18) ⇒ (17): if (18) is met, then
all the columns of X are in Fk

S (x�) for any k � 2 and any �.
Therefore, when we design the QPT setup of Fig. 1 we

have to hope (or to make sure) that the quantum states that are
represented by the columns of X satisfy (17) or (18).

In practice, (18) is a very reasonable condition. The proba-
bility of two random states (with any nondegenerated density
function) being orthogonal is 0 and the probability of d ran-
dom vectors or more (in a d-dimensional Hilbert space) being
in a subspace of dimension � d − 1 (this relates to the con-
dition on the rank of X) is also 0. Essentially the states that
make our algorithm fail are in a set of zero measure.

Therefore the conditions of (18) [and the condition of (17)]
will always be satisfied in practice. Even if we try to prepare
states that make our QPT method fail, the small random
error in their preparation will ensure that the actual states
satisfy (18). This does not mean that we can safely ignore the
conditions though. Indeed, if X has full rank but is almost
singular, or if there are too many columns close to being
orthogonal, then our algorithm (that works on X̂ instead of
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the unknown X) is expected to yield low performance if there
are QST errors.

IV. QPT SETUPS COMPATIBLE WITH IDENTIFIABILITY

A. Our recommendations for suitable QPT setups

If possible, we recommend considering the assumed be-
havior of the gate that we are trying to identify (otherwise we
hereafter propose a solution suited to any unitary gate without
prior knowledge). For example, if the gate to be identified is

supposed to be a two-qubit CNOT gate, Mtg =
⎛⎝1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

⎞⎠
(“tg” stands for target), then, choosing a single input state
(ni = 1) and d + 1 = 5 time steps (ns = 5) is a very bad op-
tion. This is because the CNOT gate applied twice is supposed
to return the initial state. Therefore, X has two identical pairs
of columns. In practice, it will make X̂ close to being singular
and the quality of the estimate of M will be very poor.

To have a matrix X such that (18) is “comfortably” satisfied
with the CNOT gate, let us consider ns = 2 time delays, and
ni = d = 4 input states that form a basis of the Hilbert space
with one of them far from being orthogonal to all the others.
For example, we can aim for the following targets:

v
tg
1 =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠, v
tg
2 =

⎛⎜⎜⎜⎜⎝
1√
2

1√
2

0
0

⎞⎟⎟⎟⎟⎠,

v
tg
3 =

⎛⎜⎜⎜⎜⎝
1√
2

0
1√
2

0

⎞⎟⎟⎟⎟⎠, v
tg
4 = 1

2

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠. (19)

The actual states v1, v2, v3, v4 should be reasonably close to
those targets, but our QST algorithm will behave as if the
states were totally unknown (so that we are robust to system-
atic errors).

Using the fact that multiplying two vectors by the same
unitary matrix preserves their dot product, it is very easy
to check that X = M[v1 v2 v3 v4] satisfies (18) and
thus (17) with a comfortable margin for any unitary matrix
M if the {vk}k are equal (or fairly close) to their target.

The target states of (19) can be generalized to any number
nqb of qubits:

[vtg
1 , . . . , v

tg
d ] =

⎛⎝1 1√
2

0 1√
2

⎞⎠ ⊗ · · · ⊗
⎛⎝1 1√

2

0 1√
2

⎞⎠
︸ ︷︷ ︸

nqb times

(20)

in the sense that the target vectors on the left-hand side are
defined as the columns of the matrix on the right-hand side.
For all nqb-qubit unitary gates, using the states of (20) with
ni = d, ns = 2 generates a matrix X that satisfies (18) because
its columns form a basis and none of them are orthogonal.
These states have the advantages of being unentangled and
very easy to prepare: If all qubits are initialized at |0〉, then the

FIG. 3. Quantum circuit representing the preparation of a state
v

tg
k of (20) and the semiblind QPT of M using this state. The circuit

has to be realized for all k ∈ {1, . . . , d}. The 2 × 2 matrix Hd is
the unitary matrix associated with the one-qubit Hadamard gate,
and bj (k) ∈ {0, 1} is the jth element of the binary decomposition of

k − 1 over nqb bits. Thus H
b j (k)
d = I2 if bj (k) = 0 and H

b j (k)
d = Hd if

bj (k) = 1. This setup works well for QST for any value of the unitary
matrix M that represents the gate to be identified. Our algorithm is
robust to poor implementations of the Hadamard gates. The “double
arrows” in the middle symbolize that half of the copies are measured
(straight arrow) and the other half fed through the next gate (in
practice, this is achieved by waiting 2�t instead of �t ).

kth state can be prepared by applying a one-qubit Hadamard
gate to the qubits with indices for which there is a 1 in the
binary decomposition of k − 1. For example, for v

tg
1 , all qubits

remain equal to |0〉 and no Hadamard gate is applied, for v
tg
2 ,

all qubits are initialized at |0〉 and a Hadamard gate is applied
to the last qubit, etc. The Hadamard gate is represented by

the unitary matrix Hd = 1√
2

(1 1
1 −1

)
; it transforms |0〉 into

1√
2
|0〉 + 1√

2
|1〉.

The setup of Fig. 3 with ni = d , ns = 2 generates the initial
states of (20). It is very interesting to note the following:

(1) As explained above, it can identify any type of unitary
gate without prior knowledge [the sufficient condition (18) is
always satisfied].

(2) It is fairly easy to prepare, as we require only a single
type of gate (Hadamard) other than the gate that we want to
identify.

(3) We can also tolerate errors in the Hadamard gates: they
do not have to be perfect and they do not have to be identical,
we simply require the behavior of each gate to remain un-
changed while we prepare copies of each state.

(4) Using such simple gates at most once for each qubit
should limit the decoherence issues.

One drawback of the setup of Fig. 3 is that there can be
issues with the conditioning of X when nqb increases. The
matrix X is always invertible with the states of (20). But
we observed that, experimentally, its smallest singular value
decreases exponentially (with nqb) towards 0. For more than
four qubits we recommend considering more than d input
states or using one-qubit rotation gates (instead of Hadamard
gates) with adapted angles that provide a good conditioning
and maintain the nonorthogonality condition in (18). The con-
ditioning and the inner product of the columns of X do not
depend on the value of the unitary matrix M, they depend on
only the values of the initial states.
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FIG. 4. Quantum circuit that can be used to perform QPT of
the gate represented by M with a single input state and d + 1 time
steps: ni = 1, ns = d + 1. With this setup, the QPT is possible if and
only if the matrix M generates states X = [Mv1, . . . , Mdv1] that
satisfy (17). This setup is very easy to realize as it uses only one
value of the initial state. The “double arrows” symbolize that the ncnt

copies are measured (straight arrow) and the others are fed through
the next gate.

This setup can be less efficient than the one described
below (Fig. 4) if we have a good idea of the behavior of the
gate that we are trying to identify. For example, with nqb = 2,
if the unitary process that we want to identify is supposed to
be represented by

Mtg = 1

2

⎛⎜⎜⎜⎜⎝
1 −√

2 0 1

1
√

2 0 1
1 0 −√

2 −1

1 0
√

2 −1

⎞⎟⎟⎟⎟⎠, (21)

we hereafter show how to exploit this knowledge to design a
more efficient setup. If M is close enough to Mtg, then we can
use a single initial state, ni = 1 and ns = 5 time delays, and M
should (unless it is very far from the target) make the initial
state evolve in a way that makes (18) true. If the initial state is

v1 = (

1
0
0
0

), for example, then we can compute the matrix X we

would have if M was exactly the target:

Xtg = [
Mtgv1 , . . . , Md

tgv1
]
. (22)

The matrix Xtg is well conditioned (the greatest singular value
only 2.5 times greater than the smallest), and its first column
is reasonably far from being orthogonal to the others (smallest
modulus of dot product of 0.14). This setup (generalized to
any number of qubits) is represented in Fig. 4. Considering
fewer states and more time delays than in the setup of Fig. 3
means that we partly rely on the gate we are trying to identify
to create the states that we will use. The drawbacks of this
approach are the following:

(1) We are never sure that (17) is true with a comfortable
margin, unless we have a good enough prior knowledge about
the behavior of the gate that we want to characterize. In
contrast, with ni = d, ns = 2 and the initial states of (20),
we are sure that (18) and (17) are comfortably satisfied for
any M.

