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Quantum process tomography (QPT) methods aim at identifying, i.e., estimating, a given quantum process.
QPT is a major quantum information processing tool, since it especially allows one to characterize the
actual behavior of quantum gates, which are the building blocks of quantum computers. However, usual QPT
procedures are complicated, since they set several constraints on the quantum states used as inputs of the process
to be characterized. In this paper, we extend QPT so as to avoid two such constraints. On the one hand, usual QPT
methods require one to know, hence to very precisely control (i.e., prepare), the specific quantum states used as
inputs of the considered quantum process, which is cumbersome. We therefore propose a blind, or unsupervised,
extension of QPT (i.e., BQPT), which means that this approach uses input quantum states whose values are
unknown and arbitrary, except that they are requested to meet some general known properties (and this approach
exploits the output states of the considered quantum process). On the other hand, usual QPT methods require
one to be able to prepare many copies of the same (known) input state, which is constraining. In contrast, we
propose “single-preparation BQPT methods” (SBQPT) , i.e., methods which can operate with only one instance
of each considered input state. These two concepts are here illustrated with practical (S)BQPT methods which are
numerically validated, in the case when (i) random pure states are used as inputs and their required properties are
especially related to the statistical independence of the random variables that define them and (ii) the considered
quantum process is based on cylindrical-symmetry Heisenberg spin coupling. As a benchmark, we moreover
introduce nonblind QPT methods dedicated to the considered Heisenberg process, we analyze their theoretical
behavior (this requires the tools developed in this paper for random input states), and we numerically test their
sensitivity to systematic and nonsystematic errors, which are most likely to occur in practice. This shows that,
even for very low preparation errors (especially systematic ones), these nonblind QPT methods yield much lower
performance than our SBQPT methods. Our blind and single-preparation QPT concepts may be extended, e.g.,
to a much wider class of processes and to SBQPT methods based on other quantum state properties, as outlined
in this paper.
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I. INTRODUCTION

System identification and system inversion are two closely
related problems. First, considering classical, i.e., nonquan-
tum, signals and systems, the basic version of system identifi-
cation concerns single-input single-output (SISO) systems. It
consists of estimating the unknown parameter values of such
a system (i.e., of the transform that it performs) belonging
to a known class, by using known values of its input (source
signal s) and output (signal x). This version [1] is stated to be
“nonblind” by the signal and image processing community [2]
or “supervised” by the machine learning and data analysis
community [3]. The more challenging version of that problem
is the blind [2] or unsupervised one, where the input values are
unknown and uncontrolled, but it may be known that the input
signal belongs to a given class (due to this partial knowledge,
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these methods are sometimes stated to be semiblind). Both
versions may then be extended to multiple-input multiple-
output (MIMO) systems.

Besides, in various applications, what is needed is not
the direct transform performed by the above system, but the
inverse of that transform (assuming it is invertible). For SISO
nonblind and blind configurations, this is motivated by the fact
that one eventually only accesses the ouput x of the above
direct system, and one aims at deriving a signal y which ide-
ally restores the original source signal s. To this end, one may
first use the above-mentioned system identification methods in
order to estimate the direct system, then derive its inverse, and
eventually transfer the output x of the direct system through
the inverse system. Alternatively, one may develop methods
for initially identifying the inverse system itself. Extended
versions of this “(unknown) system inversion” task concern
MIMO configurations, where a set of original source signals
s1 to sM are to be respectively restored on the outputs y1 to yM

of the inverse system.

2469-9926/2020/101(4)/042332(18) 042332-1 ©2020 American Physical Society

https://orcid.org/0000-0002-8769-2446
https://orcid.org/0000-0001-5246-8391
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.042332&domain=pdf&date_stamp=2020-04-27
https://doi.org/10.1103/PhysRevA.101.042332


YANNICK DEVILLE AND ALAIN DEVILLE PHYSICAL REVIEW A 101, 042332 (2020)

The blind MIMO version of the above system inver-
sion problem is almost the same as blind source separation
(BSS) [4–6]: As in system inversion, BSS aims at canceling
the contributions of all sources but one in each output signal
of the separating system; however, in BSS, one often allows
each output signal to be equal to a source signal only up
to an acceptable residual transform. These transforms, called
indeterminacies, cannot be avoided because only limited
constraints are set on the source signals and on the direct
system which combines (i.e., “mixes,” in BSS terms) these
signals. In particular, the first class of BSS methods that was
developed and that is still of major importance is independent
component analysis, or ICA [4–6], which may be seen as an
extension of more conventional principal component analysis,
or PCA [7]. (PCA alone cannot achieve BSS [6]). ICA is
a statistical approach, which essentially requires statistically
independent random source signals. Thus, for the simplest
class of mixtures, ICA is guaranteed to restore the source
signals up to limited indeterminacies [4–6].

We now consider quantum information processing
(QIP) [8] and quantum machine learning [9–11], i.e., process-
ing of quantum data and/or processing with quantum means,
and we still focus on system identification and inversion
problems. Among these problems, the one which was first
studied is the quantum version of nonblind system identifi-
cation, especially (see [12]) introduced in 1997 in Ref. [13]
and called “quantum process tomography” or QPT by the
QIP community: See, e.g., Refs. [8,14–22]. The quantum
version of the above-mentioned classical source separation,
called quantum source separation, or QSS, and especially its
blind version, or BQSS, were then introduced in 2007 in
Ref. [23]. Two main classes of BQSS methods were devel-
oped since then. The first one may be seen as a quantum
extension of the above-mentioned classical ICA methods,
since it takes advantage of the statistical independence of
the parameters that define random source quantum states
(qubit states). It is called quantum independent component
analysis (or QICA, see, e.g., Refs. [23,24]) or, more precisely,
quantum-source independent component analysis (or QSICA,
see, e.g., Ref. [25]) to insist on the quantum nature of the
considered source data, whereas it uses classical processing
means (after quantum/classical data conversion). The second
main class of BQSS methods was introduced in 2013–2014
in Refs. [26,27] and then especially detailed in Ref. [28]. It is
based on the unentanglement of the considered source quan-
tum states and it typically uses quantum processing means
to restore these unknown states from their coupled version.
Independently from the above quantum extensions of ICA, a
quantum version of PCA was introduced in 2014 in Ref. [29].

In the present paper, our first contribution (see Sec. IV)
concerns yet another type of unsupervised quantum machine
learning methods [9], namely blind quantum process tomog-
raphy, or BQPT. Here again, the term “blind,” or “unsuper-
vised,” refers to the fact that we consider situations where
the input values of the process to be identified are unknown,
but they are requested to meet some (hereafter statistical)
properties. We briefly introduced that BQPT concept in 2015
in Ref. [30] and we only outlined some resulting BQPT
methods in that and some subsequent short conference papers
(especially Ref. [31]), but only as spin-offs of corresponding

BQSS methods. In contrast, the present paper is the first one
where we provide a detailed description of a method which
combines the following features:

(1) This method is primarily intended for BQPT, not for
BQSS. To this end, it only uses classical processing means:
In contrast, using quantum processing means requires one to
precisely characterize them beforehand, which is a significant
drawback here, since BQPT, as QPT, is especially developed
as a tool for characterizing quantum gates, as discussed in
Secs. V D and VIII.

(2) This BQPT method therefore first performs measure-
ments at the output of the system, i.e., quantum process, to be
identified (see Sec. III), in order to convert quantum states into
classical-form data before they are processed with classical
means.

(3) Moreover, for the Heisenberg coupling process consid-
ered below as an example (see Sec. II), we aim at minimizing
the number of types of measurements performed to fully
characterize that process.

As detailed further in this paper, usual, i.e., nonblind,
QPT, as well as the above first form of BQPT, use sample
frequencies of the above-mentioned measurement outcomes
at the output of the process (i.e., normalized cumulative values
associated with these outcomes), derived from many copies
of each considered state value. To apply such methods, one
should therefore be able to prepare many copies of the same
input state, which is cumbersome. Our second contribution
in this paper (see Sec. V) then consists of extensions of the
above BQPT methods, which also allow one to use few copies
or even one instance (i.e., preparation) of each quantum state.
The numerical performance of this second type of methods is
reported in Sec. VI . This performance is then compared to
that of nonblind QPT methods also dedicated to Heisenberg
coupling, that we introduce in Sec. VII, where we also provide
an analysis of their theoretical properties. The applications
of BQPT methods are presented in Sec. VIII, together with
conclusions drawn from this investigation and an outline of
its potential extensions.

II. CONSIDERED QUANTUM PROCESS AND STATE
PROPERTIES

In standard QPT, if one focuses on the time evolution
of the system of interest A, constrained by its couplings
to its environment B, the bipartite system {A, B} (supposed
to be globally isolated at the chosen timescale) is assumed
to be initially in a product mixed state ρ ⊗ ρB, where ρ

and ρB are density operators describing the initial states of
A and B respectively. Then, at a later time t , A may be
described with a density operator ρ ′. In the general context
of quantum information, the mapping ρ → ρ ′ = E (ρ) is a
so-called quantum operation. In the more specific QPT con-
text, the global transform of {A, B} is unitary, and when A
is coupled to B, then E , which is not a unitary transform,
still happens to be a trace-preserving completely positive
mapping (TPCP) [13,32]. This formalism is quite general,
but is practically associated with a high complexity (cf.,
e.g., [16,33]). The particular case when E is itself a unitary
transform is both simpler and important, as it corresponds
to a limiting behavior in the presence of weak coupling and

042332-2



QUANTUM PROCESS TOMOGRAPHY WITH UNKNOWN … PHYSICAL REVIEW A 101, 042332 (2020)

because quantum logic gates, which play a major role in the
development of quantum computers, have to implement at
least nearly unitary mappings [14]. In this paper, we address
such a class of unitary transforms E , by considering a device
composed of two distinguishable qubits [28] implemented as
electron spins 1/2, that are internally coupled according to
the cylindrical-symmetry Heisenberg model, which is, e.g.,
relevant for spintronics applications [34,35]. We stress that
this type of coupling is only used as a concrete example to
show how to fully implement the proposed general concepts
in a relevant case, but that these concepts and resulting prac-
tical BQPT algorithms may then be extended, e.g., to other
classes of quantum processes and associated applications, as
discussed at the end of Sec. VIII.

The symmetry axis of the Heisenberg model is here de-
noted as Oz. The considered spins are supposed to be placed in
a magnetic field (also oriented along Oz and with a magnitude
B) and thus coupled to it. Moreover, we assume an isotropic
g tensor, with principal value g. The time interval when these
spins are considered is supposed to be short enough for their
coupling with their environment to be negligible. In these
conditions, the temporal evolution of the state of the device
composed of these two spins is governed by the following
Hamiltonian:

H = Gs1zB + Gs2zB − 2Jxy
(
s1xs2x + s1ys2y

) − 2Jzs1zs2z

(1)

where
(1) G = gμe, where μe is the Bohr magneton, i.e., μe =

eh̄/2me = 0.927 × 10−23JT −1 and h̄ is the reduced Planck
constant,

(2) six, siy, siz, with i ∈ {1, 2}, are the three components
of the vector operator −→si associated with spin i in a Cartesian
frame, and

(3) Jxy and Jz are the principal values of the exchange
tensor.

