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Abstract. This paper proposes three multisharpening approaches to enhance the spatial reso-
lution of urban hyperspectral remote sensing images. These approaches, related to linear-quad-
ratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization
(NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spec-
tral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral
images. The obtained high-spectral/high-spatial resolution features are then recombined, accord-
ing to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spec-
tral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral
and multispectral variables are independently optimized, once they have been coherently ini-
tialized. These variables are alternately updated in the second designed approach. In the third
approach, the considered hyperspectral and multispectral variables are jointly updated. Experi-
ments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral
domains, of the designed approaches and of linear NMF-based approaches from the literature.
Experimental results show that the designed methods globally yield very satisfactory spectral
and spatial fidelities for the multisharpened hyperspectral data. They also prove that these meth-
ods significantly outperform the used literature approaches. © 2017 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.11.025008]
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1 Introduction

Hyperspectral and multispectral imaging systems are the greatest methods in the rapidly evolv-
ing field of remote sensing. These systems typically have limitations in either spectral or spatial
resolution. While multispectral sensors provide high-spatial resolution data with a few relatively
large spectral bands (i.e., low spectral resolution), hyperspectral sensors collect data in hundreds
or thousands of contiguous narrow spectral bands. The high spectral resolution of hyperspectral
sensors allows accurate detection and identification of materials present in the imaged area, but
with a poor spatial resolution, which is generally lower than that of multispectral sensors.
Therefore, it is desirable to improve the spatial resolution of hyperspectral data by using the
spatial information of multispectral images, while keeping the spectral fidelity of hyperspectral
data as much as possible. The fusion methods, commonly known as sharpening methods, are one
possible approach for increasing the spatial resolution of hyperspectral data.

Over the last two decades, several sharpening methods were designed to merge multispectral
or hyperspectral data with a high-spatial resolution panchromatic image.1,2 The most famous of
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these classical pan-sharpening processes are component projection-substitution methods, such as
those based on principal component analysis and intensity hue saturation. It should here be noted
that it is natural to expect that performing pan-sharpening with hyperspectral data is more com-
plicated than achieving it with multispectral data.1 Indeed, this can be explained by the fact that
the spectral band of the panchromatic image generally encompasses the spectral bands of the
multispectral one, while that panchromatic band does not include all the spectral bands of hyper-
spectral data, which can produce spectral distortions during the fusion process. Thus, pan-sharp-
ening approaches were extended, in the last few years, for combining hyperspectral and
multispectral data. These extended techniques are known as multisharpening approaches.

These multisharpening processes3–8 aim at combining the spectral information from high-
spectral/low-spatial resolution hyperspectral data with spatial information obtained from high-
spatial/low-spectral resolution multispectral data. Applying such multisharpening processes to
observable hyperspectral images allows one to perform accurate detection, identification, and
classification of an imaged region at a higher spatial resolution.

Recently, other approaches,9–13 via linear spectral unmixing (LSU) techniques,14 and using
nonnegative matrix factorization (NMF),15–17 which consists of factorizing a nonnegative matrix
into a product of two nonnegative matrices, were designed for increasing the spatial resolution of
hyperspectral data by using a multispectral image. LSU techniques, used to solve the typical
blind source separation problem,18,19 consist of linearly unmixing remote sensing data into a
collection of endmember spectra and their corresponding abundance fractions.

When facing nonflat landscape and/or irradiance heterogeneity in the imaged area (such as in
urban environments), the linear mixing model used in LSU techniques is not valid any more, and
it should be replaced by a nonlinear mixing model.20 This nonlinear model can be reduced to a
linear-quadratic mixing model.21,22

In this paper, new multisharpening methods are proposed for hyperspectral and multispectral
remote sensing data fusion. The proposed methods are particularly useful for fusing optical
urban remote sensing data. These original methods are based on linear-quadratic spectral unmix-
ing (LQSU) techniques, which consider multiple scattering of light between endmembers in the
observed area, which is the case when considering urban environments.22 The multisharpening
methods described below use the linear-quadratic NMF (LQNMF) multiplicative algorithm.23

They first consist of unmixing the observable high-spectral/low-spatial resolution hyperspectral
data and high-spatial/low-spectral resolution multispectral data. The obtained high resolution
spectral and spatial parts of the information are then recombined, according to the linear-quad-
ratic mixing model, to get unobservable multisharpened high-spectral/high-spatial resolution
hyperspectral data. In the first proposed approach, called hyperspectral and multispectral data
fusion based on LQNMF (HMF-LQNMF), hyperspectral and multispectral variables are inde-
pendently optimized, once they have been coherently initialized.24,25 These variables are alter-
nately updated in the second proposed approach, called coupled hyperspectral and multispectral
data fusion based on LQNMF (CHMF-LQNMF). In the third proposed approach, called joint
hyperspectral and multispectral data fusion based on LQNMF (JHMF-LQNMF), the considered
hyperspectral and multispectral variables are jointly updated.

