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Abstract 

Remote sensing has become an unavoidable tool for better managing our environment, 

generally by realizing maps of land cover using classification techniques. Traditional 

classification techniques assign only one class (e.g., water, soil, grass) to each pixel of 

remote sensing images. However, the area covered by one pixel contains more than one 

surface component and results in the mixture of these surface components. In such 

situations, classical classification is not acceptable for many major applications, such as 

environmental monitoring, agriculture, mineral exploration and mining, etc. Most 

methods proposed for treating this problem have been developed for hyperspectral 

images. On the contrary, there are very few automatic techniques suited to multispectral 

images. In this paper, we propose new unsupervised spatial methods (called 2D-Corr-

NLS and 2D-Corr-NMF) in order to unmix each pixel of a multispectral image for 

better recognizing the surface components constituting the observed scene. These 

methods are related to the blind source separation (BSS) problem, and are based on 

sparse component analysis (SCA), clustering and non-negativity constraints. Our 

approach consists in first identifying the mixing matrix involved in this BSS problem, 

by using the first stage of a spatial correlation-based SCA method with very limited 

source sparsity constraints, combined with clustering. Non-negative least squares (NLS) 

or non-negative matrix factorization (NMF) methods are then used to extract spatial 

sources. An important advantage of our proposed methods is their applicability to the 

possibly globally underdetermined, but locally (over)determined BSS model in 

multispectral remote sensing images. Experiments based on realistic synthetic mixtures 

and real multispectral images collected by the Landsat ETM+ and the Formosat-2 

sensors are performed to evaluate the performance of the proposed approach. We also 



 

 

show that our methods significantly outperform the sequential maximum angle convex 

cone (SMACC) method. 
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1. Introduction 

Thanks to the technological advances which occurred during the last decades in the 

signal and image processing fields, remote sensing has become an unavoidable tool for 

better understanding and managing our environment. Multispectral and hyperspectral 

imaging systems are the most powerful tools in the field of remote sensing. While 

hyperspectral sensors collect data in contiguous narrow bands (up to several hundred 

bands) in the electromagnetic spectrum, multispectral sensors provide images with a 

few relatively large bands. Both of these imaging systems are able to yield images in 

which single pixels have spectral content relevant to specifications of the observed 

scene and generally have common applications, such as environmental monitoring, 

agriculture, mineral exploration and mining, etc. Indeed, while hyperspectral imaging 

systems have a very high spectral discrimination capability, multispectral imaging 

systems are designed to support applications by providing bands that detect information 

in specific combinations of desired domains of the spectrum. 

Analysis methodologies for remote sensing (multi/hyperspectral) images generally lead 

to maps of land cover by using classification techniques. Traditional classification 

algorithms assign one and only one class (e.g., water, soil, grass) of land to each pixel. 

However, the spectral vector associated with each pixel may be a mixture of 

contributions from pure materials (pure elements or endmembers) contained in the 

observed area [23]. Alternatively, each band of a remote sensing image corresponding 

to a given spectral channel may be considered as a specific mixture of the images 

respectively associated with each endmember [21,22]. In such situations, traditional 

classification techniques are not acceptable for many major applications. Blind source 

separation (BSS) methods are attractive in this framework, because they aim at restoring 



 

 

unknown source “signals”, only based on the knowledge of the observed mixtures of 

these signals [7]. Applying such BSS methods to a remote sensing image, one can 

therefore hope to extract each endmember image, which then leads to better recognition 

of the surface components constituting the observed scene. 

Significant efforts are made by the scientific community in the considered framework. 

Most BSS methods have been developed for hyperspectral images, since these images 

allow one to take advantage of the large number of available spectral bands. These BSS 

methods are based on the following three main concepts: geometrical, statistical and 

sparse regression concepts (see e.g. the reviews of classical methods in [3,35]). Many of 

these methods are not applicable to multispectral images, because of the limited number 

of spectral bands of these images. Designing BSS methods for extracting endmember 

images from multispectral data therefore represents an important challenge. Indeed, 

there exist many situations in which hyperspectral images may not always be available 

in addition to multispectral images for a given area imposed by the considered 

application. Very few automatic BSS methods [12,25] suited to multispectral images are 

available in the literature. Therefore, we here propose new hybrid unsupervised BSS 

methods intended for multispectral images. 

In remote sensing images, the mixture is most often assumed to be linear and 

instantaneous [3,12,13,17,23,31,33,35-38]. A mixture is stated to be “linear and 

instantaneous” if each observation is a weighted sum of unshifted versions of the source 

signals, where the considered shift is related to the variable(s) on which the considered 

signals depend. These weights then form the so-called mixing matrix. When considering 

a multispectral image as combinations of source images measured in various spectral 

bands (respectively as combinations of spectra measured at various locations), the 



 

 

mixture is instantaneous if the value measured at any location (resp. in any given 

spectral band) only depends on the source images at the same location (resp. on the 

source spectra in the same band). Thus, we assume that the reflectance spectrum of a 

pixel is the result of linear instantaneous combination of the endmember spectra within 

the pixel and the weight of each endmember spectrum is the percentage (or abundance 

fraction) of that endmember in the area covered by the pixel. 