Among the above parameters, the value of g may be exper-
imentally determined, and B can be measured. The values of
Jxy and Jz are here assumed to be unknown.

We here suppose that each spin i, with i ∈ {1, 2}, is pre-
pared, i.e., initialized, at a given time t0, in the pure state

|ψi(t0)〉 = αi| + 〉 + βi| − 〉 (2)

where |+〉 and |−〉 are eigenkets of siz, for the eigenvalues
1/2 and −1/2 respectively. We will further use the polar
representation of the qubit parameters αi and βi, which reads

αi = rie
iθi βi = qie

iφi i ∈ {1, 2} (3)

where the first notation i in the exponentials is the imaginary
unit, and with 0 � ri � 1 and

qi =
√

1 − r2
i i ∈ {1, 2} (4)

because each spin state |ψi(t0)〉 has unit norm. Moreover, for
each couple of phase parameters θi and φi, only their differ-
ence has a physical meaning. After they have been prepared,
these spins are coupled according to the above-defined model
for t � t0.

Hereafter, we consider the state of the overall system
composed of these two distinguishable spins. At time t0, this

state is equal to the tensor product of the states of both spins
defined in (2). It therefore reads

|ψ (t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 (5)

= α1α2| + +〉 + α1β2| + −〉
+β1α2| − +〉 + β1β2| − −〉 (6)

in the four-dimensional basis B+ = {| + +〉, | + −〉,
| − +〉, | − −〉}.

The state of this two-spin system then evolves with time.
Its value |ψ (t )〉 at any subsequent time t may be derived from
its above-defined Hamiltonian. It is defined [24] by

C+(t ) = MC+(t0) (7)

where C+(t0) and C+(t ) are the column vectors of components
of |ψ (t0)〉 and |ψ (t )〉, respectively, in basis B+. For instance,
as shown by (6),

C+(t0) = [α1α2, α1β2, β1α2, β1β2]T (8)

where T stands for transpose. Moreover, the matrix M of (7),
which defines the transform applied to |ψ (t0)〉, reads

M = QDQ−1 = QDQ (9)

with

Q = Q−1 =

⎡⎢⎢⎢⎣
1 0 0 0

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

⎤⎥⎥⎥⎦ (10)

and D equal to⎡⎢⎢⎣
e−iω1,1(t−t0 ) 0 0 0
0 e−iω1,0(t−t0 ) 0 0
0 0 e−iω0,0(t−t0 ) 0
0 0 0 e−iω1,−1(t−t0 )

⎤⎥⎥⎦.

(11)

The four real (angular) frequencies ω1,1 to ω1,−1 in (11)
depend on the physical setup. In Ref. [24], it was shown that
they read

ω1,1 = 1

h̄

[
GB − Jz

2

]
, ω1,0 = 1

h̄

[
−Jxy + Jz

2

]
, (12)

ω0,0 = 1

h̄

[
Jxy + Jz

2

]
, ω1,−1 = 1

h̄

[
−GB − Jz

2

]
. (13)

Since the values of the parameters Jxy and Jz of the Hamilto-
nian of (1) are presently unknown, the values of the parame-
ters ω1,1 to ω1,−1 of the quantum process involved in (7) are
also unknown.

In this paper, we address the (B)QPT problem; i.e., we aim
at estimating the matrix M involved in (7), which defines the
considered quantum process. Moreover, we estimate it in a
blind, i.e., unsupervised, way, that is,

(1) by using values of the output state |ψ (t )〉 of this
process,

(2) without using or knowing values of its input state
|ψ (t0)〉,

(3) but by knowing and exploiting some properties of
these states |ψ (t0)〉. In this paper, these requested properties
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are as follows. The states |ψ (t0)〉 are required to be unentan-
gled [as shown by (5)]. Besides, the proposed BQPT methods
are statistical approaches and the six parameters ri, θi, and φi,
with i ∈ {1, 2}, defined in (3) are constrained to have proper-
ties that are similar to those requested in the above-mentioned
QSICA methods: (i) these parameters are random valued, so
that we here consider random pure quantum states |ψi(t0)〉
(see Ref. [36] for more details) and (ii) some combinations
of the random variables (RVs) ri, θi, and φi are statistically
independent and have a few known statistical features, as
detailed further in this paper.

As explained in Sec. I, the considered BQPT task is per-
formed by using only classical-form processing means. To
this end, the available quantum-form data, namely the output
states |ψ (t )〉, are first converted into classical-form data, by
means of measurements, as described hereafter.

III. MEASUREMENTS FOR PROCESS OUTPUTS

The first type of proposed BQPT approaches uses a set of
copies of each output state |ψ (t )〉. For each copy, it measures
the components of the considered two spins along the above-
defined Oz direction. The result of each such measurement has
four possible values, that is, (+ 1

2 ,+ 1
2 ), (+ 1

2 ,− 1
2 ), (− 1

2 ,+ 1
2 )

or (− 1
2 ,− 1

2 ) in normalized units (see Appendix A 1). Their
probabilities are respectively denoted as p1zz to p4zz here-
after. Using the polar representation (3), these probabilities
read [24,25]

p1zz = r2
1r2

2 , (14)

p2zz = r2
1

(
1 − r2

2

)
(1 − v2) + (

1 − r2
1

)
r2

2v
2

−2r1r2

√
1 − r2

1

√
1 − r2

2

√
1 − v2v sin 	I , (15)

p4zz = (
1 − r2

1

)(
1 − r2

2

)
, (16)

with

	I = (φ2 − θ2) − (φ1 − θ1), (17)

	E = −Jxy(t − t0)

h̄
, (18)

v = sgn(cos 	E ) sin 	E . (19)

Probability p3zz is not considered hereafter because the sum
of p1zz to p4zz is equal to 1.

In practice, for each value of state |ψ (t )〉, estimates of
probabilities p1zz to p4zz are derived, typically as the sample
frequencies of the associated measurement outcomes obtained
for all copies of |ψ (t )〉 (see, e.g., Refs. [13,15,24,25]).

Similarly, these BQPT approaches use another set of copies
of each output state |ψ (t )〉, by measuring the two spin compo-
nents along an axis Ox which is orthogonal to Oz. These mea-
surements yield the same four possible outcomes as above, but
with different probabilities, which are denoted as p1xx to p4xx

hereafter. As shown in Ref. [37], these probabilities have the
following properties:

p1xx − p4xx = R14w1 − I14w2 (20)

where

R14 = r2
1r2

√
1 − r2

2 cos(φ2 − θ2)

+ r2
2 r1

√
1 − r2

1 cos(φ1 − θ1)

+ (
1 − r2

1

)
r2

√
1 − r2

2 cos(φ2 − θ2 − 	
1,−1)

+ (
1 − r2

2

)
r1

√
1 − r2

1 cos(φ1 − θ1 − 	
1,−1), (21)

I14 = −r2
1r2

√
1 − r2

2 sin(φ2 − θ2)

−r2
2r1

√
1 − r2

1 sin(φ1 − θ1)

+(
1 − r2

1

)
r2

√
1 − r2

2 sin(φ2 − θ2 − 	
1,−1)

+(
1 − r2

2

)
r1

√
1 − r2

1 sin(φ1 − θ1 − 	
1,−1), (22)

w1 = cos 	
1,0, (23)

w2 = sin 	
1,0, (24)

	
1,−1 = −2GB(t − t0)

h̄
, (25)

	
1,0 = (t − t0)

h̄
(−Jxy + Jz − GB). (26)

The value of 	
1,−1 in (25) is known, since it can be derived
from the above-defined known quantities. Moreover,

p1xx + p4xx = 1
2 + r1r2

√
1 − r2

1

√
1 − r2

2 [cos 	I

+ cos((φ1 − θ1) + (φ2 − θ2) − 	
1,−1)].

(27)

The BQPT methods proposed in this paper therefore con-
sist of two major steps. The first step aims at estimating
the unknown values of the parameters v, w1, and w2 of the
mappings from the parameters ri, θi, and φi of the initial qubit
states |ψ (t0)〉 to the probabilities of measurement outcomes,
namely p jzz and p jxx, with j = 1 to 4, or their combinations.
The second step then uses the estimated values of v, w1, and
w2 to derive an estimate of matrix D of (9) and hence of
the complete matrix M of (9), which defines the considered
process. We now proceed to the description of these methods.

IV. MULTIPLE-PREPARATION BLIND QPT METHODS

We first consider the estimation of parameter v. This is
achieved by exploiting (15). If we were developing a con-
ventional, i.e., nonblind, QPT method, we would use one or
several instances of Eq. (15), and each of these instances
would involve (i) known values of the input parameters ri, θi,
φi, and hence 	I of |ψ (t0)〉 and (ii) an estimate of the set of
output probabilities p jzz, derived from a set of copies of |ψ (t )〉
(such methods are presented in addition in Sec VII). This
approach is constraining because it requires one to precisely
prepare each state value |ψi(t0)〉 (for state preparation and
associated errors, see, e.g., Ref. [13]); otherwise the errors in
ri and 	I yield errors in the estimated value of v.
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The above drawback is avoided by our BQPT methods.
Following the above-defined terminology, these methods are
blind in the sense that they estimate v by using only a set of
estimated values of output probabilities p jzz, without knowing
the values of the input parameters ri, θi, φi, and hence 	I ,
but requesting them to have some known properties. More
precisely, we here consider statistical methods, which operate
with a set of random states |ψi(t0)〉 and which thus only set
constraints on some of the statistical parameters of (combina-
tions of) ri, θi, φi, not on their individual values for each state
|ψi(t0)〉. In particular, the versions of these BQPT methods
considered in this paper use only the first-order mean statistics
of the available quantities p jzz, i.e., their expectations E{p jzz}.
When assuming r1, r2, and 	I to be statistically independent
RVs, (15) yields

E{p2zz} = E
{
r2

1

}(
1 − E

{
r2

2

})
(1 − v2) + (

1 − E
{
r2

1

})
E

{
r2

2

}
v2

−2E
{
r1

√
1 − r2

1

}
E

{
r2

√
1 − r2

2

}√
1 − v2v

× E{sin 	I}. (28)

In this equation, E{p2zz} is known: In practice, it is estimated
as the sample mean of the estimates of all values of p2zz,
themselves typically estimated with sample frequencies, as
explained above. Besides, as detailed, e.g., in Refs. [24,25] for
BQSS methods intended for the Heisenberg coupling model,
setting the constraint