(2) With most of the “classic” (i.e., most often considered
and used in the literature) quantum gates, the setup of Fig. 4
yields a matrix X that does not satisfy (17). This is because
those gates often involve 90◦ rotations (which can make too

many columns of X close to being orthogonal) or do not
change some directions of the Hilbert space (which can make
X poorly conditioned).

(3) If all the gates M of Fig. 4 are not identical, the
estimate will be degraded, whereas if the two gates to be
identified in Fig. 3 are different, it is not really a problem,
because the second gate is identified, whereas the first one is
used only for the state preparation. We think that this is not a
big problem because the way the gates are physically realized
(see Sec. II A) makes it easy to apply the same gate several
times.

(4) Having higher values of ns can create decoherence
issues for some architectures because the state is observed
after waiting ns�t .

But the setup of Fig. 4 has the following advantages:
(1) Preparing copies of a single input state value is much

simpler for the operator. Only one type of gate (the gate to be
identified) is used. Using more types of gates is problematic
because, even though the QPT algorithm of Sec. II makes no
assumption on the values of the unitary matrices that represent
each gate (M and the gates used for the initial states prepara-
tion), it still assumes that they are unitary gates that operate
in the exact same way every time we repeat the experiment.
If this is not the case, the quality of our estimate of M will
suffer.

(2) Having a higher ns means that more of the estimated
output states are being “reused” as estimates of input states
and vice versa. This means that fewer states are measured
overall, and that we can afford to make more copies of each
state that we measure. For example, with nqb = 2, we can use
the ni = 4 different initial states values of (20) and ns = 2
time steps to estimate a two-qubit gate. This require eight dif-
ferent states to be measured. If the same gate can be estimated
with a single input state value (ni = 1) and ns = 5 time delays,
this requires only five different states to be measured.

(3) The example of the target gate (21) that we used to
illustrate a case where ni = 1, ns = d + 1 might seem far
fetched and make the reader think that we had to find a particu-
lar matrix M to make the setup of Fig. 4 (ni = 1, ns = d + 1)
work. This is not the case; the setup of Fig. 4 yields good
performance for random unitary gates (see Sec. V D).

We could consider an intermediate setup with d > ni > 1.
It can be useful if M is the identity matrix (up to a global
phase) in a subspace of the Hilbert space but brings enough
diversity to the supplement of this subspace. For example,
let us assume that we want to perform QPT for a gate that

is supposed to be represented by Mtg = (

1 0 0 0
0 1 0 0
0 0 1√

2
− 1√

2
0 0 1√

2
1√
2

).

If we consider a single arbitrary input state value v1 and
if M = Mtg, then the matrix Xtg of (22) will never have
full rank because its first two rows will contain the same
value in all columns, so that these rows with be colin-
ear. But if we consider ni = 2 input states and ns = 3
time delays, we can create informationally complete states

with vtg
1 = 1√

2
(

1
0
1
0

), vtg
2 = 1√

2
(

0
1
0
1

). It is very easy to check that X =

[Mv1 M2v1 Mv2 M2v2] satisfies (17) comfortably if
M and the input states are equal to their targets. There-
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fore (17) should still be satisfied if they are close to their
targets.

B. Comparison with the literature about
unitary multiqubit QPT

Reich et al. in their Appendix 1 [10] give a necessary and
sufficient condition on the input states for a unitary process
to be uniquely (up to a global phase) determined among all
processes (unitary or not). This condition is

Com({ρ�}�) = {eiθ Id}θ∈R, (23)

where ρ� is the density matrix of the �th mixed input state,
Com is the comutant, Com({ρ�}�) refers to the ensemble of
the unitary matrices that commute with all {ρ�}�, and Id is the
d × d identity matrix.

If we write (23) for pure input states, ρ� = x�x∗
� , the condi-

tion becomes

Com({x�x∗
�}�) = {eiθ Id}θ∈R. (24)

The conditions (17) and (24) are equivalent, as shown in
Appendix B 3. This does not mean that (17) is equivalent to
the original condition (23) of Reich et al. because the latter
was defined with mixed input states, and (24) is its reformula-
tion with pure input states. Therefore we have the equivalence
between (17) and (23) only when the input states are pure.

In Ref. [10] the authors give two examples of sets of input
states that satisfy (23). The first one is a set of d + 1 pure
input states: d states that form an orthonormal basis and a last
state that is the average of the first d states (it works with any
orthonormal basis). The same idea is present in (18): one of
the states is not orthogonal to the others.

Reich et al. [10] also show that if we allow the use of
mixed states, then there exists a set of only two information-
ally complete states. This is because, if a mixed state with
d distinct eigenvalues goes through the unitary process, then
the output has the same eigenvalues but the eigenvectors are
multiplied by the unitary matrix associated with the process.
Therefore it is possible to evaluate the unitary matrix on the
orthonormal basis of the eigenvectors by using a single mixed
input state. This is not enough though because all the states
are orthogonal to one another, so they need a second input
state. We chose not to consider mixed states because they
are more complex to create and set to a predetermined value.
Baldwin et al. [9] remark when they use the results of [10]:
“In practice we do not have reliable procedures to produce
a desired, reproducible, mixed state.” We do not fully agree
with that statement, since any mixed state can be seen as a
statistical mixture of at most d pure states (represented by
the eigenvectors of the density matrix). If we can generate
all the pure states of the mixture and then randomly select
one of them for each copy of the mixed state that we generate
(with the probability of choosing each eigenvector given by
the associated eigenvalue of the density matrix of the target
mixed state), then we can generate the desired mixed state.
Generating a mixed state in this way would not be optimal,
however, as it involves preparing copies of d different pure
states and then “mixing” them (not recording which pure state
is used for which copy of the mixed state). Using the d pure
states directly is more efficient than using this “mixture.”

Beyond reformulating (24) as (17) and providing a set of
simple input states, our contribution is that, contrary to [10],
we do provide a QPT algorithm that works with every set of
input states that verifies our necessary and sufficient condi-
tion. We also took advantage of the fact that (17) is loose
to introduce our semiblind setup that removes the issue of
systematic errors.

Baldwin et al. [9] propose a unitary QPT algorithm [after
their Eq. (20)] adapted to the following specific set of d input
states: {

δ1,

{
1√
2

(δ1 + δk )

}
k∈{2,...,d}

}
(25)

(where δk is the d-dimensional vector that contains d − 1
zeros and a single 1 on the kth element). The last d − 1 states
of the set are entangled; they can be more challenging to pre-
pare precisely than unentangled states. This algorithm is much
simpler than ours, but it works only for this particular set of
d states, and the quality of the QPT’s estimate will be limited
by the systematic errors on the initial states. Our algorithm
works for any informationally complete set of state, and we
take advantage of this property to propose a semiblind setup
that eliminates the issue of systematic errors and works with
the unentangled initial states of (20). Baldwin et al. also go
further and propose an algorithm adapted to processes close
to being unitary. This algorithm could actually be used with
arbitrary input states, as long as they satisfy (17). But it is
a l1 minimization algorithm with a regularization parameter,
and the solution (and its rank) will depend on the value of the
regularization parameter.

V. PERFORMANCE ON SIMULATED DATA

We chose to first focus on the setup with the four initial
states (19) to estimate random two-qubit gates to test the
robustness of our method to different kinds of errors. We con-
sider this setup because two-qubit QPT is a classic problem
and the four initial states (19) are versatile. We aim to test
the robustness of our method to the multinomial error (error
generated by the finite number of measurements) in Sec. V A.
Then, in Secs. V B and V C, we test its robustness to the
systematic errors on the input states, and we compare our
algorithm to that of Baldwin et al. [9]. Finally, in Sec. V D we
expand the tested setup by increasing the number of qubits.
We also compare the performance of the setup of Fig. 3 to
that of the setup of Fig. 4 when the number of qubits is varied.