The paper is structured as follows. Section 2 describes the linear-quadratic mixing model
considered in the LQSU concept. In Sec. 3, the proposed methods are presented. The results
obtained by the proposed methods and those obtained with two linear NMF-based approaches
from the literature are compared in Sec. 4. These results are obtained by considering synthetic
and real data. Finally, Sec. 5 concludes this paper.

2 Mathematical Data Model

The linear-quadratic mixing model considers the second-order interactions between different
endmember spectra and assumes that third- or higher-order interactions are insignificant.
Thus, in this work, each spectral vector associated with a pixel in a remote sensing image is
supposed to be a linear-quadratic mixture of different endmember spectra. Mathematically, the
nonnegative reflectance spectrum xi (column vector of size L), from pixel i of the remote sensing
image, is modeled as23
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EQ-TARGET;temp:intralink-;e001;116;735xi ¼
XM
j¼1

ajðiÞsj þ
XM
j¼1

XM
l¼j

aj;lðiÞsj⊙sl; (1)

EQ-TARGET;temp:intralink-;e002;116;693with

8>>><
>>>:

sj ≥ 0; j ¼ 1; : : : ;MP
M
j¼1 ajðiÞ ¼ 1;

ajðiÞ ≥ 0; j ¼ 1; : : : ;M

0 ≤ aj;lðiÞ ≤ 0.5; 1 ≤ j ≤ l ≤ M

; (2)

where sj (column vector of size L) is the nonnegative reflectance spectrum of endmember j,
⊙ corresponds to an element-wise multiplication, with sj⊙sl here considered as a “pseudoend-
member” spectrum, and ajðiÞ and aj;lðiÞ are the abundance fractions corresponding, respec-
tively, to the linear and quadratic parts of the mixing model. L and M correspond,
respectively, to the number of spectral bands in the considered image and the number of end-
members present in the observed region. In addition, the considered mixing model is constrained
according to Eq. (2). These constraints are imposed based on the physical analysis reported in
Ref. 22 considering urban environments and using several synthetic data simulated with the
three-dimensional advanced modeling of the atmospheric radiative transfer for inhomogeneous
surfaces (AMARTIS v2) code.26 The model [Eq. (1)] can be reformulated in matrix form as
follows (for P pixels, P ≥ 2)23

EQ-TARGET;temp:intralink-;e003;116;489X ¼ AS ¼ AaSa þ AbSb; (3)

with X ¼ ½x1; : : : ; xP�T (observed pixel spectra matrix, with dimensions P × L, where each col-
umn vector of X contains one spectral band23), A ¼ ½AaAb� (linear and quadratic abundance

fraction matrix), and S ¼
�
Sa
Sb

�
(endmember and pseudoendmember spectra matrix), with

EQ-TARGET;temp:intralink-;e004;116;408Aa ¼

2
64
a1ð1Þ · · · aMð1Þ
..
. . .

. ..
.

a1ðPÞ · · · aMðPÞ

3
75; (4)

EQ-TARGET;temp:intralink-;e005;116;344Ab ¼

2
64

a1;1ð1Þ a1;2ð1Þ · · · aM;Mð1Þ
..
. . .

. ..
.

a1;1ðPÞ a1;2ðPÞ · · · aM;MðPÞ

3
75; (5)

EQ-TARGET;temp:intralink-;e006;116;285Sa ¼ ½s1; : : : ; sM�T; (6)

EQ-TARGET;temp:intralink-;e007;116;258Sb ¼ ½s1⊙s1s1⊙s2; : : : ; sM⊙sM�T: (7)

The subindices a and b, respectively, refer to the linear and quadratic parts of the considered
variables. The notation ½:�T corresponds to the matrix transpose. The aim of hyperspectral data
multisharpening is to produce unobservable fused high-spectral/high-spatial resolution hyper-

spectral data Xf ∈ RPm×Lhþ from observable high-spectral/low-spatial resolution hyperspectral

data Xh ∈ RPh×Lhþ and high-spatial/low-spectral resolution multispectral data Xm ∈ RPm×Lmþ .
Lh (respectively Lm) corresponds to the number of spectral bands of the hyperspectral image
Xh (respectively multispectral image Xm). Ph (respectively Pm) corresponds to the number of
pixels of the hyperspectral (respectively multispectral) image. Each column vector of the above
matrices (Xh, Xm, and Xf) contains one spectral band.23 The observable hyper/multispectral
images are assumed to be radiometrically corrected and geometrically coregistered.