0 < r1 < 1
2 < r2 < 1 (29)

allows one to derive r1 and r2 from (14) and (16) without any
ambiguity, for each unknown state |ψ (t0)〉. This yields

ri = {
1
2

[
(1+ p1zz− p4zz )+ εi

√
(1+ p1zz− p4zz )2− 4p1zz

]}1/2

i ∈ {1, 2} (30)

with ε1 = −1 and ε2 = 1. Taking the sample mean of any
function of ri defined by (30) then yields estimates of all
statistics of ri involved in (28). Finally, we only set the follow-
ing constraint on one statistical parameter of the used values
of θi and φi, again without having to know their individual
values. We request the states |ψ (t0)〉 to be prepared with a
procedure such that the value of E{sin 	I} is known. With
these constraints on input state statistics, the only unknown
in (28) is v. By solving this type of equations, this BQPT
method then yields the desired estimate of v. In particular, a
simple case consists of using E{sin 	I} = 0 (which may, e.g.,
be achieved by preparing the two spins with states such that
(φ1 − θ1) and (φ2 − θ2) are statistically independent and have
the same statistics): Then, (28) straightforwardly yields

v2 = E{p2zz} − E
{
r2

1

}(
1 − E

{
r2

2

})
E

{
r2

2

} − E
{
r2

1

} . (31)

In some configurations, the sign of v is known [24,25], so
that the value of v may be derived from (31). Otherwise, it
may be derived from another instance of (28), using data that
yield another value of E{sin 	I}: Details about how to solve
this sign indeterminacy and how to also estimate parameters
w1 and w2 are provided below for an improved version of
our methods. Indeed, the above version of BQPT is attractive
because it does not require each value of |ψ (t0)〉 to be known,

but it still yields a limitation: It requires one to be able to
prepare the same value |ψ (t0)〉 a large number of times, to
derive an associated frequency-based estimate of each set of
probabilities p jzz. This still requires some control of the input
states of the process that we would like to avoid in order
to simplify the practical operation of BQPT methods and to
make them “blinder.” We hereafter show how to avoid this
preparation of many copies of each state |ψ (t0)〉.

V. SINGLE-PREPARATION BLIND QPT METHODS

A. Single-preparation QIP

As a second contribution in this paper, we now extend
(B)QPT methods so that they can operate with a few copies or
even a single instance of each considered input state |ψ (t0)〉.
For nonblind methods as defined above, this does not seem
to be possible, because they need many copies of each state
|ψ (t0)〉 and associated outcomes of measurements performed
for each state |ψ (t )〉, in order to derive a frequency-based
estimate of each set of probabilities pjzz (this is illustrated
by the methods presented in Sec VII). In contrast, our blind
versions of QPT can be extended so as to reach this goal,
because they only need one to estimate expectations of these
(now random) probabilities p jzz, i.e., E{p jzz}, not each of
their individual values pjzz for each state |ψ (t0)〉. In the short
conference paper [38], we very recently introduced a general
QIP framework (i.e., not restricted to BQPT) for estimating
expectations E{p j} of probabilities p j of outcomes of general
types of quantum measurements. Its principle is summarized
hereafter, whereas its detailed description and properties are
provided in Appendix A.

For each expectation E{pj} of a random probability p j to
be estimated, as discussed above, in practice the expectation
operator E{.} is replaced by a sample mean, i.e., by a sum
(of values, moreover normalized). Similarly, each probability
p j is replaced by a sample frequency, i.e., by a sum [of 1
and 0, depending whether the considered event occurs or not
for each trial defined by a preparation of the initial quantum
states (2) and by an associated measurement of the considered
spin component, for each of the two spins; this summation is
here again followed by a normalization, by the total number
of trials]. E{pj} is therefore estimated by a (normalized)
“sum of sums,” which may then be reinterpreted as a single
global sum, and what primarily matters is the total number
of preparations of initial quantum states (2) involved in that
global sum, whereas the number of preparations for each
state value (2) may be decreased, down to 1, as confirmed
by simulations in Sec. VI (which also justifies why even
better performance is obtained when decreasing the number of
preparations per state for a given total number of preparations,
i.e., while increasing accordingly the considered number of
different states). The corresponding BQPT methods are there-
fore called single-preparation BQPT methods. It should be
clear that they can be freely used with either one instance
or several (e.g., many) copies per state; i.e., the above termi-
nology means that these methods allow one to use a single
instance of each state. On the contrary, our so-called multiple-
preparation BQPT methods force one to use many state copies
to achieve good performance.
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B. Estimating the parameter of Oz measurements

We here aim at using the single-preparation approach
of Sec. V A to estimate the parameter v involved in the
probabilities p jzz. We hereafter again take advantage of (28),
and especially of its version (31), derived in Sec. IV for
our multiple-preparation BQPT method. However, these ex-
pressions involve E{r2

1} and E{r2
2} which, unlike in Sec. IV,

cannot here be estimated by using the expectation of the
square of (30) because this involves expectations of nonlinear
combinations of the above probabilities p1zz to p4zz, whereas
we here aim at developing a single-preparation algorithm, for
which Sec. V A only defined how to estimate the expectations
of p1zz to p4zz themselves. We here solve this problem by
using a modified approach, where we first take the expectation
of (14) and (16), again for statistically independent RVs r1 and
r2. This yields

E{p1zz} = E
{
r2

1

}
E

{
r2

2

}
, (32)

E{p4zz} = (
1 − E

{
r2

1

})(
1 − E

{
r2

2

})
. (33)

These equations involve only the unknowns of interest, E{r2
1}

and E{r2
2}. Again setting the constraint (29), they yield the

unique solution

E
{
r2

i

} = 1
2 [(1 + E{p1zz} − E{p4zz})

+ εi

√
(1 + E{p1zz} − E{p4zz})2 − 4E{p1zz}]

i ∈ {1, 2} (34)

again with ε1 = −1 and ε2 = 1. If the sign of v is known,
the value of v may thus be derived from (31), therefore using
data such that E{sin 	I} = 0. Otherwise, (31) is first used to
estimate v2, which yields |v|, and the sign of v is then derived
from another set of spin state preparations, now considering
the case when E{sin 	I} �= 0. Equation (28) then yields

v = E
{
r2

1

}(
1 − E

{
r2

2

}) + (
E

{
r2

2

} − E
{
r2

1

})
v2 − E{p2zz}

2E
{
r1

√
1 − r2

1

}
E

{
r2

√
1 − r2

2

}√
1 − v2E{sin 	I}

.

(35)
Taking the sign of this equation, where a factor is guaranteed
to be positive, results in

sgn(v) = sgn
(
E

{
r2

1

}(
1 − E

{
r2

2

}) + (
E

{
r2

2

} − E
{
r2

1

})
v2

− E{p2zz}
)
sgn(E{sin 	I}). (36)

For this second set of spin state preparations, (i) we do not
request the value of E{sin 	I} but only its sign to be known
and (ii) the values of E{r2

1}, E{r2
2} and E{p2zz} may again be

estimated as explained above. Also using the above estimate
of v2, Eq. (36) then allows one to estimate the sign of v.

C. Estimating the parameters of Ox measurements

We then show how to estimate the parameters w1 and w2

of (20), using measurements of spin components along the
Ox axis, in addition to the Oz axis, and the corresponding
expectations E{p jxx} and E{p jzz}. Here again, we only con-
strain the statistical parameters of the RVs ri and (φi − θi ),
not their individual deterministic values, in order to be able
to solve (20) with respect to w1 and w2. More precisely, the

RVs r1, r2, (φ1 − θ1), and (φ2 − θ2) are here constrained to be
statistically independent. Besides, r1 and r2 are here requested
to have the same statistics. Finally, (φ1 − θ1) and (φ2 − θ2)
are here required to have the same statistics, moreover with
the constraints

E{sin(φi − θi )} = 0 i ∈ {1, 2}, (37)

E{cos(φi − θi )} > 0 i ∈ {1, 2}, (38)

which is, e.g., obtained with RVs (φi − θi ) whose probability
density functions are even and nonzero on [−π

2 , π
2 ]. In that

case, (14), (20)–(22), and (27) yield [39] (with the same
statistics for i = 1 and 2, due to the above constraints):

E{p1zz} = (
E

{
r2

i

})2
, (39)

E{p1xx} − E{p4xx} = E{R14}w1 − E{I14}w2, (40)

E{R14} = E
{
ri

√
1 − r2

i

}
E{cos(φi − θi )}

× 2
[
E

{
r2

i

}
(1 − cos 	
1,−1) + cos 	
1,−1

]
,

(41)

E{I14} = −E
{
ri

√
1 − r2

i

}
E{cos(φi − θi )}

× 2
(
1 − E

{
r2

i

})
sin 	
1,−1, (42)

E{p1xx} + E{p4xx} = [
E

{
ri

√
1 − r2

i

}
E{cos(φi − θi )}

]2

×(1 + cos 	
1,−1) + 1
2 . (43)

Once E{p1zz}, E{p1xx} and E{p4xx} have been estimated as
explained above, Eq. (39), with E{r2

i } � 0 due to ri � 0,
yields

E
{
r2

i

} =
√

E{p1zz}. (44)

Moreover, ri � 0, (38) and (43) yield

E
{
ri

√
1 − r2

i

}
E{cos(φi − θi )} =

[
E{p1xx}+ E{p4xx}− 1

2

1 + cos 	
1,−1

] 1
2

.

(45)

Using (25), (44), and (45), Eqs. (41) and (42) then yield
estimates of E{R14} and E{I14}. The only unknowns of (40)
are then w1 and w2. One could try and solve a single Eq. (40),
by taking into account that w1 and w2 are the cosine and sine
of the same angle [see (23) and (24)]. However, the solutions
of such an equation yield a problematic indeterminacy. This
problem is avoided by creating two linearly independent
Eq. (40), by using two sets of statistics for r1, r2, (φ1 − θ1),
and (φ2 − θ2). Solving these two equations yields w1 and w2.

D. Estimating the quantum process

We finally show how the estimates of the parameters v, w1,
and w2 obtained above may be used to estimate the matrix D
of (11) and hence the complete matrix M of (9), which defines
the considered process in the standard basis.

In a first method, we only consider a single value of the
time interval (t − t0) involved in (11), that we hereafter denote
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as τ1. Equations (18) and (19) may then be inverted as
Jxyτ1

h̄
= −	Ed + kxyπ (46)

with

	Ed = arcsin(v) (47)

where 	Ed is one determination associated with the actual
value 	E , i.e., 	Ed is equal to 	E up to the additive constant
−kxyπ , where kxy is an integer. Similarly, (23), (24), and (26)
may be inverted as

Jzτ1

h̄
= 	
1,0d + 2kzπ + Jxyτ1

h̄
+ GBτ1

h̄
(48)

with

	
1,0d = sgn(w2) arccos(w1) (49)

where 	
1,0d is one determination associated with the actual
value 	
1,0, i.e., 	
1,0d is equal to 	
1,0 up to the additive
constant 2kzπ , where kz is an integer.