Other simulations were also performed. They introduced
decoherence which is not taken into account by our model
of measurement (the measured states are assumed to be pure).
Those simulations are deemed less important and are provided
in Appendix C.

A. Impact of the number of measurements

We designed simulations to determine the number nc (the
number of copies of each state that need to be prepared
and measured for each measurement type) that is required to
obtain an accurate estimate of M with the setup of Fig. 3.
We start by considering the case when the finite number of
measurements is the only source of errors. There is no deco-

062410-9



FRANÇOIS VERDEIL AND YANNICK DEVILLE PHYSICAL REVIEW A 108, 062410 (2023)

herence, the measurements follow the model, and the initial
states that we consider are prepared with perfect Hadamard
gates (as will be seen in Sec. V B, the last point does not
really matter). We vary nc from 20 to 25 000, and for each
value of nc we generate 5000 random quantum gates defined
by unitary matrices created by applying the Gram-Schmidt
algorithm to a random complex matrix with each coefficient
i.i.d. and following the circularly symmetric centered complex
normal distribution. For each nc we also generate 5000 (one
per gate to be identified) sets of nsnint random measurement
counts (the measurement counts are defined at the end of
Sec. II B) associated with all nc copies. They are simulated
with a d-outcome multinomial distribution with the proba-
bilities of all outcomes set to their theoretical values (Born
rule). For example, if one of the measured states is v =
(0.5 0.5 0.5i 0.5i)T (to be identified with the measure-
ments) and we perform measurements in the computational
basis (measurement type ZZ in Appendix A) with nc = 50
copies of this state measured in this basis, we simulate mea-
surement counts by sampling a multinomial distribution with
probability parameters given by the Born rule p = |I4v|2 =
(0.25 0.25 0.25 0.25)T for the four outcomes and nc =
50 trials. The resulting empirical measurement counts could
be (13 10 15 12)T , for example.

For each nc, we therefore have 5000 unitary matrices {M}
to be estimated and 5000 sets of measurement counts to
perform the QPT. We run our algorithm and get 5000 esti-
mates {M̂LS}. We then have to quantify the error between the
matrices {M} and the matrices {M̂LS}. We choose to use the
following metric denoted ε(M̂LS, M) and called the error:

ε(M̂LS, M) = 1√
2d

||M − M̂LSeiφ ||, (26)

where φ is the angle that minimizes the error (it accounts for
the fact that M can be recovered only up to a global phase) and
|| · || is the Frobenius norm. The values of this metric range
from 0 (if M̂ and Mtrue are equals up to a global phase) to
1 (if they are orthogonal with respect to the Hilbert-Schmidt
inner product). It can be shown that

φ = arg(tr(M̂∗
LSM)) (27)

(arg is the phase of a complex number and tr is the trace).
In the literature, the fidelity f (M̂LS, M) is more often used

[see, e.g., Eq. (24) in [9]]. It is defined for all quantum
processes (not only unitary processes). It can be shown that
the two metrics are linked when we are dealing with unitary
processes: f (M̂LS, M) = 1 − ε(M̂LS, M)2. We consider that
ε is much more attractive than f because ε is a distance and
has a real meaning (a value ε of 0.1 can be seen as a 10%
error). It is also much more informative when the estimate
M̂LS starts to become close to M: clearly, an error ε of 0.1 is
significantly worse than an error of 0.01, but comparing the
associated values of f , equal to 0.99 and 0.9999, is harder.

Figure 5 shows the box plots (first and last quartiles,
median, 5th and 95th percentiles and outliers) of the 5000
samples of the error for each value of nc. We also display
the line proportional to 1√

nc
that fits some of the measured

medians (see caption).

101 102 103 104

10-2

10-1

100

FIG. 5. Box plots of the QPT error with respect to the number
nc of measured state copies per state and per type of measurement is
varied. The light (green) line from top left to bottom right represents
the function n −→ C√

n where C is computed so that the line fits
(in the least square sense) the median in the box plots associated
with nc � 1000. The central (blue) rectangle represents the interval
ranging from the first and last quartiles where half of the observations
are. The narrow (red) line in the middle of each rectangle is the
median, and the (black) whiskers range from the 5th percentile to
the 95th percentile. By definition, 90% of the samples are within the
range of whiskers, whereas the ones that are not are called “outliers”
and are represented as small (red) dots above and below each box
plot.

With the log scale, we find the classic inverse relation
between the estimation error and the square root of the number
of samples (the line accurately fits the last medians) if nc is
high enough (nc � 100).

B. Impact of the systematic errors

We design a second simulation to investigate the influ-
ence of the systematic errors present in the initial states. We
simulate the initial states of (19), we fix nc = 1000, and we
simulate systematic errors so that each of the nt ncns copies
of a given state has the same error. Physically this means
the initialization of the states at |0〉 or the Hadamard gate
used to transform them has errors, but, for a given gate or
initialization, this error is the same for each copy. We have
to consider the multinomial error (nc = 1000) in addition to
the systematic error because the QPT error would always be
zero otherwise. The systematic errors are modeled as ran-
dom complex vectors with each coefficient i.i.d. following
the circularly symmetric centered complex normal distribu-
tion added to each vector of (19). After adding this error
we renormalize the initial vectors. The standard deviation of
this systematic error is the same for all components, and we
vary it from 0 to 0.3. We also test our algorithm with totally
random states uniformly sampled on the ensemble of pure
states. Figure 6 displays the box plots of the QPT error versus
the standard deviation (std.) of the error. The infinite std. (inf)
refers to the totally random initial states.
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FIG. 6. Box plots of the QPT error vs the standard deviation
(std.) of the systematic error on the initial states with nc = 1000. The
same box plot representation as in Fig. 5.

There is a significant trend of greater 95th percentile and
greater outliers when the systematic error increases. The 95th
percentile goes from 0.083 to 0.13. For the lower part of
the box plots, the difference is less noticeable. Even when
the initial states are totally random, the median of the error
(0.052) is close to the median we obtained with no systematic
error (0.046). The QPT algorithm is resilient to the systematic
errors on the initial states because it makes no assumption
on the values of the initial states. The only drawback of the
systematic errors is that they can make the QPT problem
harder by making too many initial states close to being orthog-
onal or making the matrix X poorly conditioned. The chance
of those problems occurring is fairly low, even with totally
random input states. This is the reason why the impact of the
systematic errors is mostly visible in the upper part of the box
plots.

C. Comparison with the literature about the SQPT setup

In the current section, we aim to compare our algorithm
with that of [9] in the case involving two qubits and four initial
states (nqb = 2, ni = 4). It is not a trivial task as the algorithm
of [9] has been designed for the SQPT setup of Fig. 7 (in
the case nqb = 2, ni = 4). Our algorithm was defined for the
semiblind setup of Fig. 8. We can adapt it to the SQPT setup
of Fig. 7 (see Sec. II E), but we would lose our resiliency to
systematic errors, which was one of our goals. We chose to
compare the following three algorithms:

(1) Our algorithm running on the setup of Fig. 8 with nc =
1000.

(2) The algorithm of [9] running on the setup of Fig. 7.
We chose to set nc = 2000 in order to account for the fact that
Fig. 7 requires four states to be measured instead of eight.

(3) Our algorithm running on the setup of Fig. 7 with the
adaptations of Sec. II E and with nc = 2000.

For those three options, the initial states are the states
defined in Eq. (20) of [9] or in (25) in the current paper.

FIG. 7. SQPT setup with nqb = 2.

We introduce a systematic error modeled in the same way as
the systematic error in the previous section. For the sake of
simplicity we use the QST algorithm of Appendix A for all
QPT algorithms.