Most BSS techniques developed since the first papers by Herault et al. [15,16,20] 

concern linear instantaneous mixtures and are based on independent component analysis 

(ICA) (see e.g. the review of classical methods in [7]). ICA consists in representing the 

initial observations as linear mixtures of statistically independent components, and 

therefore assumes the sources to be statistically independent. More recently, other 

methods have been proposed for solving the BSS problem. This especially includes 

methods based on sparse component analysis (SCA) [1,7,8,19], which exploit the 

sparsity properties of sources in different representation domains. Most approaches 

based on ICA (resp. SCA) provide a unique theoretical solution, equal to the sources 

(up to permutation and scale indeterminacies), for the BSS problem under the source 

independence constraint (resp. source sparsity constraint). In practice, this solution is 

reached up to estimation errors. The estimated sources thus obtained in environment 

sciences may not fulfill the non-negativity condition of the original data, which limits 

the attractiveness of ICA and SCA methods in this application field (note also that the 

independence constraint on sources is not guaranteed for these data [32]). 

When the sources and mixing coefficients are non-negative, as in remote sensing 

images, a third class of BSS approaches may be used, i.e. non-negative matrix 

factorization (NMF) [5,6], which consists in representing the initial non-negative 



 

 

observations as non-negative linear mixtures of non-negative components [28,29]. 

However, standard NMF methods have limitations, i.e. they do not provide a unique 

solution [9] and their convergence point depends on their initialization. 

Non-negativity constraints are also used in the non-negative least squares (NLS) 

method, which may be considered for representing the initial observations as linear 

mixtures of non-negative components [27]. However, NLS alone cannot be used to 

perform blind source separation, i.e. to estimate both the sources and mixing matrix:  

unlike NMF, NLS is a non-blind method, since it determines the coefficients involved 

in the decomposition of an observed vector on a set of known vectors. In the considered 

conditions, NLS has the advantage of providing a unique solution. 

Our proposed methods, called 2D-Corr-NLS and 2D-Corr-NMF, avoid the limitations 

which are specific to each of the above-mentioned approaches. Our methods combine 

the first stage of a spatial correlation-based SCA algorithm (which consists in detecting 

single-source zones, defined hereafter) with very mild assumptions about source 

sparsity, and clustering to derive a non-negative estimate of the mixing matrix 

(corresponding to the endmember spectra). This matrix is then used as an input of NLS 

or NMF methods, in order to unmix each pixel of a multispectral image and to extract 

non-negative spatial sources (abundance maps). An important advantage of our 

approach is its applicability to possibly globally underdetermined, but locally 

(over)determined mixing models, as detailed further in this paper. 

This paper is organized as follows. In Section 2, we provide a general definition of the 

BSS problem, and we derive two approaches for applying BSS methods to remote 

sensing multispectral images, based on alternative data models. In Section 3, we 

describe our overall methodology, and we explain our approach to evaluate test results. 



 

 

Section 4 consists of experimental results. In that section, we describe the used data and 

studied areas, and we compare our results with those obtained with the sequential 

maximum angle convex cone (SMACC) method [12]. Finally, we end up by a 

conclusion in Section 5. 

 

2. Standard data model of BSS and application to remote sensing 

2.1. Standard data model of BSS 

Generally speaking, BSS methods aim at restoring a set of L unknown source signals sj 

from a set of K observed signals xi which are mixtures of these source signals [7]. This 

separation is said to be “blind” when the sources and the parameters of the mixture are 

assumed to be unknown. The source-observation relationship reads 

x = F (s), (1) 

where s = [s1… sL]T and x = [x1… xK]T are the source and observation vectors 

corresponding to a single measurement, and F(.) denotes the mixing operator. In the 

simplest BSS configuration, one considers linear instantaneous mixtures of the sources 

in the determined case, i.e., L=K. Then, F(.) reduces to a square, constant, and 

supposedly invertible mixing matrix A (containing mixing coefficients) and the 

observations read 

x = A s. (2) 

BSS would then ideally consist in deriving an estimate Â of A, so as to then determine 

the output vector 

y = Â-1 x = Â-1 A s. (3) 

Each component yj of this vector y would then be equal to the source signal having the 

same index, i.e. to sj. It is well-known however that, without additional assumptions, 



 

 

this can only be achieved up to two types of indeterminacies, which respectively 

concern the order (permutation indeterminacy) and scale factors with which the source 

signals appear in the output vector y.  

In this paper, we aim at taking advantage of the BSS techniques in the field of remote 

sensing. Starting from the linear instantaneous mixing assumption in multispectral 

remote sensing images, according to the BSS terminology, the question is: how can 

these observations be expressed in terms of the mixing matrix and the sources which are 

involved in the standard BSS data model (2)? This yields two alternative answers, based 

on different approaches, as explained below. 