Equations (46)–(49) define the expressions of the scaled
actual principal values Jxy and Jz with respect to the actual
values of v, w1, and w2. The latter values are unknown but, in
practice, the procedure defined in Sec. V B yields an estimate
v̂ of the value of v (for the considered value τ1). From this,
one may derive an estimate 	̂Ed of 	Ed by using v̂ in (47).
One would then like to derive an estimate Ĵxy of Jxy from (46).
But one does not know the actual value kxy involved in (46)
in the fully blind case considered here, i.e., when no prior
information is available about the value of Jxy (as opposed to
the case when one at least knows in which range of values
Jxy is situated, which defines the minimum and maximum
possible values of kxy). In this blind method, one can then only
select an arbitrary integer k̂xy and derive the corresponding
scaled “shifted estimate” of Jxy by using

Ĵxyτ1

h̄
= −	̂Ed + k̂xyπ. (50)

Similarly, the procedure defined in Sec. V C yields estimates
ŵ1 and ŵ2 of the values of w1 and w2 (for the considered value
τ1). From this, one first derives an estimate 	̂
1,0d of 	
1,0d

by using ŵ1 and ŵ2 in (49). Then, based on (48), one derives
a scaled shifted estimate Ĵz of Jz by using

Ĵzτ1

h̄
= 	̂
1,0d + 2̂kzπ + Ĵxyτ1

h̄
+ GBτ1

h̄
(51)

where k̂z is an arbitrarily selected integer. When neglecting
estimation errors for v, w1, and w2, and hence for 	Ed

and 	
1,0d , and when taking the difference between (46)
and (50), then between (48) and (51), one gets

Ĵxyτ1

h̄
= Jxyτ1

h̄
+ 	kxyπ, (52)

Ĵzτ1

h̄
= Jzτ1

h̄
+ 2	kzπ + 	kxyπ (53)

with

	kxy = k̂xy − kxy, (54)

	kz = k̂z − kz. (55)

The shifted estimates Ĵxyτ1

h̄ and Ĵzτ1

h̄ provided by this method

are therefore equal to the quantities of interest, that is, Jxyτ1

h̄

and Jzτ1

h̄ , only up to the above neglected estimation errors and
additive constants which are integer multiples of π . These
constants are the “undeterminacies” of this method in the
classical BSS sense, i.e., the undesired remaining differences
between the above estimated and actual quantities, from the
point of view of the quantities Jxyτ1

h̄ and Jzτ1

h̄ . They then
yield the following indeterminacies from the point of view
of the matrix M of the considered quantum process, which is

eventually to be estimated. Using the above estimates Ĵxyτ1

h̄ and
Ĵzτ1

h̄ , one derives the associated estimate of the matrix M (i)
by inserting these estimates, which may be expressed as (52)
and (53), into (11)–(13), which yields the corresponding esti-
mate D̂ of D, and (ii) finally by using (9) and (10) to derive the
associated estimate of M. These calculations especially yield
(taking into account that ei	kz2π = 1 and ei	kxy2π = 1)

D̂ = ei(	kzπ+	kxy
π
2 )D. (56)

The estimate D̂ provided by this first method is there-
fore equal to the actual matrix D up to the phase factor
ei(	kzπ+	kxy

π
2 ). More specifically, this factor is equal to 1 and

thus disappears for part of the possible values of the integers
	kz and 	kxy, e.g., when 	kz is a multiple of 2 and 	kxy

is a multiple of 4. This yields the same phenomenon for
M. The general phase factor ei(	kzπ+	kxy

π
2 ) cannot be avoided

with this method if no additional information is available.
It is the only and quite weak indeterminacy of this BQPT
method from the point of view of D and M. Moreover, we
hereafter introduce an extended version of that method, which
completely removes this indeterminacy by taking the typical
applications of (B)QPT methods into account.

As discussed, e.g., in Refs. [8,16,17,19,20,22], QPT (and
hence our blind extension) may especially be used as a major
tool for characterizing the actual behavior of quantum gates,
which are the building blocks of quantum computers. This
characterization is typically performed in an “identification
phase,” taking place before the “computation phase” which
uses these quantum processes and gates. Moreover, one may
consider scenarios where these processes and gates are used
in consistent but somewhat different conditions during the
identification and computation phases. We hereafter propose
such an approach for extending the above BQPT method so
as to remove its indeterminacy. We do not claim that the
Heisenberg coupling model considered in this paper could be
used as a suitable process or gate for quantum computers: It
is just used as an example hereafter, to illustrate a possible
procedure for removing BQPT indeterminacies, thus then
allowing the reader to extend this procedure to other gates or
processes that could be of interest in other configurations.

The approach that we propose uses three values of the
time interval (t − t0) involved in (11) that we hereafter denote
as τ1, τ2, and τ3. The first step of the identification phase
uses the time interval τ1, essentially to obtain an estimate of
Jxy associated with this value τ1, that we hereafter denote as
Ĵxy(τ1) for the sake of clarity. More precisely, this first step

of the identification phase derives the shifted estimate Ĵxy (τ1 )τ1

h̄
in the same way as in the above first BQPT method, i.e.,
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using (50) , with Ĵxy here replaced by Ĵxy(τ1). Therefore, when
neglecting estimation errors, this again yields (52), but with
our modified notations, that is,

Ĵxy(τ1)τ1

h̄
= Jxyτ1

h̄
+ 	kxyπ. (57)

The second step of the identification phase then uses the time
interval τ2, with τ2 = 2τ1 (τ2 may instead be set to any other
even multiple of τ1, but we keep the values of τ1, τ2, and
τ3 as close as possible to one another, in order to minimize
the differences in the conditions of operation in the two steps
of the identification phase and in the computation phase).
This second step of the identification phase essentially aims
at obtaining an estimate of Jz associated with the value τ2,
that we therefore hereafter denote as Ĵz(τ2). More precisely,
this second step derives the shifted estimate Ĵz (τ2 )τ2

h̄ in the

same way as Ĵzτ1

h̄ in the above first BQPT method, except
that this step is here performed with τ2, so that it uses (51)
with τ1 replaced by τ2, moreover taking into account that the

term Ĵxyτ2

h̄ of this modified version of (51) is here obtained as

being equal to the value Ĵxy (τ1 )τ1

h̄ of this second BQPT method
multiplied by 2. When neglecting estimation errors, taking the
difference between the modified versions of (48) and (51), and
using (57), Eq. (53) is thus replaced by

Ĵz(τ2)τ2

h̄
= Jzτ2

h̄
+ 2	kzπ + 2	kxyπ. (58)

The computation phase then involves the same type of quan-
tum process (9)–(11), but with a time interval (t − t0), be-
tween input state preparation at time t0 and output state use
at time t , which is set to τ3, with τ3 = 2τ2 (again, τ3 may
instead be set to any other even multiple of τ2, but we keep
the values of τ1, τ2, and τ3 as close as possible to one another).
This computation phase should then be analyzed as follows.
During that phase, the considered actual process is defined
by (9)–(13), but with (t − t0) replaced by τ3. From the point
of view of that computation phase, the estimate of that actual

process is obtained by replacing Jxy (t−t0 )
h̄ and Jz (t−t0 )

h̄ by Ĵxy (τ1 )τ3

h̄

and Ĵz (τ2 )τ3

h̄ in (9)–(13), the latter estimates being derived as
explained above by our extended BQPT method (up to the
factors τ3/τ1 and τ3/τ2). These estimates have the properties
defined by (57) and (58). Since τ3/τ1 = 4 and τ3/τ2 = 2, this
yields

Ĵxy(τ1)τ3

h̄
= Jxyτ3

h̄
+ 4	kxyπ, (59)

Ĵz(τ2)τ3

h̄
= Jzτ3

h̄
+ 4	kzπ + 4	kxyπ. (60)

Comparing these expressions with (52) and (53) shows that
this second BQPT method is equivalent to the first one pre-
sented in this section, except that, from the point of view
of the computation phase, (i) it uses the time interval τ3

and (ii) 	kxy and 	kz are respectively replaced by 4	kxy

and 2	kz. The analysis provided above for the first method
therefore also applies here when taking the above modifica-
tions into account. In particular, (56) also applies here, but
its phase factor ei(	kzπ+	kxy

π
2 ) here becomes ei(2	kzπ+2	kxyπ )

and is therefore always equal to one. In other words, this

extended BQPT method is equivalent to forcing 	kxy and
	kz to be respectively equal to multiples of 4 and 2 from the
point of view of the computation phase, which suppresses the
indeterminacy that the first method has in that phase.

The above discussion first means that any value of 	kxy

and hence k̂xy may be used during the identification phase
of our extended BQPT method. From a practical point of
view, the simplest implementation of this method therefore
consists of selecting k̂xy = 0 in the modified version of (50),

i.e., it consists of setting the estimate Ĵxy (τ1 )τ1

h̄ to −	̂Ed . This
estimate is then multiplied by τ3/τ1 = 4 when considering it
from the point of view of the computation phase. Similarly,
during the identification phase one sets the estimate Ĵz (τ2 )τ2

h̄ by
using (51), with τ1 replaced by τ2 and with k̂z preferably set to

0 (and with Ĵxyτ2

h̄ obtained by multiplying the above estimate
Ĵxy (τ1 )τ1

h̄ by τ2/τ1 = 2). This estimate Ĵz (τ2 )τ2

h̄ is then multiplied
by τ3/τ2 = 2 when considering it from the point of view of
the computation phase. A summary of this extended BQPT
method is provided as a pseudoalgorithm in Algorithm 1.