Let us first compare the left-hand plot with the other two
in Fig. 9. When the systematic error increases, the error be-
comes smaller in the left-hand plot. This is unsurprising, since
our algorithm for the semiblind setup (whose performance is
represented on the left-hand plot) has been designed to be
resilient to the systematic errors; it does not use the values of
the initial state. In contrast, the other two algorithms assume
that the values of the initial states are exactly known. It also
makes sense that for lower systematic errors, the nonblind
algorithms running on the SQPT setup (they are represented
on the middle and right-hand side of Fig. 9) perform better
because they use the values of the initial states rather than
wasting half the measurements to get a noisy estimate of two
sets of states before and after the gate has been applied. The
middle plot of Fig. 9 (algorithm of [9] applied to the SQPT
setup of Fig. 7) contains higher errors than the right-hand plot
for all values of the std. of the systematic error (except for the
“infinite std.,” where they are identical). This means that our
algorithm adapted to the SQPT setup yields a better estimate
than that of [9]. This is because the latter is very simple and
elegant, but it was not designed to mitigate the effect of the
errors that we model here (systematic and multinomial error).
It directly estimates the coefficients of the unitary matrix from
the QST estimates of the states. The resulting matrix has
no reason to be unitary if there are errors. In contrast, our
algorithm finds the unitary matrix that fits our QST estimate
best (in the least square sense). The algorithm of [9] is simpler

FIG. 8. Semiblind setup with nqb = 2, ni = 4, ns = 2.
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FIG. 9. Box plots of the QPT error in the presence of systematic errors with the initial states of [9]. The first plot (left-hand side) represents
the error with our semiblind algorithm running on the semiblind setup of Fig. 8. The second plot (middle) represents the error with the algorithm
proposed in [9] applied to the standard setup considered in [9] (represented in Fig. 7 for two qubits). The third plot (right-hand side) represents
the performance of our algorithm adapted to run on the SQPT setup of Fig. 7.

and faster, but as we will see in Sec. V D, our QPT algorithm
is very quick, at least compared to the QST algorithm we use
(it is so quick, in fact, that its execution time is negligible
compared to the QST).

Overall, the performances of our algorithm for the semi-
blind setup are very satisfying. It yields lower errors than the
algorithm of [9] (resp. than our algorithm with the adaptations
of Sec. II E) when the standard deviation of the Gaussian
systematic error is roughly 0.007 (resp. 0.025) on each com-
ponent of the initial states. Those values (0.007 and 0.025) are
obtained by linearly interpolating the median of the box plots
in the three graphs and computing the values of systematic
errors for which the interpolated lines of the median error
cross.

D. Other setups

In this section we aim to investigate how well our QPT
algorithm works with more than two qubits and with the
setups of Fig. 3 and Fig. 4.

For one to six qubits, we simulate 500 random d × d
unitary matrices by applying the Gram-Schmidt process to
random Gaussian matrices (like in the previous subsections).
And we try to identify the processes associated with each
matrix with the following two setups:

(1) With the d initial states of (20) and two time delays
(ni = d , ns = 2, displayed in Fig. 3). We simulate nc = 2500
measurements per measurement type and per measured state.
We consider that the states are prepared with the setup of
Fig. 3. The Hadamard gates used for the initial state prepa-
ration are considered to be imperfect and are represented by

(
cos(θr ) − sin(θr )eiφr

sin(θr ) cos(θr )eiφr
)Hd instead of Hd , where θr and φr

are two random i.i.d. Gaussian centered angles with a standard
deviation of 0.05 radians (two different values are sampled for
each gate of Fig. 3 and for each one of the 500 gates to be
identified).

(2) With a single random initial state and d + 1 time de-
lays (ni = 1, ns = d + 1, like the setup of Fig. 4 but with a

random initial state). We use nc = [2500 2d
d+1 ] ([·] refers to

the closest integer), so that the total number of measurements
ncninsnt is the same (or almost the same if 2500 2d

d+1 is not an
integer) in both setups for a given number of qubits.

As explained in Sec. IV A, the first setup is more robust
and the second can be easier to prepare and allows one to use
higher nc (since 2d

d+1 > 1).
The chosen nc is very high for small values of nqb. If

nqb = 2, for example, there are only d = 4 outcomes whose
probabilities are to be estimated. Then having nc = 2500 or
nc = [2500 2×4

4+1 ] = 4000 is more than enough to have very
good estimates. But if nqb = 6, there are d = 64 outcomes,
and the associated probabilities are much smaller (since they

1 2 3 4 5 6
10-3

10-2

10-1

100

FIG. 10. Box plots of the QPT error for quantum gates acting on
one to six qubits. There are two box plots for each number of qubits.
The one on the left represents the errors with the first setup (ni = d ,
ns = 2), and the one on the right represents the errors with the second
setup (ni = 1, ns = d + 1). Both setups have the same total number
of measurements.
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TABLE I. Average execution time of the QST of all measured states and of the QPT of the process for the setup of Fig. 3 (setup 1) and the
setup of Fig. 4 (setup 2).

Algorithm\nqb 1 2 3 4 5 6

QST setup 1 0.06 s 0.14 s 0.37 s 1.67 s 12 s 188 s
QPT setup 1 7 × 10−5 s 9 × 10−5 s 1 × 10−4 s 3 × 10−4 s 6 × 10−4 s 2 × 10−3 s
QST setup 2 0.05 s 0.10 s 0.21 s 0.85 s 6.9 s 123 s
QPT setup 2 1 × 10−4 s 1 × 10−4 s 2 × 10−4 s 3 × 10−4 s 8 × 10−4 s 3 × 10−3 s

sum to one), then the number of measurements does not seem
that excessive.

Figure 10 shows the box plots of the error for both se-
tups and for all numbers of qubits. Unsurprisingly the error
increases with nqb. This is the case despite the fact that the
total number of measurements ncninsnt also increases with nqb

(nc is constant but ni increases for the first setup, for which
ni = d; ns increases for the second setup, for which ns =
d + 1; and nt = 2nqb + 1 increases for both setups). This is
not surprising because the number of parameters of the unitary
matrix we estimate is d2 = 22nqb ; it increases exponentially
with nqb.

For the first setup, the range of the error decreases (in log
scale) when the number of qubits increases. We think this
is because, when the number of parameters to be estimated
(in M) increases, the error on the matrix becomes more pre-
dictable as the errors on the parameters get “averaged” by the
norm in (26). We do not observe this phenomenon with the
second setup because for this setup we rely on M to create a
matrix X that satisfies (17) with a good margin, and the fact
that we choose 500 different random values of M for each
number of qubits makes the error vary much more. In contrast,
the matrix X of the second setup always satisfies (17) and does
not depend on M.

The relative performances of the two setups are interesting.
For one to four qubits, with the second setup, the largest errors
are larger and the smallest errors are smaller than with the
first setup. This is in line with what we expected: The first
setup is supposed to be more reliable, so it makes sense that
its greatest outliers are smaller. The second setup uses the
measurements more efficiently (see the end of Sec. IV A).
It makes sense that, when we sampled a random M that
makes the second setup work, it works better than the first
setup. And if we have an idea of the value of M before
performing the QPT, we will know in which part of the box
plot the error is likely to be. Hopefully, for our M, (17) will
be satisfied with a comfortable margin, and we will know
that the error is in the lower part of the box plot. The more
qubits there are, the worse the second setup gets compared to
the first. We think this is because for a random matrix (and
X is basically a random matrix for the second setup but is
deterministic for the first setup if the systematic errors are
neglected) (17) becomes closer to being false when dimension
increases.

The average execution times of the QST and QPT algo-
rithms are reported in Table I. The simulations were coded
with Matlab and executed on a 210 Intel Xeon silver 4214
2.4 GHz. We allowed the script to run on 10 threads, but
each simulation ran sequentially. Matlab only parallelized the
linear algebra computation on large matrices.