2.2. Intuitive approach of remote sensing: spectral sources 

As explained in Section 1, we may consider each spectral row vector associated with a 

pixel in a multispectral image as a linear instantaneous mixture of the spectra associated 

with L pure materials (the K pixels are here seen as a one-dimensional array). The 

entries of each such row vector correspond to the N spectral bands. By gathering all 

these data samples, we obtain a data model which is coherent with (2) and which reads 

 

(4) 

where xi(n) is the nth spectral component of the ith pixel, sj(n) is the nth spectral 

component of the jth pure material and aij is the abundance fraction of the jth pure 

material in the ith pixel. Then, we call “(spectral) sources” the pure material spectra, and 

each observation corresponds to one pixel of the multispectral image. The two-

dimensional array representation of this approach is given in Fig. 1(a).  In addition, 

these data meet the following natural constraints 



 

 

sj(n) ≥ 0, aij ≥ 0 and ∑
j

ija  = 1, ∀  

N...1n

L...1j

K...1i

=

=

=

. (5) 

Applying BSS methods requires “many” samples, which here means “many” spectral 

bands. This approach therefore only applies to hyperspectral images, whereas we 

consider multispectral images with a low number N of bands in this paper. To solve this 

issue, we introduce another approach hereafter. 

2.3. Alternative approach for remote sensing: spatial sources 

An interesting alternative consists in transposing (4). Hence, we get 

 

(6) 

To simplify the presentation with respect to the BSS terminology, we rewrite (6) with 

the following notations 

 

(7) 

Now, )i(xn  represents the nth spectral component of the ith pixel, nja  is the nth spectral 

component of the jth pure material and )i(s j  represents the abundance fraction of the jth 

pure material in the ith pixel. Consequently, each “(spatial) source” here corresponds to 

all abundance fractions of one pure material in all pixels, and each observation 

corresponds to one spectral band of the multispectral image. The two-dimensional array 

representation of this approach is given in Fig. 1(b). The above request for “many” 

samples in BSS methods here means “many” pixels, so that this constraint is usually 

met. This approach thus also applies to multispectral images with few spectral bands 

and is therefore less restrictive than the previous one from that point of view. This is 



 

 

therefore the only method considered in the rest of this paper. For the sake of 

readability, the “bars” are therefore removed from the notations used for the sources, 

mixing coefficients and observations in the next sections (i.e. sj(i) instead of )i(s j  and 

so on), but it should be clear that these notations refer to the mixing model (7), not the 

model (4). Besides, the above-defined natural constraints (5) here read 

nja  ≥ 0, )i(s j  ≥ 0 and ∑
j

j is )(  = 1, ∀  

N...1n

L...1j

K...1i

=

=

=

. (8) 

 



 

 

 

Figure 1. Data model based on (a) spectral sources, (b) spatial sources. 
 

3. Proposed unmixing methods 

The first stage of the unmixing methods proposed in this paper is based on SCA. Some 

SCA methods require the sources to have no overlap in the considered representation 

domain [7,19], which is quite restrictive. On the contrary, only a few zones should 

contain no overlapping sources in the spatial domain when using the first stage (which 

is based on the SCA approaches that we proposed in [8,30]) of the methods that we 

introduce below. The spatial domain is divided into small zones denoted as Ω, and that 



 

 

we call “analysis zones”. These 2-dimensional zones consist of adjacent pixels: the 

pixel values corresponding to band p are denoted as xp(i) hereafter, i.e. using a single 

pixel index i for the sake of readability, but we do take into account the 2-dimensional 

structure of the images in our approach. The spatial domain is explored using adjacent 

or overlapping analysis zones. In each zone Ω, we consider the cross-correlation 

coefficients )(Ω
qp xxρ  between the non-centered observed signals xp(i) and xq(i). To this 

end, all the pixel values xp(i) of signal xp (resp. xq) over the analysis zone Ω are 

rearranged as a one-dimensional vector denoted xp(Ω) (resp. xq(Ω)). The cross-

correlation coefficient of these signals over this analysis zone is then defined as 

)(Ω
qp xxρ  = 

)(.)(

)(),(

ΩΩ

>ΩΩ<

qp

qp

xx

xx
, ∀  p, q= 1…N and p > q, (9) 

where the notations <., .> and ||.|| respectively stand for the inner product and vector 

norm.  

The methods introduced hereafter are based on some assumptions and definitions. 

These assumptions and definitions, which concern the abundance fractions of pure 

materials in the spatial domain, are gradually introduced when describing the different 

stages of the proposed methods. 

3.1. Unmixing methods 

The proposed methods operate in different stages described hereafter. 

3.1.1. The detection stage  

This stage consists in automatically detecting the analysis zones in which pure materials 

are isolated (assuming all pure materials are accessible). These zones are called single-

source zones (i.e. they consist of pure pixels with the same pure material). An isolated 

and accessible pure material is defined as follows: 



 

 

Definition 1 A pure material is said to be “isolated” in an analysis zone if only this 

pure material is present in this zone, i.e., yields a non-zero vector sj(Ω) with elements 

sj(i) in this zone. The abundance fraction of this pure material is then equal to one for 

any pixel in this zone, due to (8).  