VI. TEST RESULTS FOR BLIND QPT METHODS

The physical implementation of qubits is an emerging
topic which is beyond the scope of this paper. We therefore
assessed the performance of the extended BQPT method
proposed above by means of numerical tests performed with
data derived from a software simulation of the considered
configuration. Each elementary test consists of the following
stages. We first create a set of N input states |ψ (t0)〉. Each
such state is obtained by randomly drawing its six parameters
ri, θi, and φi, with i ∈ {1, 2}, and then using (3), (4), and (6)
[the state (6) is defined by the above six parameters, but only
the four parameters ri and φi − θi have a physical meaning].
We then process the states |ψ (t0)〉 according to (7), with given
values of the parameters of the matrix M which defines the
quantum process to be identified. This yields the states |ψ (t )〉.
More precisely, we eventually use simulated measurements
of spin components associated with these states |ψ (t )〉. For
measurements along the Oz axis, this means that we use the
model (14)–(16) with a given value of the mixing parameter
v, corresponding to the above values of the parameters of the
matrix M. For each of the N states |ψ (t0)〉, corresponding
to parameter values (r1, r2,	I ), Eqs. (14)–(16) thus yield
the corresponding set of probability values (p1zz, p2zz, p4zz ),
which are used as follows. We use K prepared copies of
the considered state |ψ (t0)〉 to simulate K random-valued
two-qubit spin component measurements along the Oz axis,
drawn with the above probabilities (p1zz, p2zz, p4zz ). We then
derive the sample frequencies of the results of these K
measurements, which are estimates of p1zz, p2zz, and p4zz

for the considered state |ψ (t0)〉 [see (A6)]. Then computing
the averages of these K-preparation estimates over all N
source vectors |ψ (t0)〉 yields (NK )-preparation estimates of
probability expectations E{p jzz} [see (A9)]. Spin component
measurements for the Ox axis are handled similarly, thus
yielding estimates of probability expectations E{pjxx}. Both
types of estimates of probability expectations are then used
by our extended BQPT method, as explained in the previous
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Algorithm 1. Second single-preparation blind quantum proc-
cess tomography method.

Input : Outcomes of measurements of spin
components along Oz and Ox axes
associated with output process states |ψ(t) ,
when using single-preparation
unknown-value input process states |ψ(t0) .

Output: An estimate of the quantum process matrix
M involved in (7) (to be then used with the
write-read time interval (t − t0) set to τ3 in
the computation phase: see text).

begin
/* 1. Estimate parameter v, with

write-read time interval (t − t0) set to

τ1: */

Derive estimates of E{p1zz}, E{p2zz} and E{p4zz}
from measurement outcomes;

Estimate E{r2
1} and E{r2

2} by using (34);

Derive estimate of v2 from (31);
if sign of v unknown then

Derive estimates of E{p1zz}, E{p2zz} and
E{p4zz} from measurement outcomes;
/* use state preparations with other

statistics than above */

Estimate E{r2
1} and E{r2

2} by using (34);
Derive sign of v from (36);

end
Derive estimate v of v from its known or estimated
sign and from estimate of v2;

/* 2. Estimate parameters w1 and w2, with

write-read time interval (t − t0) set to

τ2 = 2τ1 /*:

for two sets of statistics of parameters of |ψ(t0)
do

Derive estimates of E{p1zz}, E{p1xx} and
E{p4xx} from measurement outcomes;
/* use state preparations with other

statistics than when estimating v */

Estimate E{R14} and E{I14} by using (41)
and (42) with (25), (44) and (45);

end
Solve two equations (40) to get estimates w1 and

w2 of w1 and w2; /* one equation for each

set of statistics of parameters of

|ψ(t0) */

/* 3. Estimate matrix M of quantum

process, for a write-read time interval

(t − t0) equal to τ3 = 2τ2: */

Derive an estimate ΔEd of ΔEd by using v in (47);

Derive scaled shifted estimate
Jxy(τ1)τ1 of Jxy by

using (50) with an arbitrary integer kxy, e.g.

kxy = 0;

Derive an estimate ΔΦ1,0d of ΔΦ1,0d by using w1

and w2 in (49);

Derive a scaled shifted estimate Jz(τ2)τ2 of Jz by
using (51), modified as described in text, with an

arbitrary integer kz, e.g. kz = 0;

Derive estimate D of D by inserting
Jxy(τ1)τ3 and

Jz(τ2)τ3 into (11)-(13);
Estimate M by using (9) and (10) with D;

end
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FIG. 1. Normalized root mean square error (NRMSE) of estima-
tion of parameter v vs number K of preparations of each of the N
used states.

sections, to derive the estimates Ĵxyτ1

h̄ and Ĵzτ2

h̄ , from which we
then derive the estimates of D and eventually M corresponding
to the computation phase that uses the time interval τ3.

In these tests, the above parameters N and K were varied
as described further in this section, whereas the numerical
values of the other parameters were fixed as explained in
Appendix B, so that we used the same values for the pa-
rameters v, w1, and w2 and for the matrix M in all tests.
For each considered set of conditions defined by the values
of N and K , we performed 100 above-defined elementary
tests, with different sets of states |ψ (t0)〉, in order to assess
the statistical performance of the considered BQPT method
over 100 estimations of the same set of parameter values. The
performance criteria used to this end are defined as follows.
Separately for each of the scalar parameters v, w1, and w2, we
computed the normalized root mean square error (NRMSE)
of that parameter over all 100 estimations, defined as the ratio
of its RMSE to its actual value. For the matrix M, we first
derived a scalar relative error for each test, defined as the ratio
of the Frobenius norm of the “error matrix” (M̂ − M ), where
M̂ is the estimate of M provided by our BQPT method, to the
Frobenius norm of the actual matrix M (the Frobenius norm
of a matrix A with entries ai j is defined as

√∑
i

∑
j |ai j |2). We

then computed the average of this relative error over all 100
estimations.

The values of these four performance criteria are shown in
Figs. 1 to 4, where each plot corresponds to a fixed value of
the product NK , i.e., of the complexity of the BQPT method
in terms of the total number of state preparations. Each plot
shows the variations of the considered performance criterion
vs K , hence with N varied accordingly, to keep the considered
fixed value of NK . This first shows that the proposed BQPT
method is able to operate with a number K of preparations per
state |ψ (t0)〉 decreased down to one, as expected. Moreover,
for a fixed value of NK , the errors decrease when K decreases,
which is expected to be due to the fact that the number N of
different used states thus increases, allowing the estimation
method to better explore the statistics of the considered ran-
dom process. Thus using K = 1, the mean relative error for
the matrix M defining the considered quantum process (see
Fig. 4) can, e.g., here be made equal to 5.53% for N = 104 or
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FIG. 2. NRMSE of estimation of parameter w1 vs number K of
preparations of each of the N used states.

1.75% for N = 105 or 0.62% for N = 106. In these tests, we
used a simple protocol; i.e., we considered the same values
of K and N in the six series of state preparations used for
estimating all parameters (v, w1, and w2), so that the total
number of preparations is equal to 6NK . Different values of
K and N might be used in these six series of state preparations,
in order to optimize the total number of preparations used to
achieve a given error for M. In particular, when estimating
the sign of v, the result is a binary decision, not a continuous
value which should be accurately estimated, so that this sign
could be obtained without errors with a significantly lower
number of state preparations, thus making the total number of
state preparations closer to 5NK . Besides, Figs. 1 to 3 show
that, when using the same values of K and N , the parameter
v is estimated much more accurately than w1 and w2. This
is reasonable, because the measurements along the Oz axis,
which are used to estimate v, yield a simpler model and hence
a simpler estimation procedure than the measurements along
the Ox (and Oz) axis, which are used to estimate w1 and
w2. When aiming at optimizing the use of state preparations,
one may therefore think of reducing the number of state
preparations for estimating v as compared with those used
for estimating w1 and w2, in order to balance the estimation
accuracies for these parameters. However, it is not guaranteed
that the estimation accuracy for M will thus be significantly
improved: in Fig. 1 to 4, the estimation accuracy for M
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FIG. 3. NRMSE of estimation of parameter w2 vs number K of
preparations of each of the N used states.
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FIG. 4. Mean relative error of estimation of matrix M vs number
K of preparations of each of the N used states.

has an intermediate value between the accuracies achieved
for the parameters v, w1, and w2 upon which M depends,
i.e., the accuracy of M is not limited by those of its “worst
parameters,” namely w1 and w2, but takes advantage of its best
parameter v. Based on all above results and considerations, a
typical performance level to be eventually kept in mind for
the matrix M which defines the considered quantum process
is a mean relative error of around 1% for around 500 000 state
preparations.

VII. NONBLIND QPT METHODS

From the point of view of their principles, nonblind (i.e.,
traditional) QPT methods and blind QPT methods that were
proposed in this paper mainly have a qualitative difference:
As explained above, a major advantage of blind methods is
that they can operate with unknown input states, moreover
without requiring each such state to be repeatedly prepared
for the single-preparation version that can be developed for
blind methods. In contrast, when first designing a nonblind
method, one must select the value of each of the states to be
repeatedly (i.e., multiple-preparation approach; see comments
in Sec. V A) provided to the input of the process to be
characterized. Then, when actually applying such a method,
different cases may be considered concerning each stage of
the method that is assumed to use one input state value
selected by the designer of this method:

(1) The case of “ideal preparation” would occur if one
would be able to make all actually prepared input states equal
to the “assumed state” selected when designing this QPT
method. This case is ideal only from the point of view of
the values of the input states, but the performance is then
still limited by the fact that a finite number of copies of the
assumed state is prepared, which limits estimation accuracy.

(2) Moreover, the input state values prepared in practice
are not equal to the assumed state, due to unavoidable state
preparation errors (see, e.g., Refs. [14,15,17,20,40,41]). The
first type of such errors is systematic preparation errors, i.e.,
bias. It corresponds to the situation when all the states which
are actually prepared are equal to one another but different
from the assumed state.

(3) The second type of errors is nonsystematic preparation
errors. It corresponds to the situation when all (or at least some
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of) the states which are actually prepared are different from
one another and hence different from the assumed state. When
the mean value of all these prepared states is equal to the
assumed state, these nonsystematic preparation errors involve
only spread but no bias.

Considering this practical procedure for applying nonblind
QPT methods, one may disregard their above-mentioned qual-
itative difference with respect to blind QPT methods and
anyway aim at quantitatively comparing the practical perfor-
mance reported in Sec. VI for blind methods to the perfor-
mance of some nonblind methods, depending on the nature
and magnitude of the preparation errors. Providing such a
numerical comparison is one of our contributions reported in
this section. This analysis is again based on the estimation
accuracy achieved by the considered methods concerning the
matrix M that defines the studied quantum process, depending
on the considered “resources” in terms of the total number of
input state preparations used in each stage of these methods.

The question is then which nonblind QPT method should
be used in this benchmark. A natural approach would con-
sist of using the most standard QPT method, defined in
Refs. [8,13]. However, the resulting performance comparison
may be considered not to be fair because standard QPT
requires a very large number of state preparations (see, e.g.,
Refs. [16,33]), which is the price to pay for allowing it to
apply to a wide class of quantum processes, thus without
requiring (nor using, if any) detailed prior knowledge about
the considered process. In contrast, beyond the general blind
and single-preparation QPT concepts introduced in this paper,
the practical BQPT methods that we reported are dedicated to
a situation when prior knowledge is available: We focused on
the class of Heisenberg processes defined in Sec. II. There-
fore, a more relevant comparison is performed by testing a
nonblind QPT method dedicated to such processes, preferably
with processing stages that are (nonblind but) similar to those
used in our blind method, e.g., in terms of the types of
spin components that are measured. To our knowledge, no
such methods have been reported in the literature (except
“indirectly” and for their first part only; see comments about
our previous paper in Ref. [42]). Therefore, as an additional
contribution in this section, we hereafter introduce a new
nonblind method (with some variants) intended for such
processes.