As explained above, Xh and Xm can be reformulated in matrix form as

EQ-TARGET;temp:intralink-;e008;116;93Xh ¼ AhSh ¼ AhaSha þ AhbShb; (8)
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EQ-TARGET;temp:intralink-;e009;116;723Xm ¼ AmSm ¼ AmaSma þ AmbSmb; (9)

with Ah ¼ ½AhaAhb�, Sh ¼
�
Sha
Shb

�
, Am ¼ ½AmaAmb�, and Sm ¼

�
Sma

Smb

�
. The subscripts h and m

refer, respectively, to hyperspectral and multispectral entities.

3 Proposed Methods

The proposed methods are based on the LQSU concept and consist of deriving, from the con-

sidered data, estimates fSha and fShb of the sets Sha and Shb of hyperspectral endmember and

pseudoendmember spectra and estimates gAma and gAmb of the sets Ama and Amb of linear
and quadratic high spatial resolution abundance fractions. The desired multisharpened high-
spectral/high-spatial resolution hyperspectral image Xf is then obtained by

EQ-TARGET;temp:intralink-;e010;116;563Xf ¼ gAma
fSha þgAmb

fShb : (10)

The proposed methods include two LQSU processes and use the iterative LQNMF multi-
plicative algorithm described in Ref. 23. The first process consists of unmixing a hyperspectral
image by optimizing the following Frobenius norm criterion

EQ-TARGET;temp:intralink-;e011;116;492J1 ¼
1

2
kXh −gAha

fSha −gAhb
fShb k2F: (11)

This criterion can be formulated in scalar form as23

EQ-TARGET;temp:intralink-;e012;116;438J1 ¼
1

2

X
ih;nh

�
½Xh�ih;nh −

XM
j¼1

fahjðihÞ½ eSh�j;nh −XM
j¼1

XM
l¼j

gahj;lðihÞ½ eSh�j;nh ½ eSh�l;nh
�2
; (12)

where ½Xh�ih;nh is the entry of Xh with row and column indices, respectively, equal to ih and nh,
and similar notations are used for the other matrices. Also, ih corresponds to a hyperspectral
pixel and nh is the index of the hyperspectral spectra components, i.e., the hyperspectral wave-

lengths. ½ eSh�j;nh is the element (j, nh) of matrix eSh (the estimate of matrix Sh), with j ¼ 1; : : : ;M.
Similarly, the second process optimizes the following Frobenius norm in order to unmix a

multispectral image

EQ-TARGET;temp:intralink-;e013;116;309J2 ¼
1

2
kXm − gAma

gSma −gAmb
gSmb k2F: (13)

Like the J1 criterion, this second criterion can be formulated in scalar form as23

EQ-TARGET;temp:intralink-;e014;116;256J2 ¼
1

2

X
im;nm

�
½Xm�im;nm −

XM
j¼1

famj
ðimÞ½fSm�j;nm −

XM
j¼1

XM
l¼j

gamj;l
ðimÞ½fSm�j;nm ½fSm�l;nm

�2
; (14)

where the multispectral variables are defined in the same way as the hyperspectral variables
of Eq. (12).

The designed methods work in three stages that are described hereafter.

3.1 Initialization Stage

This stage is shared by the three proposed methods and aims at initializing the different hyper/
multispectral variables. The LQNMF-based methods, like the standard linear-NMF-based meth-
ods, are not assured to give a unique solution and their convergence point will possibly depend
on their initialization. Therefore, and in order to derive methods that do not use random initial-

ization, the initial estimated hyperspectral endmember spectra fShað0Þ are calculated by the linear
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simplex identification via split augmented Lagrangian (SISAL) method,27 which is one of the
most advanced methods for endmember spectra extraction, thus allowing a better initialization of
these spectra. The SISAL method requires the number M of endmembers to be known. This
number can be automatically determined by using the method described in Ref. 28. The initial

estimated hyperspectral pseudoendmember spectra fShbð0Þ are derived from the initial matrixfShað0Þ by using element-wise multiplication. Then, the initial estimated linear low-spatial res-