Definition 2 A pure material is said to be “accessible” in the spatial domain if there 

exist at least one analysis zone where it is isolated. 

The existence of at least one single-source zone for each pure material in a multispectral 

image is expressed by the following assumption: 

Assumption 1 Each pure material is accessible in the spatial domain. 

The above sparsity assumption in the spatial domain is quite realistic for high spatial 

resolution multispectral images, because they contain spatial zones which each 

correspond to a single pure material and which have a large enough extent (in pixels) at 

this resolution. 

Detection of the single-source zones is performed using the following property: 

Property 1 A necessary and sufficient condition for a pure material to be isolated in a 

zone Ω is 

|ρXpXq(Ω)| = 1, ∀  p, q= 1…N and p > q. (10) 

To demonstrate this property, we introduce the following assumptions: 

Assumption 2 Over each analysis zone, the non-zero vectors sj(Ω) are linearly 

independent (if there exist at least two such vectors in this zone). 

The above assumption sets a constraint on the sources (abundance fractions), but this 

constraint is much less stringent than those (such as source statistical independence) 

which are set by many BSS methods. Moreover, Assumption 2 is especially expected to 

be met in the application considered in this paper, because the abundance fractions sum 



 

 

to one in each pixel, and therefore the source vectors sj(Ω) for a given analysis zone Ω 

containing M pixels sum to the M-dimensional vector 1M , whose entries are all equal to 

1. More precisely, consider the case when only two source vectors sj(Ω) and sj’(Ω) are 

non-zero over a zone Ω. Then, as shown by (8), we have sj(Ω) + sj’(Ω) = 1M.. If sj(Ω) 

and sj’(Ω) are linearly dependent, they also meet the condition c1sj(Ω) + c2sj’(Ω) = 0M, 

where c1 and c2 are two constants not both equal to 0. By solving the above two 

equations, it may easily be shown that this case corresponds to the situation when sj and 

sj’ are constant over all the considered zone Ω. This case is therefore very specific, so 

that excluding it in Assumption 2 is not restrictive: it is not a surprise that a BSS method 

cannot separate two sources if both remain constant. 

Assumption 3 In any analysis zone, the sub-matrix composed of the columns of A 

corresponding to pure materials present in this zone has full column rank. 

Proof of property 1 For each analysis zone, (2) yields 

xp(Ω) = ∑
=

Ω
L

j
jpj sa

1

)( , ∀  p = 1…N. (11) 

Besides, applying the Cauchy-Schwarz inequality to (9) shows that 

|ρXpXq(Ω)| ≤ 1, ∀  p, q= 1…N and p > q, (12) 

with equality if and only if xp(Ω) and xq(Ω) are linearly dependent. 

If only one pure material, with index j, is present in a considered analysis zone Ω, and 

assuming that all mixing coefficients apj are non-zero, (11) shows that all observations 

xp(Ω), with p = 1…N, are collinear. Therefore, equality holds whatever p and q in (12) 

and the detection condition (10) is fulfilled. 

Now, we suppose that at least two pure material vectors sj(Ω) are non-zero. It may 

easily be shown that, if xp(Ω) and xq(Ω) were linearly dependent for all p and q,        

with p, q = 1…N and  p > q, then, due to Assumption 2, all the columns of the mixing 



 

 

matrix A, with indices equal to the indices of non-zero pure material vectors, would be 

collinear. This is not true due to Assumption 3. Therefore, in this case, at least one pair 

of vectors (xp(Ω), xq(Ω)) does not consist of linearly dependent vectors, so that 

condition (10) is not fulfilled. This completes the proof of Property 1. 

Let us stress that we here consider the non-centered version of the observations because, 

in our application where abundance fractions sum to one, applying the counterpart of 

Property 1 to the centered version of the signals (which is used in other applications 

[8,30]) would not allow us to perform single-source zone detection. Indeed, if two pure 

material vectors sj(Ω) and sj’(Ω) are non-zero, the abundance fraction sum-to-one 

constraint yields 

sj(Ω) + sj’(Ω) = 1M. (13) 

For the centered versions Sj(Ω) and Sj’(Ω) of the sources, (13) becomes 

Sj(Ω) + Sj’(Ω) = 0M. (14) 

For all p and q, with p, q = 1…N and p > q, (2) yields for the centered versions Xp(Ω) 

and Xq(Ω) of the observations 
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Due to (14), Eq. (15) becomes 
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In this case, Xp(Ω) and Xq(Ω) are collinear. Then, the centered detection condition (i.e. 

the centered version of (10)) is fulfilled, despite the presence of two (possibly linearly 

independent) pure materials in the considered analysis zone. 