As explained above, when designing this method, it is
assumed that all prepared states provided to the input of
the process are equal to one another and to the “assumed
state” selected by the designer, thus leading to a multiple-
preparation QPT method, as usual in the QPT literature.
However, the situation when all prepared input states are
different is also of interest, because this situation is also
faced in practice (for nonsystematic errors), as stated above.
This situation should therefore also be theoretically analyzed,
before numerically testing it, in order to predict the expected
behavior of this QPT method in this situation. This cannot
be done in a traditional QPT framework, because that frame-
work only applies to multiple-preparation (i.e., multiple-copy)
QPT, whereas nonsystematic errors yield a single instance of
each actually used input state. But the latter situation exactly
belongs to the original single-preparation QPT framework that
we introduced in this paper. A third contribution in this section

therefore consists of also using that framework to analyze the
studied nonblind QPT method by taking preparation errors,
including nonsystematic ones, into account.

A. Design of nonblind QPT methods

1. General structure and considered configuration

The studied nonblind QPT method (and its variants) keeps
the same general structure as its blind counterpart of Sec. V:

(1) It first uses spin component measurements along the
Oz axis and the associated data model (14)–(19), in order to
estimate the mixing parameter v.

(2) It then uses spin component measurements along the
Ox axis (but not along the Oz axis, here) and the associated
data model (20)–(27), in order to estimate the mixing param-
eters w1 and w2.

(3) It eventually uses the above estimates of v, w1, and w2,
with exactly the same approach as in Sec. V D, to derive an
estimate of the matrix M.

The difference between this approach and the above blind
one lies in the method used to estimate v, w1, and w2, which
is here different because the assumed knowledge about the
input states |ψ (t0)〉 is different. For each stage of the studied
nonblind method, the parameters of the assumed input state
|ψ (t0)〉, that are defined in (3), are hereafter denoted as ria,
θia, and φia, with i ∈ {1, 2}. The corresponding value of 	I ,
defined by (17), is denoted as 	Ia.

2. Estimating the parameter of Oz measurements

In the studied nonblind QPT method, we estimate v by
starting from (14)–(16) with ri and 	I respectively replaced
by ria and 	Ia. The estimate v̂ of v may be obtained by
using only (15) (i.e., neither (14) nor (16), unlike in our blind
method [43]), which here yields

p̂2zz = r2
1a

(
1 − r2

2a

)
(1 − v̂2) + (

1 − r2
1a

)
r2

2âv
2

− 2r1ar2a

√
1 − r2

1a

√
1 − r2

2a

√
1 − v̂2̂v sin 	Ia (61)

where p̂2zz is an estimate of probability p2zz, computed as
explained in Sec. VII B.

We first use a single assumed input state value which is
such that sin 	Ia = 0 (this may especially be achieved with
θia = 0 and φia = 0). The resulting version of (61) yields

v̂2 = p̂2zz − r2
1a

(
1 − r2

2a

)
r2

2a − r2
1a

. (62)

As in our blind approach, additional processing is then re-
quired to derive v̂ if its sign is not known. To this end, we use
another single assumed state, but now with θia and φia such
that sin 	Ia �= 0. Extracting v̂ from (61) then yields

v̂ = r2
1a

(
1 − r2

2a

) + (
r2

2a − r2
1a

)̂
v2 − p̂2zz

2r1ar2a

√
1 − r2

1a

√
1 − r2

2a

√
1 − v̂2 sin 	Ia

. (63)
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Taking the sign of this equation results in

sgn(̂v) = sgn
(
r2

1a

(
1 − r2

2a

) + (
r2

2a − r2
1a

)̂
v2 − p̂2zz

)

× sgn(sin 	Ia) (64)

All quantities in the right-hand term of (64) are known [us-
ing (62)], which makes it possible to derive sgn(̂v) from that
equation, and then v̂, by combining its sign with |̂v| derived
from (62).

It should be noted that Eqs. (62) and (64), which define the
first part of this nonblind QPT method, are the counterparts of
Eqs. (31) and (36) derived above for our blind method [42,44].

3. Estimating the parameters of Ox measurements

We here estimate w1 and w2 by starting from (20)–(27),
with ri, θi, and φi respectively replaced by ria, θia, and φia.
The values of R14 and I14 in (21) and (22) are thus known, and
only (20) is used to estimate w1 and w2 (therefore without
using measurements of spin components along the Oz axis
in addition, unlike in our blind method). More precisely, we
here again create two linearly independent Eq. (20), each of
them with probability estimates p̂1xx and p̂4xx derived from
a set of prepared input states which are ideally equal to the
same assumed value. We then solve these two equations with
respect to the estimates of w1 and w2.

B. Analysis of nonblind QPT methods

The above-mentioned probability estimates p̂2zz, p̂1xx, and
p̂4xx are here again typically equal to the sample frequencies of
the corresponding measurement outcomes over the considered
K actually prepared input states involved in each stage of the
studied nonblind QPT method. This approach is expected to
yield the following performance, depending on the considered
case in terms of preparation errors, among the three cases
defined at the beginning of Sec. VII, and considering mea-
surements along the Oz axis as an example.

In the case when all K input states are prepared without
errors, when K increases, p̂2zz tends to get closer to the actual
value p2zz associated with the single prepared state value.
Moreover, this p2zz is consistent with the values ria and 	Ia

that were inserted into (62) and (64). When K increases, the
solution v̂ of these equations therefore tends to (with statistical
fluctuations from one estimation of v to another, due to the
fluctuations of measurement results) get closer to the actual
value v, asymptotically with v̂ → v when K → +∞.

In the case of systematic preparation errors only, the same
input state value is used in all K preparations so that, here
again, when K increases, p̂2zz tends to get closer to the value
p2zz associated with this single input state value [defined
by (15)] and p̂2zz → p2zz when K → +∞. However, unlike
in the above “ideal preparation” case, this value p2zz and
the values ria and 	Ia that were inserted into (62) and (64)
are here not consistent, because they respectively correspond
to the actually prepared and assumed input states, which
are here different. Therefore, the estimate v̂ derived from
the inconsistent values of (62) and (64) remains biased with
respect to v even when K → +∞.

Things get more complex when finally considering the
case of spread errors (with or without bias). On the one

hand, the method introduced in Sec. VII A was designed by
considering a single repeatedly prepared input state in each
stage, as traditional nonblind QPT methods, hence involving
a single probability value p2zz in each of Eqs. (62) and (64)
that are used to derive v̂. But on the other hand, the K actually
prepared input states are here all different. One may try and
consider each of the K probability values p2zz, defined by (15),
that are associated with all these states, but anyway (i) each of
these p2zz cannot be estimated separately in practice because
only a single instance of the corresponding state is available,
and (ii) Eqs. (62) and (64) used to derive v̂ do not each
involve such a set of K probability values p2zz. The traditional
multipreparation nonblind QPT framework therefore does not
allow one to analyze the situation considered here.

But we can now solve this problem by taking into account
the single-preparation framework that we introduced in this
paper. To this end, we consider all K random input states and
the associated random probabilities p2zz. As in our single-
preparation blind method, we then consider the expectation
of (15), but here with ri and 	I respectively replaced by
ria and 	Ia, which correspond to the single assumed state
considered here. This yields

E{p2zz} ≈ r2
1a

(
1 − r2

2a

)
(1 − v2) + (

1 − r2
1a

)
r2

2av
2

−2r1ar2a

√
1 − r2

1a

√
1 − r2

2a

√
1 − v2v sin 	Ia

(65)

which is the counterpart of (61), but where we use “≈”
instead of “=” to refer to the fact that the expectation E{p2zz}
associated with actual input states and the assumed values ria

and 	Ia were inserted in (65) independently, “inconsistently”
as defined above (with a possibly large discrepancy). The
counterparts of (62) and (64) are then derived in the same
way as (65). Then replacing E{p2zz} and v by their estimates
in these equations yields an associated practical procedure
for estimating v. The estimate of E{p2zz} used here is de-
fined by the framework that we introduced in Sec. V A and
Appendix A 2. The required probability estimate is thus equal
to the sample frequency of the corresponding measurement
outcome over the considered K actually prepared input states.
This means that the practical algorithm thus obtained is
exactly the same as the one that we derived above for the
nonblind QPT method of Sec. VII A. The advantage is that
this now allows us to analyze the expected behavior of the
method of Sec. VII A for random preparations due to spread
errors, with the tools of the single-preparation framework that
we introduced in this paper. To this end, we consider (65) [the
same approach then applies to the counterpart of (62) and (64)
that involves E{p2zz}]. In practice, the term E{p2zz} of (65) is
replaced by its above-defined estimate, which has statistical
fluctuations as compared with the theoretical value E{p2zz},
so that the estimate of v derived from (65) (or its subsequent
versions) also has statistical fluctuations. Moreover, when
K → +∞, this estimate of E{p2zz} has a limit, which is
E{p2zz} itself (see Appendix A 2). This entails that, if that
value E{p2zz} is equal to the value p2zz that corresponds to the
considered assumed state, i.e., if the actually prepared states
have spread but no asymptotic bias, then, when K → +∞, all
quantities in (65) become consistent and hence v̂ → v.
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The expected behavior of the studied nonblind method is
therefore different for preparations with bias and preparations
with spread but no bias. Numerical tests are used hereafter to
confirm this theoretical analysis.

C. Test results for nonblind QPT methods

We tested our nonblind method of Sec. VII A in the same
conditions as the single-preparation blind one, except for the
input states. We hereafter define their assumed and actual
values. For each stage of our nonblind method and each of the
six input parameters ri, θi, and φi, with i ∈ {1, 2}, the single
assumed value ria, θia, or φia is here set to the middle of the
range over which it was previously randomly drawn when
testing our blind method (see Appendix B). We first performed
tests with only systematic errors, i.e., biased actually prepared
input states. θ1 and θ2 were fixed to 0 in all these tests.
Besides, denoting u and ua as the actual and assumed values
of an arbitrary parameter among ri and φi, that actual value
was set to

u = ua ± fb Ru (66)

where Ru is the width of the range associated with parameter
u, that is 0.5, 0.5, 2π , and 2π respectively for parameters
r1, r2, φ1, and φ2 in all stages of this nonblind method. fb

(called the bias factor) then defines the magnitude of the bias
considered for u in terms of a fraction of the above range. The
considered fraction fb is the same for all parameters u and
all stages of the method, which allows us to tune a single pa-
rameter to investigate the sensitivity of our nonblind method
to systematic errors. The sign “±” in (66) stands for “−”,
“+”, “−”, “+” respectively for parameters r1, r2, φ1, and φ2.
Different signs are required for φ1 and φ2 because otherwise,
with the specific protocol (66) here used for controlling the
parameter biases, the resulting parameter of interest (17) for
Oz measurements would remain unbiased whatever the value
of the parameter fb of that protocol.