Clearly, the execution time of the QPT is not significant,
it is the QST that takes the longest. There are faster QST
algorithms in the literature, and we could shorten the QST
time greatly by not implementing the fine-tuning ML-based
approach (see [14]). But we choose to sacrifice execution
time for precision. In contrast, for the QPT, we need only to
compute a few dot products for the phase recovery, and then
a few products of d × d matrices, and then perform a singular
value decomposition to solve the total least square problem
under a unitarity constraint.

VI. RESULTS FOR A CNOT GATE OF A TRAPPED-ION
QUANTUM COMPUTER

In this section we test our QPT algorithm using a trapped-
ion quantum computer on Amazon Web Services (AWS) [28].
The test was performed in May 2022. AWS calls the device
we used “Harmony” and advertises single-qubit gate fidelity
of 0.9935, or ε = 0.0806 with our definition of the error (26),
a gate fidelity of 0.9602 (or ε = 0.1995) for two-qubit gates,

FIG. 11. QPT setup for a two-qubit CNOT gate, with ni = 4 initial
states and ns = 2 time delays. In Sec. II B we stated that we apply
the process to be identified before we measure any state, and that
it is a choice that we had to make in order to implement the setup
physically. Indeed, Ref. [28] does not let us measure the actual qubits
that have supposedly been set to |0〉 and have never been modified by
a quantum gate.
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a coherence time of 1.667 s, and a state preparation and mea-
surement (SPAM) characterized by a SPAM fidelity of 0.9961.

We want to perform QPT on a two-qubit CNOT gate. As
stated in Sec. IV A, the use of two time steps is adapted to
this gate. Therefore we chose ni = d = 4, ns = 2 with the four
initial states v

tg
1 to v

tg
4 of (19), which are the same as (20)

and Fig. 3, with nqb = 2. As explained in Sec. IV A, those
initial states can be created with Hadamard gates (see Fig. 3).
In order not to rely on the implementation of the Hadamard
gates, our algorithm will behave as if the input states were
totally unknown. The target value of the process matrix of the
CNOT gate to be identified is

Mtg =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠. (28)

This value is not used by our QPT method either. The
process to be identified is considered to be totally unknown.
The four circuits of Fig. 11 are implemented. Each of them is
an explicit version of Fig. 3 (with k = 1 to k = 4) for nqb =
2. The nt = 2nqb + 1 = 5 measurement types are performed
nc = 250 times on each one of the eight measured states.
In total ncnt nsni = 250 × 5 × 2 × 4 = 10 000 quantum mea-

surements are performed. Table II (in Appendix D) records
the measurement counts for each outcome and each state.

We want to use the QST algorithm described in Ap-
pendix A to get an estimate of the measured states. We are
facing an issue: the measurement types defined in Appendix A
are ZZ, ZX, ZY, XX , and Y X for two qubits, but the measure-
ments that we have performed on the real quantum computer
are ZZ, ZX, ZY, XX , and YY (the last measurement type is not
the same). It turns out that the QST algorithm of Appendix A
also works with those measurements. The initial estimate of
the measured state will be wrong (because it works only with
the former set of measurements), but the QST algorithm has
two steps (see Sec. A 2), and the second step (fine tuning
with maximum likelihood) corrects the initial estimate in the
two-qubit case (because it can work with the types of mea-
surements that are available). This is not a big problem for two
reasons: (1) as just stated, the QST algorithm still works and
(2) we aim to test the QPT algorithm, not the QST; the former
relies on the QST output and does not use the measurements
directly.

From the measurements, we estimate the eight mea-
sured states with the QST algorithm. We arrange the
estimated states in the matrices X̂ and Ŷ defined in Sec. II
(they are estimates of X = [Mv1, Mv2, Mv3, Mv4] and Y =
[M2v1, M2v2, M2v3, M2v4], respectively). Their numerical
values are the following:

X̂ =

⎛⎜⎜⎝
1.00 − 0.00i 0.76 − 0.00i 0.70 − 0.00i 0.49 − 0.00i
0.01 − 0.01i 0.65 − 0.01i −0.06 + 0.05i 0.45 − 0.00i

−0.02 − 0.03i 0.02 − 0.03i 0.06 − 0.03i 0.54 − 0.06i
0.03 − 0.06i −0.01 − 0.08i 0.68 − 0.19i 0.50 − 0.02i

⎞⎟⎟⎠,

Ŷ =

⎛⎜⎜⎝
1.00 − 0.00i 0.72 − 0.00i 0.70 − 0.00i 0.54 − 0.00i
0.01 + 0.01i 0.70 + 0.06i −0.02 − 0.00i 0.46 + 0.04i
0.03 − 0.00i −0.02 − 0.01i 0.72 − 0.02i 0.51 + 0.08i
0.00 − 0.01i 0.01 − 0.01i 0.01 − 0.02i 0.47 + 0.08i

⎞⎟⎟⎠.

We then use the phase recovery algorithm of Sec. II D to compute Ỹ, which is the same as Ŷ but with each column multiplied
by a phase factor. We then use the method of Sec. II C to find the unitary matrix M̂LS that links X̂ and Ỹ (the rephased version of
Ŷ) best. Finally, we change its global phase by a factor eiφ to compare it with Mtg:

M̂LS ←− eiθ M̂LS with θ = arg(tr(M̂∗
LSMtg)), like in (27). This last step is possible (and useful) only if we know Mtg, which

is the case here. If we had no idea of what the gate was supposed to do, we would not perform this step.
The resulting (rounded) estimate is the following:

M̂LS =

⎛⎜⎜⎝
0.98 − 0.17i −0.02 − 0.02i 0.02 + 0.02i 0.01 + 0.07i
0.02 − 0.02i 0.99 − 0.09i 0.01 + 0.03i 0.03 + 0.01i
0.00 + 0.07i −0.02 + 0.01i 0.08 − 0.02i 0.99 + 0.08i

−0.01 + 0.02i −0.01 + 0.03i 0.98 + 0.18i −0.07 − 0.04i

⎞⎟⎟⎠.

The moduli are close to their target values, but there are
fairly significant errors on the phases that cannot be corrected
with a global phase shift. This is particularly noticeable be-
tween the first and third columns. The distance between M̂LS

and the target Mtg can be defined as ε(M̂LS, Mtg) � 0.11 with
ε defined in (26). According to Fig. 5, 0.11 is a very reason-
able error with nc = 250 in this setup, so we cannot reject
the hypothesis that the gate is perfectly realized by simply
looking at the error. This is not our objective, however; we do

not want to perform quantum gate benchmarking but quantum
gate tomography.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced a quantum process tomography
(QPT) method that is very flexible with respect to the values
of the initial states used (as long as they remain pure). We
proposed a semiblind setup (Fig. 1) that splits the copies of
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each initial state into ns groups and measures the copies of
the kth group (only once) after they go through the process
k ∈ {1, . . . , ns} times. This trick allows us to estimate the
states that go through the process rather than assuming that the
input states are correctly prepared. The resulting QPT setup is
resilient to systematic errors on the initial states. We proved
that, in the absence of QST errors, our QPT algorithm always
gives a perfect estimate of the process to be identified if we
satisfy the condition of (17). We also showed that, if (17) is
not satisfied, then it is not possible to find a QPT algorithm
that works (because there are several different processes that
yield the same measurement outcomes).

As explained in Sec. II E our algorithm also applies to the
more standard QPT (SQPT) setup (the values of the initial
states are known beforehand, and all copies of the initial states
are processed in the same way: they go through the process
only once and then get measured). Our algorithm is attractive
(since it is applicable to the semiblind and the SQPT setups)
when we compare it to [9], which is the best-known multi-
qubit unitary quantum process tomography algorithm (see the
simulations in Sec. V C). We also tested the resilience of our
algorithm to different types of errors, and we tested it to iden-
tify a CNOT gate of a trapped-ions qubit quantum computer.