Property 1 is used as follows in our BSS methods. For each analysis zone, we compute 

the following parameter 



 

 

qp,
min (|ρXpXq(Ω)|), ∀ p, q= 1…N and p > q. (17) 

The mean or maximum of these correlation coefficients may be used instead, but their 

minimum sets the most restrictive constraint. If this parameter (17) exceeds a threshold 

value (close to 1 and set to 0.992 in our investigations, based on test results), we 

consider that this analysis zone is a single-source zone. 

3.1.2. The estimation stage 

This stage consists in computing estimates of all tentative columns of mixing matrix A. 

Every single-source zone Ω yields an estimate â.j of one tentative column of the matrix 

(corresponding to one tentative endmember spectrum), using the following formula 

â.j = 
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xme d i a n. (18) 

Our motivation for using this approach may be defined as follows. In our application, 

all abundance fractions are positive and sum to one in each pixel. In a perfect single-

source analysis zone, one abundance fraction is equal to one, while all other are zero. 

Each observation is then equal to the value of the mixing coefficient associated with that 

observation and with the present pure material, in each pixel of that zone. In practice, 

for each observation (i.e. for each band), using the median of all pixel values over the 

considered analysis zone yields an accurate estimate of the corresponding mixing 

coefficient. The method used in this estimation stage is therefore specific to the 

abundance fraction positiveness and sum-to-one constraints faced in the application 

considered in this paper, and different from the approach that we used in our above-

mentioned previous SCA methods [8,30]. Note that the estimated columns thus obtained 



 

 

are always non-negative, since they consist of medians of observed and therefore non-

negative data. 

If there are multiple single-source zones in a multispectral image where the same pure 

material is present, several estimates of the same endmember spectrum are obtained. 

Clustering is then an attractive approach to find a single estimated endmember spectrum 

(one column of estimated mixing matrix Â) for each pure material, and is used hereafter. 

In this subsequent stage, we associate the detection parameter (17) with each estimated 

column. Indeed, this parameter can be used as a confidence degree in the clustering 

stage, as detailed hereafter. 

3.1.3. The clustering stage 

This stage consists in selecting the L columns of estimated mixing matrix Â from all the 

tentative columns estimated in the previous stage. Clustering or cluster analysis is an 

unsupervised learning tool for classifying heterogeneous data sets into homogeneous 

and separate groups (called clusters) with respect to a distance or similarity measure. 

Common distance measures are Euclidian distance, Manhattan distance, Mahalanobis 

distance and Hamming distance. The most popular approach to clustering is partitioning 

clustering [11]. 

The mostly used algorithms in partitioning clustering are k-means and its variants 

(fuzzy c-means, k-medians). These algorithms choose k initial centers, where k is a user-

specified parameter corresponding to the number of desired clusters (i.e., the number of 

columns of Â and of associated pure materials in our application). Each point (estimated 

column vector of mixing matrix in our application) of the data set is then assigned to the 

cluster with the closest center (column vector). The center of each cluster is then 

updated based on the average (for k-means and fuzzy c-means algorithms), or on the 



 

 

median (for k-medians algorithm) of the points assigned to the cluster. These 

assignment and update steps are repeated until the assignments no longer change, or 

equivalently, until the centers remain the same.  

In this paper, we use the fuzzy c-means algorithm. This algorithm sets the center of each 

cluster to the element with the highest degree of confidence. In this paper, we define the 

degree of confidence of any estimated column as the value of its detection parameter 

(17). The L columns are thus obtained in any order, which corresponds to the 

permutation indeterminacy of BSS methods. This indeterminacy is not an issue in our 

application. Note that the estimated matrix thus derived from all above-defined non-

negative columns is also non-negative. 

The fuzzy c-means algorithm requires setting different parameters. The most sensitive 

parameter is the number of clusters. Different choices of the number of clusters lead to 

different clustering results. Therefore, the estimation of the optimal number k* of 

clusters is a prime concern. Many cluster validity indices have been proposed in order to 

estimate the optimal number of clusters [2,4,10,26,34,39]. Their computation is based 

on the following general procedure: 

i) Apply the considered clustering algorithm for different values of k. 

ii) Calculate the cluster validity index for each result. 

iii) Choose the optimal number of clusters k*. 

In this paper, we use the cluster validity index described in [24]. 

3.1.4. The extraction stage 

This stage consists in extracting the L non-negative spatial sources (abundance maps) 

under non-negativity constraints. Two alternative methods are used to this end in this 



 

 

investigation. The first method is non-negative least squares (NLS). The NLS method 

introduced by Lawson and Hanson [27] solves the following matrix problem: 

Minimize || Â ŝ – x || subject to ŝ ≥ 0, (19) 

where the minimization is performed with respect to ŝ. In our approach, the NLS 

method is applied separately to each pixel position, so as to unmix the part of the 

multispectral image corresponding to that position. Thus, in (19), Â represents the 

mixing matrix identified in the previous stage, x represents the spectral vector 

associated with the considered observed pixel, and ŝ is the estimated vector of pure 

material abundance fraction values for that pixel. It should be noted that the NLS 

method sets no constraints on the signs of the elements of Â and x, but requires the 

number of non-zero components of the estimated vector ŝ to be at most equal to the 

number of components of the vector x (and NLS then provides a unique solution). The 

latter condition on ŝ is met here, thanks to the following assumption: 

Assumption 4 The BSS model is locally (over)determined, i.e., N ≥ L(Ω) in any analysis 

zone Ω, where L(Ω) is the number of pure materials present in zone Ω. 