We then performed tests with nonsystematic errors, i.e.,
spread actually prepared state, without bias. θ1 and θ2 were
fixed to 0 in all these tests. Besides, again for any parameter
u among ri and φi, each actually prepared value of u was
randomly, uniformly, drawn over the interval [umin, umax] with

umin = ua − fs Ru (67)

umax = ua + fs Ru (68)

where fs (called the spread factor) defines the magnitude of
the spread considered for u in terms of the fraction of the
above-defined range Ru. That single parameter fs is used
to investigate the sensitivity of our nonblind method to the
spread of prepared states.

Figure 5 shows the results obtained for our blind method
(operated with K = 1 and N varied, where N and K were de-
fined in Sec. VI) and for our nonblind method (operated with
N = 1 and K varied), receiving input states with systematic
errors. The specific case fb = 0 corresponds to no bias, i.e.,
“ideal preparation.” We here again analyze the mean relative
error for the matrix M, depending on the total number NK
of preparations per stage. As expected for our blind method
and for our nonblind method with “ideal preparation” (see
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FIG. 5. Mean relative error of estimation of matrix M vs total
number NK of preparations. Dashed black line: blind method. Solid
color line: nonblind method receiving input states with systematic
errors defined by fb.

Sec. VII B), performance continuously improves when NK
increases. Moreover, the price to pay for the advantages of
our blind method as compared with this ideal version of our
nonblind method is only a limited performance degradation.
When considering systematic errors that occur in practice, the
performance of our nonblind method is altered in a way which
is qualitatively consistent with our analysis of Sec. VII B (i.e.,
the error on M stops to decrease when NK exceeds a certain
value) and which quantitatively yields a major limitation for
that method: Even for a bias as low as 0.1% of the parameter
ranges, our nonblind method yields much lower performance
than the blind one in the range of values of NK for which the
blind method yields particularly attractive performance (this
blind method, e.g., yields an error significantly lower than 1%
for NK = 106). Besides, for a low bias of 1%, the error of the
nonblind method remains saturated to a high value whatever
NK in the considered range. Therefore, although that nonblind
method was designed specifically for the considered class
of quantum processes, it is highly sensitive to systematic
errors and our blind method is hence a much more attractive
alternative.

Similarly, Fig. 6 shows the results obtained for our blind
and nonblind methods (both operated with K = 1 and N
varied), receiving input states with nonsystematic errors. The
specific case fs = 0 corresponds to no spread, i.e., “ideal
preparation.” When considering nonsystematic errors that oc-
cur in practice, the performance of our nonblind method is
altered in a way which is qualitatively consistent with our
analysis of Sec. VII B (i.e., the error on M decreases when
NK increases and it would disappear only when NK → +∞),
but which quantitatively yields a significant limitation for that
method: Even for a spread as low as 5% of the parameter
ranges, our nonblind method yields much lower performance
than the blind one in the range of values of NK for which
the blind method yields particularly attractive performance
(e.g., as stated above, an error significantly lower than 1%
for NK = 106). Therefore, the sensitivity of that specifically
designed nonblind method to spread errors it also significant
(although it is much lower than its sensitivity to systematic
errors), which confirms that our blind method is a much more
attractive alternative.
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FIG. 6. Mean relative error of estimation of matrix M vs total
number NK of preparations. Dashed black line: blind method. Solid
color line: nonblind method receiving input states with nonsystem-
atic errors defined by fs.

VIII. DISCUSSION, PROSPECTS, AND CONCLUSION

As explained in the introduction, in a classical context,
solutions to the system identification problem are well known,
which was a reason for hoping that it should be possible to
build up corresponding solutions in a quantum context. Such
a hope reflects the existing consensus upon the idea that any
experimental fact possessing a classical explanation may be
interpreted as some limit of a quantum behavior. It is true
that the correspondence principle was historically used as a
heuristic tool for the building of quantum mechanics. But,
e.g., in the field of information theory (IT) there exists no
general recipe allowing one to build up a quantum IT from the
existing classical IT. And when trying to move conceptually
from a quantum to a classical description, it is not possible
to subsume the difference through making h̄ −→ 0 in the
quantum approach, and, e.g., the spin has no classical analog.
The main reason for this difficulty of establishing a bridge be-
tween the two approaches is the existence of conceptual rather
than quantitative differences between classical and quantum
theories. Chapter 15 of Ref. [45] is devoted to a convincing
discussion, by Ballentine, of the question of the classical limit.
In the domain of quantum tomography (QT), a subfield of
IT, one has to keep in mind both these reservations and the
idea that the development of QT is a complex activity aiming
at building a quantum version of system identification. And
the present paper, together with [30,31], suggests that, in QT,
any definition opposing a situation where the states are known
and one in which the process is known should henceforth be
restricted to nonblind QPT and quantum state tomography
(QST) respectively. In contrast, the present paper deals with
the blind version of quantum process identification, i.e., when
not only that process but also its input state are unknown.
More precisely, the features of nonblind and blind QPT may
be contrasted as follows. The usual, i.e., nonblind, version of
QPT requires one to know, hence to very precisely control
(i.e., prepare), the specific quantum states used as inputs of
the quantum process to be characterized (this is illustrated
in Sec. VII, for the original nonblind QPT methods that we
introduce in this paper). The blind version of this tool, i.e.,
BQPT, which is the first contribution proposed in this paper,

then provides an attractive extension of QPT, since it allows
one to use input quantum states whose values are unknown
and arbitrary, except that they are requested to meet some
general known properties.

Such blind approaches especially have two potential ap-
plications. The most natural one is when the input states
of the considered process indeed cannot be known. Such
methods could then be of interest for characterizing quantum
gates (see Sec. V D) while they are operating and when
only their results (output states) are available to the user
who is to characterize them [provided some output states
|ψ (t )〉 are available to perform BQPT, with adequate values of
the above-defined preparation-to-measurement time interval
(t − t0)]. This online characterization may be useful, e.g., if
the transform performed by a quantum gate slowly evolves
over time (e.g., due to aging) and must be monitored, by
characterizing it from time to time. Besides, BQPT may be
of even higher interest in more standard configurations, when
the process input states may be prepared and known: BQPT
then avoids the complexity of accurately preparing the specific
states which are required by usual QPT methods, because
BQPT can use any input states (which have the requested
general properties).

The second constraint of usual QPT methods is that they
require one to be able to prepare many copies of the same
(known) input state, which is cumbersome. As a second
contribution in this paper, we proposed methods which avoid
this constraint, since they allow one to use one instance
or several copies of each considered input state (and they
provide even better performance when decreasing the number
of preparations per state to one and increasing the number of
different states accordingly, for a fixed total number of prepa-
rations, i.e., fixed complexity). Briefly, this quite attractive
property is obtained because the proposed methods do not
use the estimated probabilities separately associated with each
considered random state, but only the expectations of these
random probabilities.

It should also be noted that the solution provided by each
of the proposed BQPT methods is defined by a unique set of
closed-form expressions. This avoids the issues of estimation
methods that are based on the numerical optimization of
cost functions and that yield false solutions when they get
trapped into local minima of these cost functions. Moreover,
the proposed BQPT methods only require a limited number of
types of measurements (only spin component measurements
along the Ox and Oz axes in the case considered here), which
simplifies their practical use. This results from the fact that
these methods only perform the types of measurements which
are needed to get enough information about the required
unknown parameter values. This should be contrasted with
methods which use a larger set of types of measurements to
first completely restore quantum states.

We therefore presented two main types of contributions in
this paper. On the one hand, we introduced the general joint
concept of single-preparation blind QPT (SBQPT). On the
other hand, we showed in detail how to apply that concept
to a specific type of quantum process, based on cylindrical-
symmetry Heisenberg coupling, we numerically validated the
performance thus achieved and we compared it to the perfor-
mance of relevant, original, nonblind QPT methods (similarly,
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various papers from the literature dealing with nonblind QPT
are focused on other specific processes or class of processes;
see, e.g., Refs. [18,20,46]). Beyond these two aspects, this
investigation opens the way to various extensions of SBQPT,
which will be reported in future papers and which may here be
outlined as follows. First, still considering two qubits isolated
from their environment, the specific (Heisenberg) coupling
between them which was considered above may be replaced
by another phenomenon, thus leading to another specific type
of unitary process. At least for some of these processes, we
anticipate that it will be rather easy to transpose to such
processes the SBQPT procedure that we detailed above for
one type of process. Besides, some other extensions will most
likely require more in-depth investigations. This includes ap-
plying the proposed general concepts to processes with more
than two input qubits [47], to arbitrary unitary processes and
more generally to possibly nonunitary (but trace-preserving
and completely positive) processes that take into account
interactions of the qubits with their environment. Moreover,
the extensions listed so far are focused on the considered
process itself, but one may also focus on the input values
of these processes. In the above investigation, we considered
input pure states, described by the kets |ψ (t0)〉, but we used an
already extended framework by considering random-valued
ket coefficients, unlike in standard deterministic pure states.
In contrast, in the standard QPT framework described in
Refs. [8,13], the process inputs are defined in terms of sta-
tistical mixtures represented by density operators. We started
to discuss the connections between these two approaches in
Ref. [36] (for other types of BQPT and BQSS methods),
and this topic could be further investigated. Finally, one
may consider extending SBQPT methods to other statistical
parameters of quantum measurement outcomes or to other
quantum state properties.
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APPENDIX A: FROM MULTIPLE-PREPARATION TO
SINGLE-PREPARATION QUANTUM INFORMATION

PROCESSING (QIP)

In this Appendix, we first summarize the concepts
and notations that are used in conventional, i.e., multiple-
preparation, QIP (see Sec. A 1) and that we need, in order
to then introduce our nonconventional, single-preparation,
approach to QIP (see Sec. A 2) for an arbitrary number of
qubits.

1. Multiple-preparation QIP

Throughout this paper, qubits are physically implemented
as spins 1/2. If such a qubit, with index i, is described
with a pure and “deterministic” quantum state, as defined
in Ref. [36], it is represented by a normalized vector of a
two-dimensional space Ei, expressed as

|ψi〉 = αi| + 〉i + βi| − 〉i (A1)

where αi and βi are two fixed complex-valued coefficients
constrained to meet the normalization condition for |ψi〉. The
index i in the above notations |+〉i and |−〉i is most often
omitted in the literature, but we keep it here to clarify the
notations that we hereafter introduce for a set of qubits.