Our QPT algorithm does not require an initial estimate of
the process and is quite fast after the QST of the measured
states has been performed; we have to compute only a few
dot products (see Sec. II D) and to perform a singular value
decomposition (see Sec. II C). The limitation of our estimate
is that it minimizes the least square error on the QST results
(after the phase recovery), and as stated at the end of Sec. II C,
this is not optimal from a maximum likelihood standpoint.
The least-square estimate of the process can be fine tuned
with a slower but more precise gradient descent algorithm that
starts at our estimates and finds the unitary matrix that maxi-
mizes the likelihood of the measurements without performing
QST. Defining a model of the likelihood of the quantum
measurements that takes into account the multinomial error
as well as the potential nonpurity of the measured states is
a challenge in and of itself, and we intend to study it in the
future.

A proponent of gate set tomography (GST) could also
criticize our QPT setup by pointing out the fact that it works
only if the types of measurements performed on the unknown
states are precisely known. This is a fair point, and the fact that
the measurements that we use might be flawed is a drawback
of our algorithm (it is also a drawback of all QPT algorithms
in the literature that do not use GST) that we tolerated because
we need a frame of reference. We trust neither the values of
the input states nor the process to be identified, but we have
to trust the measurement process, otherwise we would be left
with the gauge error that plagues GST. This flaw in our algo-
rithm is somewhat mitigated by the fact that we rely on only
very simple unentangled measurements. We intend to mitigate
it further by introducing a (blind) quantum detector tomogra-
phy algorithm that can be used to estimate some parameters
of the measurements that we propose to use for each qubit
without using predetermined states. This is possible because
the measurements that we perform are somewhat redundant.

APPENDIX A: STATES, MEASUREMENTS, AND QST

This Appendix quickly goes over the choices that we made
for the measurements performed and the QST algorithm. We
need it because the central QPT algorithm that we aim to
present in this paper relies on some kind of QST. However,
the choices we make here do not affect the QPT algorithm
of Sec. II, and other types of measurements and QST can be
used.

1. Definition of the measurements

We chose to perform measurements that have d outcomes
(d-outcome measurements), as d is the maximum number
of outcomes for a type of quantum measurement in a d-
dimensional Hilbert space. We are not interested in the actual
values of the outcomes: they can be denoted as 1, . . . , d or
0 . . . 0, 0 . . . 01, . . . , 1, . . . , 1, it makes no difference to us.
We are interested in the probabilities of the measurement out-
comes. They are estimated by performing the measurements
several times on copies of the considered state, and computing
the frequencies of occurrence of each outcome.

If a projective measurement M has d outcomes, then there
exists a unitary matrix EM such that the probabilities of all
outcomes when measuring any state v are contained in the
vector |E∗

Mv|2 (with the convention that | · |2 is the element-
wise squared modulus); this is known as the Born rule. The
columns of the matrix EM (each of them is defined up to a
global phase) entirely characterize the type of measurement
(up to the values of the outcomes). We call it the eigenvector
matrix, because its columns are the eigenvectors of the Hermi-
tian matrix that is often used to characterize the measurements
in the literature [see (2.102) in [3]].

We also choose to use unentangled measurements. Unen-
tangled measurement are quantum measurements that can be
performed in parallel on each qubit. To our knowledge un-
entangled measurements are the only types of measurements
that can be performed on the current version of quantum
computers without using entangling gates (that have to be
characterized with QPT).

If the measurement M is unentangled, then EM can be
written as the tensor product of nqb matrices in U2(C). Those
2 × 2 matrices are the eigenvector matrices associated with
each one-qubit measurement.

For each qubit, the 2 × 2 unitary matrices we use are
among the following three:

EX = 1√
2

(
1 1
1 −1

)
, EY = 1√

2

(
1 1
i −i

)
,

EZ =
(

1 0
0 1

)
. (A1)

If the qubit represents the spin of an electron, those eigenvec-
tor matrices represent the measurement of the spin component
along directions X,Y , and Z .

For two or more qubits, measurements can be performed
along direction X,Y , or Z for each qubit. It can be shown
that the resulting eigenvector matrix is the tensor product
of the two-dimensional matrices of (A1). For example, for
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two qubits, performing a measurement along Z for the first
qubit and along X for the second one yields the following
eigenvector matrix:

EZX = EZ ⊗ EX = 1√
2

⎛⎜⎜⎝
1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞⎟⎟⎠.

In this example, if the qubits represent the spins of two
electrons, then the measurement we perform is equivalent
to measuring the first spin component along Z and the sec-
ond along X . The spin pair measurement has four possible
outcomes (+ 1

2 ,+ 1
2 ), (+ 1

2 ,− 1
2 ), (− 1

2 ,+ 1
2 ), and (− 1

2 ,− 1
2 ) in

normalized units, and if v represents the considered state, the
probabilities of each outcome are in the vector |E∗

ZX v|2.
There are 3nqb types of measurements with this definition.

We will use only those characterized by the 2nqb + 1 eigen-
vector matrices contained in the following set:

E =
{

EZ . . . Z︸ ︷︷ ︸
nqb times

,

{
EZ . . . Z︸ ︷︷ ︸

nqb−i times

[1]S X . . . X︸ ︷︷ ︸
i−1 times

,
1 � i � nqb

S ∈ {X,Y }

}}
.

For example, with nqb = 2, we have EZZ , EZX , EZY , EXX ,
and EY X .

2. Quantum state tomography

In [14] we showed how a quantum state can be esti-
mated by performing measurements for nc copies of that state,
successively with each measurement matrix of E . The total
number of measurements performed on copies of the state
is nt nc = (2nqb + 1)nc. This might seem unimpressive as, for
example, [23] would use only 4nc or 5nc copies (depending
on the used basis). But the four or five measurement types
of [23] are not all unentangled, and we were unable to find
fewer than (2nqb + 1) types of unentangled measurements that
make QST possible with a closed form explicit algorithm.

We here use the algorithm of Sec. 3 of [14] fined tuned with
the maximum likelihood method of Sec. 4 with the Gaussian
version of the likelihood. We use the Gaussian version instead
of the real likelihood or the mixed algorithm because we
want an algorithm that will “catch” types of errors that are
not considered by the multinomial likelihood model (typically
decoherence).

APPENDIX B: MATHEMATICAL DEMONSTRATIONS FOR
THE IDENTIFIABILITY CONDITION

Our identifiability condition is (17). It is necessary and
sufficient for M to be identifiable (up to a global phase and
with a given QPT setup) in the set of unitary matrices. In
Sec. B 1 we show that it is a sufficient condition. Importantly
we do this by showing that our algorithm is then able to
retrieve M up to a global phase. This means that our QPT
algorithm works in any situation where QPT is theoretically
possible. In Sec. B 2 we show that it is a necessary condition.
Finally, in Sec. B 3 we show that (17) is equivalent to another
condition of the literature: (24). In this Appendix we assume
that there is no QST error (the columns of X̂ and of Ŷ are

the same as those of X and of Y, respectively, up to global
phases).

1. Proof that (17) is sufficient

To show that (17) is sufficient for the states represented by
the columns of X to be informationally complete (or for “M
to be identifiable”) with the setup of Fig. 1, we need to define
what we mean by “the states represented by the columns
of X are informationally complete” (or “M is identifiable”).
Formally, this means that X [defined by M and the vi; see (4)
and (2)] is such that the ensemble U (X̂, Ŷ) of unitary matrices
that are compatible with the QST results X̂ and Ŷ,

U (X̂, Ŷ) = {U ∈ Ud , ∃ξ ∈ Rnx , U X̂ D(ξ)∗ = Ŷ}, (B1)

contains only M and matrices that are the same as M up to a
global phase: U (X̂, Ŷ) = {eiφM}φ .