Let us stress here that in multispectral image configurations, the BSS model is generally 

globally underdetermined (N < L).  

The second method used hereafter is non-negative matrix factorization (NMF). NMF, 

proposed by Lee and Seung [28,29], is a general matrix decomposition method. Given a 

non-negative N x K matrix X, NMF aims at finding a non-negative N x L matrix Â and a 

non-negative L x K matrix Ŝ, such that 

X ≈ Â Ŝ. (20) 

As stated in Section 1, NMF methods are very sensitive to initialization: they do not 

always provide a unique solution. Indeed, any couple of non-negative matrices (Â, Ŝ) 



 

 

which meets approximation (20) is a solution to NMF. 

Unlike the NLS method, Lee and Seung’s NMF alternating multiplicative update rules 

[29] are used in our approach to unmix a multispectral image as a whole and not pixel 

by pixel. The Â matrix is here initialized with the non-negative mixing matrix identified 

in the clustering stage of our overall BSS method. The initial matrix Ŝ is derived from 

the observations and previously estimated mixing matrix, by means of NLS. Let us 

stress here, that the NMF method allows the updating of the estimated mixing matrix, 

which is attractive if it was not accurately identified in the previous stage. 

Another important issue is the abundance fraction sum-to-one constraint. This natural 

constraint formulated in (8), can be handled by the NLS and NMF methods using a 

simple but effective technique as in [14]: we increase the observation and mixing 

matrices by a row containing a constant strictly positive value. The NLS matrix problem 

and the NMF alternating multiplicative update rules take these two extended matrices as 

inputs. Note also that the scale indeterminacy is here avoided thanks to this abundance 

fraction sum-to-one constraint. 

The above-defined different stages constitute our two new proposed methods, 

respectively called “2D-Corr-NLS” and “2D-Corr-NMF”, for multispectral image 

spatial unmixing. The block diagram of the proposed methods is given in Fig. 2. In our 

tests, the 2D-Corr-NMF method yielded almost the same performance as the 2D-Corr-

NLS method, and therefore the results of the 2D-Corr-NMF method will not be detailed 

in the next section. 



 

 

 

Figure 2. Block diagram of the proposed methods. 
 

3.2.  Performance evaluation criteria 

For synthetic data, the normalized mean square error (NMSE) between the original and 

estimated abundance maps is used to evaluate the performance of the used methods. 

This criterion is defined as follows 



 

 

NMSEj = 
2

2

Frobeniusj

Frobeniusjj

s

ys −
, ∀  j = 1…L, (21) 

where yj is the estimate of sj. 

For real and synthetic data, another performance criterion is also designed. It consists in 

selecting one single-source zone, successively for each pure material composing the 

observations, where this pure material corresponds to a known endmember thanks to 

ground truth. Then, for each such zone, we separately consider each estimated 

abundance map, and we compute the mean value of this map over this zone. We thus 

build a validation matrix, whose entry with indices (m, n) is equal to the above-defined 

mean abundance for the analysis zone no. m (which actually contains pure material no. 

m) and for the estimated abundance map no. n. Each diagonal entry (m, m) of this 

validation matrix thus represents the extraction accuracy of abundance map no. m from 

the estimated abundance map of pure material no. m. It is close to one when our 

proposed methods succeed in correctly estimating the abundance maps. Similarly, the 

off-diagonal entries of the validation matrix represent the identification error. They are 

close to zero when our proposed methods succeed. Therefore, the mean of the diagonal 

entries represents the accuracy of the overall extraction of the abundance maps. 

 

4. Experimental results  

Experiments based on realistic synthetic mixtures of images and then on real 

multispectral images were performed to evaluate the performance of the proposed 

methods and of a method from the literature. 

 



 

 

4.1. Synthetic data 

Two datasets of synthetic but realistic sources (400x400-pixel abundance maps) are 

created from a real classification of land cover (by averaging pixel classification values 

on a sliding 5x5 window). The first dataset (Fig. 3(a)) contains eight sources 

(abundance maps). Each of them contains at least 1.5% of pure pixels. For each source, 

a four-value spectrum is randomly generated. Hence, a mixing matrix with eight 

columns and four rows is created. Then, taking into account all above-mentioned 

assumptions, four observations are generated by linearly mixing the sources. The four 

generated observations contain 56% of pure pixels. The second dataset (Fig. 3(b)) 

contains ten sources. Each of them contains at least 0.25% of pure pixels. Again, for 

each source, a four-value spectrum is randomly generated, and a mixing matrix with ten 

columns and four rows is created. This mixing matrix is used to linearly generate four 

observations from the sources (taking into account all above-mentioned assumptions).  