Let us now consider an arbitrary number Q of distinguish-
able [28] qubits, with indices i ∈ {1, . . . , Q}. If the state |ψ〉
of this set of qubits is pure and deterministic, it belongs to
the space E defined as the tensor product (denoted as ⊗)
of the above spaces Ei. The standard basis of E consists of
the 2Q vectors |+〉1 ⊗ |+〉2 ⊗ · · · ⊗ |+〉Q−1 ⊗ |+〉Q to |−〉1 ⊗
|−〉2 ⊗ · · · ⊗ |−〉Q−1 ⊗ |−〉Q that we hereafter respectively
denote as | j〉, with j ∈ {1, . . . , 2Q}. The state of this set of
qubits then reads

|ψ〉 =
2Q∑
j=1

c j | j〉 (A2)

where the complex-valued coefficients c j are again fixed and
arbitrary, except that they meet the normalization condition

2Q∑
j=1

|c j |2 = 1. (A3)

The result obtained for one measurement of the spin com-
ponent szi of −→si along the quantization axis, for a single qubit
i which is in state (A1) (see, e.g., Ref. [24] for details), has
a random nature, and is + 1

2 or − 1
2 in normalized units. The

probabilities of obtaining these two values are respectively
equal to |αi|2 and |βi|2, that is, to the squared moduli of the
coefficients in (A1) which correspond to the vectors |+〉i and
|−〉i that are respectively associated with the allowed values
+ 1

2 and − 1
2 .

When simultaneously performing such a measurement for
each of the qubits i of an overall set of Q qubits, the obtained
result is a vector of Q values. The 2Q possible values of this
vector are [+ 1

2 ,+ 1
2 , . . . ,+ 1

2 ,+ 1
2 ], [+ 1

2 ,+ 1
2 , . . . ,+ 1

2 ,− 1
2 ],

and so on, these values being respectively associated with the
above-defined 2Q basis vectors | j〉 and hereafter indexed by j.
Thus, the experiment consisting of this Q-qubit measurement
yields a random result, and each elementary event [48] Aj is
defined as follows: The result of the experiment is equal to
the jth Q-entry vector in the above series of possible values
[+ 1

2 ,+ 1
2 , . . . ,+ 1

2 ,+ 1
2 ] and so on. Moreover, the probabilities

of these events are defined according to the principle pre-
sented above for one qubit, that is

P(Aj ) = |c j |2 ∀ j ∈ {1, . . . , 2Q}. (A4)

The simplest procedure, applied in practice to estimate the
above probabilities for a given Q-qubit state, uses a large
number (typically from a few thousand up to one hundred
thousand [24,28]) of copies of that state, so that we hereafter
call this approach “multiple-preparation QIP” (we previously
called it “batch QIP” in Ref. [38]). These copies may be ob-
tained in parallel from an ensemble of systems or successively
for the same system (“repeated write-read,” or RWR, proce-
dure [23–25]). The above type of measurement is performed
for each of these copies and one counts the number of occur-
rences of each of the possible results [+ 1

2 ,+ 1
2 , . . . ,+ 1

2 ,+ 1
2 ]
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and so on. The associated sample relative frequencies are then
used as estimates of the probabilities P(Aj ).

2. Single-preparation QIP

The above description was provided for an arbitrarily se-
lected deterministic pure quantum state |ψ〉. When developing
our first class of BQSS methods [23–25], we had to extend
that framework to random pure quantum states. We especially
detailed that concept in Ref. [36]. Briefly, the coefficients αi

and βi in (A1) and c j in (A2) then become complex-valued
random variables (RVs). Hence, the probabilities in (A4) also
become RVs.

The problem tackled in this section is the estimation of
some statistical parameters of these RVs (A4), namely their
expectations. The natural (global) procedure that may be
used to this end, and that we used in the specific context
of BQSS [23–25], consists of the following two levels: The
lower level only concerns one deterministic state (A2) and the
associated probabilities (A4) which are estimated from a large
number of copies of the considered state, using the multiple-
preparation QIP framework of Sec. A 1. This is repeated
for different states (A2) and then, at the higher level, the
sample mean over all these states is separately computed for
each probability P(Aj ) (with samples supposedly drawn from
the same statistical distribution). We here aim at proceeding
further: At the above-defined lower level, we aim at using a
small number of copies of the considered state, or ultimately
a single instance of that state, thus developing what we call
“single-preparation QIP” (we called it “stochastic QIP” in
Ref. [38]). At first sight, it might seem that this is not possible,
because the lower level would thus not provide accurate
estimates that one could then confidently gather at the higher
level. However, we claim and show below that this approach
can be used if one only aims at estimating some statistical
parameters of the considered quantum states.

We now first build the proposed approach by starting from
the frequentist view of probabilities (see, e.g., Ref. [48]) at the
above-defined two levels of the considered procedure:

(1) At the higher level, where one combines the contribu-
tions associated with N states of the set of Q qubits. These
states are indexed by n ∈ {1, . . . , N} and denoted as |ψ (n)〉.

(2) At the lower level, which concerns one deterministic
state |ψ (n)〉 and the associated probabilities P(Aj, n) defined
by (A4) but with coefficients c j (n) which depend on state
|ψ (n)〉.

At the lower level, each probability P(Aj, n) is defined as

P(Aj, n) = lim
K→+∞

N (Aj, n, K )

K
(A5)

provided this limit exists. N (Aj, n, K ) is the number of oc-
currences of event Aj for the state |ψ (n)〉 when performing
measurements for a set of K copies of that state |ψ (n)〉. In
practice, one uses only a finite number K of copies of state
|ψ (n)〉 and therefore only accesses the following approxima-
tion of the above probability:

P′(Aj, n, K ) = N (Aj, n, K )

K
. (A6)

The higher level of the considered procedure then ad-
dresses the statistical mean associated with samples, indexed
by n, of a given quantity, which is here theoretically P(Aj, n).
In the frequentist approach, this statistical mean is defined (if
the limit exists) as

E{P(Aj )} = lim
N→+∞

∑N
n=1 P(Aj, n)

N
. (A7)

At the higher level too, in practice one uses only a finite
number N of states |ψ (n)〉, which first yields the following
approximation if only performing an approximation at the
higher level of the procedure:

E ′{P(Aj )} =
∑N

n=1 P(Aj, n)

N
. (A8)

The latter expression may then be modified by replacing its
term P(Aj, n) by its approximation (A6). This yields

E ′′{P(Aj )} =
∑N

n=1 N (Aj, n, K )

NK
. (A9)∑N

n=1 N (Aj, n, K ) is nothing but the number, hereafter de-
noted as N (Aj, L), of occurrences of event Aj for the com-
plete considered set of L = NK measurements. Therefore,
E ′′{P(Aj )} is the relative frequency of occurrence of that
event over these L measurements, or “‘trials,” using standard
probabilistic terms [48]. This quantity (A9) may therefore also
be expressed as

E ′′{P(Aj )} = N (Aj, L)

L
(A10)

=
∑L

�=1 11(Aj, �)

L
(A11)

where 11(Aj, �) is the value of the indicator function of event
Aj for trial �, which takes the value 1 if Aj occurs during that
trial and 0 otherwise. When using (A11), one now considers
the L = NK trials as organized as a single series, with trials
indexed by �. One thus fuses the above-defined two levels
of the procedure into a single one, thus disregarding the fact
that, in this series, each block of K consecutive trials uses
the same state |ψ (n)〉. One may therefore wonder whether the
number K of used copies of each state |ψ (n)〉 may be freely
decreased, and even set to one, while possibly keeping the
same total number L of trials. A formal proof of the relevance
of that approach, using Kolmogorov’s view of probabilities , is
provided in Ref. [38]. Moreover, Ref. [38] thus proves that the
proposed estimator (A11) of E{P(Aj )} is attractive because,
for states independently randomly drawn with the same dis-
tribution and with one instance of each state, this estimator is
asymptotically efficient, that is, when the number L of trials
tends to infinity: (i) the mean of this estimator tends to the
actual value E{P(Aj )}, i.e., this estimator is asymptotically
unbiased (it is even unbiased for a finite number of trials), and
(ii) the variance of this estimator tends to 0.

APPENDIX B: TEST CONDITIONS

All tests reported in Sec. VI were performed in the fol-
lowing conditions. The six parameters ri, θi, and φi, with
i ∈ {1, 2}, of each initial state |ψ (t0)〉 were randomly drawn
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with a uniform distribution, over an interval which depends
on the step of the considered BQPT method, in order to meet
the constraints on the statistics of these parameters that are
imposed by that BQPT method. The parameters q1 and q2

were then derived from (4). More precisely, as a first step, to
estimate the absolute value of v as explained in the first part of
Sec. V B, the qubit parameter values r1 and r2 were selected
within the 20–80% subrange of their 0–100% allowed range
defined by (29), that is, [0.1, 0.4[ for r1 and [0.6, 0.9[ for
r2, as in Ref. [25]. Besides, φ1 and φ2 were drawn over
[0, 2π [ whereas θ1 and θ2 were fixed to 0 (as stated above,
the parameters which have a physical meaning are φi − θi).
These data are thus such that E{sin 	I} = 0 , as required by
this step of the considered BQPT method. Then, as a second
step, to estimate the sign of v as explained in the second
part of Sec. V B, the same conditions as in the above first
step were used for ri, θi, and φi, with i ∈ {1, 2}, except that
φ1 was fixed to 0 and φ2 was drawn over [0, π [. These data
are thus such that E{sin 	I} is nonzero and has a known sign
(here, it is positive), as required by this step of the considered

BQPT method. The above two steps were performed with
τ1 = 0.51 ns [49]. Finally, to estimate w1 and w2, the method
of Sec. V C uses measurements along the Oz and Ox axes,
with τ2 = 2τ1. For each of the parameters ri, θi, and φi, with
i ∈ {1, 2}, we used the same statistics for measurements along
the Oz and Ox axes. For the first Eq. (40), r1 and r2 were drawn
over [0.1, 0.4[ and φ1 and φ2 were drawn over [−π/2, π/2[,
whereas θ1 and θ2 were fixed to 0. For the second Eq. (40), r1

and r2 were drawn over [0.6, 0.9[, whereas φ1, φ2, θ1, and
θ2 were selected in the same way as for the first Eq. (40).
All above conditions concern the identification phase. Then,
in the computation phase, we used τ3 = 2τ2, as explained in
Sec. V D.

Besides, the value of matrix M was set as follows. Con-
ventional electron spin resonance generally operates at X or
Q bands (around 10 and 35 GHz respectively). For electron
spins with g = 2, at 35 GHz, the resonance field is near 1.25 T.
In the simulations, we used the values g = 2 and B = 1 T.
Concerning the exchange coupling, we chose Jz/kB = 1 K and
Jxy/kB = 0.3 K (see Appendix E of Ref. [24] and Ref. [50]) .
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