Expression (17) is a sufficient condition for the states rep-
resented by the columns of X to be informationally complete
because if (17) is true, then, essentially, the algorithms of
Secs. II C and II D yield a unique M up to a global phase:

(1) The algorithm of Sec. II D always succeeds, i.e., we
exit the algorithm at Step 4 or 6. Indeed, if rank(Fnx

S (x�0 )) = d ,
then, even if the algorithm starts poorly and we have to set
borth = 0 at Step 7, the condition of Step 6 will eventually be
satisfied after going through Step 5 at most nx times. This is
because of the equality we pointed out in Sec. III A below (17)
between the rank of Fk

S (x�0 ) and the dimension of the subspace
spanned by the columns of S after going through Step 5 k
times with borth = 0. The reader could think that we could
exit the algorithm prematurely (i.e., before the set S spans
Cd ) because the condition that makes us loop from Step 5 to
Step 3 stops being satisfied. This is a nonissue because if the
condition is not satisfied, then it is pointless to continue as
the elements of S will not increase even if we were to go to
Step 3.

(2) The phase differences between the columns of Ỹ that
we exit the algorithm of Sec. II D with are the unique solution
of (11) because (11) has a unique solution if and only if
ŷ�1


⊥ ŷ�2
for the �1, �2 that we use to compute (12) at Step

3(c) of Sec. II D. We made sure that this is the case in the
phase recovery algorithm.

(3) The ranks of the matrices Ỹ and X̂ that we exit the al-
gorithm of Sec. II D with are full (d), because (1) Fnx

S (x�) only
contains columns of X by definition, thus (17) ⇒ rank(X) =
d; (2) M is unitary, thus rank(Y) = rank(MX) = d; and (3)
there is no systematic error, thus rank(X̂) = rank(X) = d
and rank(Ỹ) = rank(Y) = d . Therefore, the total least square
problem with a unitarity constraint has a single solution: MLS

(as discussed at the end of Sec. II C). But any matrix that is the
same as MLS up to a global phase is also a solution of the QPT
problem. This is because an arbitrary choice has been made
for the global phase of Ỹ in Sec. II D [�0 has been chosen
with (15) and ξ�0 has been set to 0].

Therefore U (X̂, Ŷ) = {eiφM}φ .
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2. Proof that (17) is necessary

Let us now show that (17) is a necessary condition. We
assume that X is such that (17) is false, i.e.,

∃� ∈ {1, . . . , nx}, M
(
Fnx

S (x�)
)

< d. (B2)

We want to show that there exists a matrix M2 that differs from
M by more than a global phase such that M2 ∈ U (X, MX)
with the same definition for U as in (B1). Its is straightfor-
ward to show that, since there is no QST error, U (X, MX) =
U (X̂, Ŷ). This means that the processes represented M2 and
M are different quantum processes (they differ by more than
a global phase), but our measurements are not sufficient to
distinguish them.

Let us first define the function GS and list its useful prop-
erties:

GS : k −→ Fk
S (x�):

(1) The columns of GS (k) are all also columns of
GS (k + 1).

(2) If k0 is the smallest integer such that GS (k0) =
GS (k0 + 1), then ∀k � k0, GS (k0) = GS (k).

(3) The number of columns of GS (k) is upper bounded by
nx (the number of columns of X) ∀k.

Therefore the number of columns of GS (k) increases
strictly with k for the first k0 iterations, and for k � k0 GS

becomes constant. And k0 has to be smaller than nx because
the number of columns increases by at least one at each
iteration before k0 and is bounded by nx.

For any �, and in particular for the � of (B2), Fnx
S (x�) =

Fnx+1
S (x�). Therefore, we can split the columns of X into two

groups Xs [defined as Fnx
S (x�)] and X f (defined as the matrix

that contains the other columns of X in order). The matrix
X f can be empty, but if it is not, the columns it contains
are all orthogonal to the columns of Xs [since FS (Xs) = Xs].
According to (B2), Xs is not of full rank.

From there we consider the only two possible implications
of (17) being false:

(1) X f is empty, Xs = X and rank(X) < d .
(2) X f is not empty and X can be decomposed: X =

[Xs, X f ]Qper , where Qper is an nx × nx permutation matrix.
Either one of these conditions makes M unidentifiable for

the following reasons:
(1) If the condition of Case 1 is true, there exists a unit

norm vector called vker in the null space of X∗, i.e., X∗vker =
0 and v∗

kerX = 0. We call Vhker a d × (d − 1) matrix such that
Pv = [Vhker, vker] is a unitary matrix (Vhker and Pv are not
unique for a given vker ; Vhker can be any orthogonal basis
of the subspace orthogonal to vker). We define [C1 c2] =
MPv (C1 ∈ Cd×(d−1), c2 ∈ Cd ), and a straightforward cal-
culation shows that for any angle 0 < φ < 2π , the unitary
matrix M2 = [C1 c2eiφ]P∗

v is not the same as M (even up
to a global phase since d > 1) and M and M2 are both in
U (X, MX) since MX = M2X.

(2) If the condition of Case 2 is true, we have to consider
only the case when X is of full rank (because otherwise,
we use the reasoning above), and vect(X f ) is the orthogonal
complement of vect(Xs) (vect is the subspace spanned by the
column vectors of a matrix). We define Ps as an orthonormal
basis of the subspace vect(Xs) and P f as an orthonormal basis
of vect(X f ). We define the matrix M2 as M2 = M(PsP∗

s eiφ +

10-2 10-1

10-2

10-1

100

10-2 10-1

10-2

10-1

100

FIG. 12. Box plot of the QPT error with mixed input states. The
setup of Fig. 3 is used with nc = 1000 and with no multinomial error
(nc = +∞). In the top plot, the (green) line from the bottom left to
the top right is computed with a linear regression to fit the medians
associated with qu < 0.1. The same line is then duplicated in the
lower plot. Both the slope and the intercept of the line are computed
with the linear regression. This differs from the line of Fig. 5, where
the slope was set to 0.5.

P f P∗
f ), and define Xalt = [Xse−iφ X f ]Qper (Qper defined

above). With those definitions M2 is unitary (this is easy to
check), and a straightforward calculation shows that MX =
M2Xalt , Xalt has the same columns as X up to global phases.
Let ξ be the vector that contains those phases, and D(ξ) be
the diagonal matrix such that Xalt = XD(ξ). We have MX =
M2Xalt = M2XD(ξ); thus M and M2 are both in U (X, MX)
but M2 and M differ by more than a global phase.

3. Equivalence between (17) and (24)

The condition of Reich et al. has been rewritten in (24);
it guarantees the identifiability of the process represented by
M among all processes. This is stronger than identifiability
among unitary processes, which we guarantee with (17).
Therefore (24) implies (17). Let us show that (17) im-
plies (24):

Let C ∈ Ud (C) be a unitary matrix in Com({x�x∗
�}�). Let

us show that, if (17) is met, then ∃θ, C = eiθ Id .

If two matrices commute, then there exists a basis that diag-
onalizes both of them (see Theorem 1.3.12 in [29]). Therefore,
the fact that C commutes with all {x�x∗

�}� implies that all {x�}�
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FIG. 13. Box plots of the QPT error with nonunitary processes; the nonunitarity is quantified by qu. The setup of Fig. 3 (ni = 4) and that
of Fig. 4 (ni = 1) are used, with finite and infinite nc (ntot remains constant for finite nc). The green lines are computed in the upper plots (with
a linear regression on the medians of the errors associated with qu < 0.1 in the log-log plot) with nc = +∞; they are then duplicated in the
lower plots.

are eigenvectors of C (because any basis that diagonalizes
x�x∗

� contains x� up to a global phase). Let us call eiλ� the
eigenvalue of C associated with x� (they are of unit modulus
because C is unitary).