These observations contain 42% of pure pixels. Note here, that in the two datasets the 

mixture is globally underdetermined but pre-processed so as to be (over)determined on 

each analysis zone, by zeroing the lowest source values if required, and rescaling the 

remaining sources so that they sum to one. 

 



 

 

 

Figure 3. Original synthetic sources (abundance maps). (a) First dataset. (b) Second 
dataset. 

 

4.2. Real data 

Real multispectral images collected by the Landsat ETM+ and Formosat-2 sensors are 

also used. The Landsat ETM+ image with six spectral bands (Fig. 4(a)), and 30-meter 

spatial resolution, covers a part of Oran area (Algeria). This area is characterized by a 

difficult landscape and diversity of themes (urban area, forest, cereal cultivation, water, 

etc). The Formosat-2 image with four spectral bands (Fig. 4(b)), and 8-meter spatial 

resolution, covers a part of Toulouse area (France). This area is also characterized by a 

diversity of themes. The studied areas offer us a great interest for testing and evaluating 

the proposed methods. 



 

 

 

Figure 4. Real multispectral images. (a) Landsat ETM+ image (six bands) of Oran area 
(Algeria). (b) Formosat-2 image (four bands) of Toulouse area (France). 

 



 

 

4.3. Results and discussion 

The proposed methods are applied to synthetic and real datasets. In addition, the 

SMACC method [12] with the abundance fraction sum-to-one constraint is also applied 

to these datasets for comparison. This method, implemented in commercial software 

ENVI (ITT Corporation) [18], is one of the few approaches applicable to the 

underdetermined BSS model in multispectral remote sensing images, which is not, for 

example, the case of the method described in [25]. Let us stress here, that the SMACC 

method requires the number of endmembers (which corresponds to the number of 

clusters) to be known. This number is automatically detected by our methods and is 

provided to the SMACC method. SMACC uses a convex cone model to identify image 

endmember spectra. Extreme points (brightest pixels in image) are used to determine a 

convex cone, which defines the first endmember. A constrained oblique projection is 

then applied to the existing cone to derive the next endmember. The cone is increased to 

include the new endmember. The process is repeated until the specified number of 

endmembers is found. 

Note here, that the optimal number of clusters automatically detected by our methods is 

8 for the first synthetic dataset, and 10 for the second one, which is consistent with the 

number of created synthetic abundance maps in the two datasets. For the real 

multispectral images, the optimal number of clusters automatically detected by our 

methods is 18 for the Landsat ETM+ image, and 11 for the Formosat-2 image. For each 

real dataset, some extracted sources (abundance maps) correspond to the same thematic 

class of land. We therefore manually assigned these abundance maps to a unique class 

after the extraction stage. Thus, the final result is 11 abundance maps for Landsat 

ETM+ image, and 7 abundance maps for Formosat-2 image. These abundance maps are 



 

 

assigned to thematic classes of land.   

To verify (especially for the real multispectral images) the existence of single-source 

zones, we plot (Figs. 5 and 6) the histograms of the single-source zone detection 

parameter defined in (17) on the entire images, by exploring the spatial domain, using 

5-by-5 pixel adjacent zones. These histograms show that this detection parameter is 

very close to 1 in some zones, which are single-source zones, while it is significantly 

lower than 1 in the other zones, which are multi-source zones. 

 



 

 

 

Figure 5. Histogram of the detection parameter for synthetic datasets. (a) First dataset. 
(b) Second dataset. 

 

 



 

 

 

Figure 6. Histogram of the detection parameter for real datasets. (a) Landsat ETM+ 
image. (b) Formosat-2 image. 

 

 



 

 

In order to further show that single-source and multiple-source analysis zones may be 

distinguished by the corresponding values of the detection parameter, we first select a 

single-source zone for each pure material, from the tested datasets. For each pure 

material, we also select a multiple-source zone, where this pure material is dominant. 

We compute the values of the detection parameter defined in (17) for all these zones. 

Results are shown in Figs. 7 and 8. From these results, we note that the detection 

parameter takes significantly lower values in multiple-source zones than in single-

source zones. Therefore, it is a pertinent parameter for detecting single-source zones. 

 



 

 

 

Figure 7. Detection parameter in single-source and multiple-source zones for synthetic 
datasets. (a) First dataset. (b) Second dataset. 

 



 

 

 

Figure 8. Detection parameter in single-source and multiple-source zones for real 
datasets. (a) Landsat ETM+ image. (b) Formosat-2 image. 

 

The abundance maps (sources) estimated by the 2D-Corr-NLS method and SMACC are 

given in Figs. 9-12, for synthetic and real datasets. The NMSE criterion (%) is provided 

in Tables 1 and 2, respectively for the first and second synthetic datasets. The extraction 

accuracies (%) averaged over all abundance maps are given in Figs. 13 and 14. 

 



 

 

 

Figure 9. First synthetic sources (abundance maps) estimated by (a) 2D-Corr-NLS 
method, (b) SMACC method. 

 



 

 

 

Figure 10. Second synthetic sources (abundance maps) estimated by (a) 2D-Corr-NLS 
method, (b) SMACC method. 

 



 

 

 

Figure 11. Real sources (abundance maps) estimated from the Landsat ETM+ image by 
(a) 2D-Corr-NLS method, (b) SMACC method. 



 

 

 

 

Figure 12. Real sources (abundance maps) estimated from the Formosat-2 image by   
(a) 2D-Corr-NLS method, (b) SMACC method. 

 

 

 

 



 

 

Table 1. NMSE (%) for the first synthetic dataset. (a) All pixels. (b) Pure pixels.         
(c) Mixed pixels. 

 
Method Source s1 Source s2 Source s3 Source s4 Source s5 Source s6 Source s7 Source s8 Mean 

(a)  

2D-Corr-NLS 0.99 0.00 0.40 0.57 7.44 1.90 1.25 0.15 1.59 

SMACC 3.71 0.55 45.25 12.01 22.98 112.95 4.67 4.55 25.83 

(b)  

2D-Corr-NLS 0.03 0.00 0.04 0.01 0.05 0.26 0.03 0.04 0.06 

SMACC 1.74 0.04 17.57 5.08 5.98 112.89 0.40 3.90 18.45 

(c)  

2D-Corr-NLS 3.54 0.01 2.39 3.18 25.87 2.90 8.89 0.24 5.88 

SMACC 8.93 3.19 198.81 44.56 65.33 112.98 31.45 5.06 58.79 
 

 

Table 2. NMSE (%) for the second synthetic dataset. (a) All pixels. (b) Pure pixels. (c) Mixed pixels. 
 

Method Source s1 Source s2 Source s3 Source s4 Source s5 Source s6 Source s7 Source s8 Source s9 Source s10 Mean 

(a)    

2D-Corr-NLS 5.51 0.35 5.77 8.72 11.59 19.95 1.33 54.78 2.21 0.32 11.05 

SMACC 21.26 6.66 21.25 41.01 132.47 102.20 18.48 133.47 27.74 2.18 50.67 

(b)    

2D-Corr-NLS 0.17 0.00 0.41 2.75 0.09 3.01 0.02 23.98 2.63 0.08 3.31 

SMACC 8.35 0.06 13.25 34.66 100.05 100.00 16.33 100.00 117.66 4.04 49.44 

(c)    

2D-Corr-NLS 13.94 1.18 21.73 22.11 23.72 54.19 2.71 74.78 2.13 0.40 21.69 

SMACC 41.65 22.32 45.12 55.28 166.65 106.66 20.75 155.20 11.56 1.57 62.68 
 

 

 

Figure 13. Overall extraction accuracies (%) for synthetic datasets. (a) First dataset.   
(b) Second dataset. 

 



 

 

 

Figure 14. Overall extraction accuracies (%) for real datasets. (a) Landsat ETM+ 
image. (b) Formosat 2 image. 

 

Globally, Table 1 and Figs. 9 and 10 show that the 2D-Corr-NLS method yields better 

performance than SMACC for synthetic datasets, especially, for extraction of source s6 

in the first synthetic dataset, and sources s5, s6, and s8 in the second dataset. The mean 

improvement of the NMSE is about 24% for our 2D-Corr-NLS method as compared to 

SMACC for the first dataset, and about 39% for the second synthetic dataset. Fig. 13 

shows that, in terms of overall extraction accuracies, the best results are also obtained 

with our 2D-Corr-NLS method for the two synthetic datasets. 

For the real multispectral images, Figs. 11, 12 and 14 show that our 2D-Corr-NLS 

method yields better performance than SMACC: the improvement of the overall 

extraction accuracy is more than 51% for the Landsat ETM+ image, and about 56% for 

the Formosat-2 image. Figs. 11(b) and 12(b), which correspond to the abundance maps 

extracted by the SMACC method, show that the abundance maps of some classes are 

not clearly extracted. On the contrary, Figs. 11(a) and 12(a), which correspond to the 

abundance maps extracted by the 2D-Corr-NLS method, show a significant 

improvement for abundance maps extraction of the different classes of land cover. 

 



 

 

5. Conclusion 

In this paper, two unsupervised methods, called 2D-Corr-NLS and 2D-Corr-NMF, were 

proposed for spatial unmixing of multispectral images. These methods rely on a spatial 

correlation-based SCA approach, combined with clustering and approaches based on 

non-negativity constraints. In particular, the proposed methods are applicable to the 

globally underdetermined BSS model in multispectral remote sensing images. 

Compared to the SMACC method, and according to the results obtained in these 

investigations (24% and 39% mean improvement of the normalized mean squared error 

for synthetic datasets, and more than 51% and 55% improvement of the overall 

extraction accuracy for real datasets), the proposed methods are very attractive for 

unmixing multispectral remote sensing images. 

Future extensions of this work will be aimed at testing our methods for spatial unmixing 

of hyperspectral images. Another future extension may consist in testing other 

approaches for the detection stage of our methods, e.g. based on the variance of the ratio 

of observations. 
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