Let us consider two indices �1 and �2, and let us
show that x�1 
⊥ x�2 ⇒ eiλ�1 = eiλ�2 : x∗

�1
x�2 = (Cx�1 )∗Cx�2 =

ei(λ�2 −λ�1 x∗
�1

x�2 . If x�1 
⊥ x�2 , then we can divide both sides of
the equation by x∗

�1
x�2 and we have 1 = ei(λ�2 −λ�1 ) ⇒ eiλ�1 =

eiλ�2 .
Let �1 be in {1, . . . , nx}. x�1 is not orthogonal to any column

of FS (x�1 ) (by definition of FS), and the columns of FS (x�1 )
are also in {x�}�. Thus, all columns of FS (x�1 ) have eiλ�1 as
the associated eigenvalue. The same is true for the columns
of Fk

S (x�1 ) for any k � 1 (straightforward by mathematical
induction). In particular, all columns of Fnx

S (x�1 ) have the same
associated eigenvalue: eiλ�1 . But (17) guarantees that Fnx

S (x�1 )
has rank d . Thus there are d linearly independent columns of
Fnx

S (x�1 ) that form a basis, they are also eigenvectors of C [like
all columns of Fnx

S (x�1 )]. This basis is therefore an eigenbasis
of C, and there is only one associated eigenvalue: eiλ�1 . This
means that C = eiλ�1 Id .

APPENDIX C: DECOHERENCE

The systematic errors are not the only types of errors that
can occur for the measured states with our QPT setup. Non-
systematic errors are assumed to be centered errors; they are
not the same for each prepared copy of the measured states.
They occur in the following cases:

(1) The preparation of the original states (|0〉), which is
not the same for each copy.

(2) The state-preparation gates (Hadamard gates in Fig. 3)
do not have the same behavior for each copy, thus introducing
decoherence during the state-preparation process.

(3) Decoherence occurs after the initial state-preparation
process.

All those causes of errors, except the last one, can be mod-
eled by considering that the initial states are mixed states. The
last cause of error occurs only if the process to be identified is
nonunitary (decoherence is nonunitary by nature; if it occurs
after the initial states preparation, then it was introduced by
the process to be identified). It will be tested separately.

To model the first two types of errors, we simulate mixed
input states. A mixed state is parameterized by a positive
Hermitian matrix with unit trace ρ ∈ H+

d (C) whose spectral
decomposition is ρ = ∑d

k=1 pρ

kv
ρ

k v
ρ

k
∗, where the {pk} are the

eigenvalues (in decreasing order), they are non-negative and
sum to one, and the {vk} are the eigenvectors. Let us define
q1 = 1 − pρ

1; it quantifies how close ρ is to a pure state. If
q1 = 0, then the initial state is pure and can be represented by
the vector v

ρ
1 . With our conventions, q1 cannot be greater than

1 − 1
d .

We simulate 16 different values of q1 from 10−2 to 0.5.
The smaller eigenvalues are all set to 1−q1

d−1 . We test the perfor-
mance of our QPT algorithm with those mixed states with and
without the “multinomial” errors (with nc = 1000 and nc =
+∞). Those tests are performed with the setup of Fig. 3, with
nqb = 2 and with random quantum processes. The resulting
errors are represented in Fig. 12.
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The (green) straight lines from the bottom left to the top
right of Fig. 12 are the same for the two graphs. Their slopes
and intercepts are computed with a linear regression to fit the
medians of the errors associated with q1 < 0.1 and with no
systematic error (nc = +∞). The slope found by the linear
regression is 0.9. This means that the median of the error is
roughly proportional to q0.9

0 if nc = +∞. This value slightly
changes when we change the model of the mixed states in the
simulation (it depends on the rank of ρ and on its eigenvalues)
but stays roughly the same, slightly below 1.

For the chosen value of nc (nc = 1000), the “multinomial”
error makes the impact of the error generated by the nonpurity
of the states negligible as long as q0 < 0.05.

Let us now apply our QPT algorithms to a nonunitary
process that introduces decoherence after the initialization.
For the sake of simplicity, we use a nonunitary processes (ε)
in the space of complex matrices ρ modeled as follows:

ε(ρ) = puMρM∗ + qutr(ρ)Id , (C1)

where M is the unitary matrix that represents the unitary
part of the process to be identified, and pu and qu are real
numbers between 0 and 1 such that pu = 1 − qu. We will vary
qu. Like all quantum processes, ε is linear and preserves the
positivity and the trace of Hermitian matrices. For each value
of qu, we test our algorithm with the setups of Fig. 3 and
Fig. 4 [30] for 500 nonunitary processes (corresponding to
randomly generated M). Then the error (26) between M and
the estimated M̂LS is computed (we consider that M represents
the process, and that the nonunitary part of ε is noise).

We simulate this error with the setup of Fig. 3 with nqb =
2, ni = 4, ns = 2 (like for almost all previous tests) and with
the setup of Fig. 4 with ni = 1 and ns = 5. It is relevant to test
the latter setup here because the nonunitary process generates
more decoherence if the state is observed during a longer
period (higher ns). Therefore, the error should be greater with
ns = 5 than with ns = 2.

The QPT error is displayed in Fig. 13 with and without a
multinomial error and with ni = 4 (implicitly with the setup of
Fig. 3, ns = 2) and ni = 1 (implicitly with the setup of Fig. 4,
ns = 4). To compare fairly the two setups corresponding to
ni = 1 and ni = 4, the total number of prepared initial states
ntot = ninsnt nc has to be the same for both setups. Therefore,
with a multinomial error, we set nc = 1000 for the setup of
Fig. 3 (ni = 1, ns = 5), and we set nc = 1600 for the setup
of Fig. 4 (ni = 4, ns = 2). Like with mixed input states, the
(green) lines from bottom left to top right are computed with a
linear regression to fit the medians of the errors corresponding
to qu < 0.1 with nc = +∞. Two sets of slopes and intercepts

for the green lines are computed on the upper two graphs, and
they are replicated in the lower graphs.

As expected, the configuration of Fig. 3 (ni = 4) is more
adapted than the setup of Fig. 3 (ni = 1) to nonunitary pro-
cesses. In both cases, for nc = +∞, the medians of the errors
are roughly proportional to q1.5

u (the slopes of the green lines
are roughly 1.5) for reasonable values of qu (qu < 0.1), but
the proportionality coefficient is much higher with ni = 1 than
with ni = 4 (it is roughly 2.7 times higher). The difference
between the two setups is less obvious with a multinomial
error (finite nc), but it remains noticeable. With the values of
nc we chose, the multinomial error makes the impact of the
error generated by the nonunitarity of the process negligible
when qu < 0.05 for ni = 4, and when qu < 0.02 for ni = 1.

APPENDIX D: TABLE OF THE MEASUREMENT COUNTS

The following Table II contains all the results obtained
from the cloud computing platform that are necessary to repli-
cate our results.

TABLE II. Measurement counts on the actual quantum com-
puter. For example, the value 243 in the row called ZZ 00 and the
column called Mv1 means that when measuring Mv1 with measure-
ment type ZZ we obtained the first outcome (called 00 here) 243
times.

Mv1 Mv2 Mv3 Mv4 M2v1 M2v2 M2v3 M2v4

ZZ 00 243 139 123 58 249 128 123 75
ZZ 01 6 107 4 52 1 122 0 45
ZZ 10 0 1 1 74 0 0 125 71
ZZ 11 1 3 122 66 0 0 2 59
ZX 00 126 244 54 107 129 249 52 129
ZX 01 122 4 71 1 121 1 64 0
ZX 10 2 2 82 142 0 0 72 121
ZX 11 0 0 43 0 0 0 62 0
ZY 00 120 123 70 55 138 132 64 78
ZY 01 129 124 59 58 112 118 61 54
ZY 10 1 2 63 73 0 0 61 63
ZY 11 0 1 58 64 0 0 64 55
XX 00 63 127 118 248 69 123 125 248
XX 01 55 1 1 2 64 0 125 1
XX 10 65 122 4 0 57 127 0 1
XX 11 67 0 127 0 60 0 0 0
YY 00 54 61 5 59 61 66 59 68
YY 01 63 54 112 50 63 56 62 71
YY 10 72 62 127 72 56 74 62 58
YY 11 61 73 6 69 70 54 67 53
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