olution abundance fractions gAha
ð0Þ are derived from the hyperspectral image Xh and the initial

estimated matrix fShað0Þ, by means of the fully constrained least squares method29 (separately

applied to each pixel of the hyperspectral image). From the matrix gAha
ð0Þ, the initial estimated

quadratic low-spatial resolution abundance fractions gAhb
ð0Þ are calculated, by using the Fan

model30 and the constraint described in Eq. (2), as follows: for a given hyperspectral pixel ih,

each element gahj;l ð0ÞðihÞ (with j ≤ l) of matrix gAhb
ð0Þ is set to minf0.5; fahj ð0ÞðihÞ:fahl ð0ÞðihÞg,

where fahj ð0ÞðihÞ and fahl ð0ÞðihÞ are two elements of matrix gAha
ð0Þ. The initial estimated multi-

spectral endmember spectra gSma
ð0Þ are derived from the initial estimated hyperspectral endmem-

ber spectra fShað0Þ by averaging the samples of the latter spectra over the wavelength domains

considered in the multispectral image. The remaining multispectral variables, i.e., gSmb
ð0Þ, gAma

ð0Þ,
and gAmb

ð0Þ, are derived in the same manner as the above-initialized hyperspectral variables.
The above-interdependent initialization of hyperspectral and multispectral variables allows

one avoiding a possible permutation [which would cause a problem when using fusion Eq. (10)]
between the results of the two considered hyper/multispectral image unmixing processes. Also,
the sum-to-one constraint, given in Eq. (2), allows one avoiding the known problem of the scale
factor that can appear in the results of the two unmixing processes [which would also be a prob-
lem when using fusion Eq. (10)]. This constraint is enforced, for the linear parts of low/high
spatial resolution abundance fractions, in the following optimization stage by adopting the
method described in Ref. 28.

3.2 Optimization Stage

This stage aims at updating the above-initialized variables in order to get the final estimates of
these variables.

The first considered HMF-LQNMF method consists of independently updating the hyper-
spectral and multispectral matrices,24,25 according to the LQNMF multiplicative algorithm. The
hyperspectral and multispectral data are thus dependently unmixed. Practically, this first pro-
posed method includes two successive loops during the optimization stage. The hyperspectral
matrices are updated in the first loop by optimizing the criterion J1. This first loop uses the
following update rules and constraints, with the notations of Ref. 23

• Update rule (given in scalar form) of matrix fSha:
EQ-TARGET;temp:intralink-;e015;116;254

½fSha�p;nh←½fSha�p;nh
0
@½gAT

haXh�p;nh þ 2½fSha�p;nh ½gAT
hbXh�ðppÞ;nh

½Dh�p;n þ ε

þ
P

M
j¼1;j≠p ½fSha�j;nh ½gAT

hbXh�ðjpÞ;nh
½Dh�p;nh þ ε

1
A; (15)

where
EQ-TARGET;temp:intralink-;e016;116;155

½Dh�p;nh ¼ ½gAT
ha

fAh
eSh�p;nh þ XM

j¼1;j≠p
½fSha�j;nh × ½gAT

hb
fAh

eSh�ðjpÞ;nh
þ 2½fSha�p;nh × ½gAT

hb
fAh

eSh�ðppÞ;nh . (16)

The term ε in the denominator of Eq. (15) is selected to be positive and very small (generally
set to the default MATLAB epsilon value) and is intended to avoid possible division by zero,
and p is an index for the endmember spectra.23
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• Update rule (given in scalar form) of matrix fShb using fSha:
EQ-TARGET;temp:intralink-;e017;116;723½fShb�ðjpÞ;nh←½fSha�j;nh × ½fSha�p;nh : (17)

• Update rule (given in matrix form) of matrix fAh:

EQ-TARGET;temp:intralink-;e018;116;675

fAh←fAh⊙½ðXh
fSThÞ⊘ ðfAh

eSh fSTh þεÞ�; (18)

where ⊘ denotes element-wise division.
• Constraint on the linear part of matrix Ãh:

EQ-TARGET;temp:intralink-;e019;116;616½fah1ðihÞ: : :gahMðihÞ�←½fah1ðihÞ: : :gahMðihÞ�∕XM
j¼1

fahjðihÞ: (19)

• Constraint on the quadratic part of matrix fAh

EQ-TARGET;temp:intralink-;e020;116;552gahj;lðihÞ←minf0.5;gahj;lðihÞg: (20)

The multispectral variables are updated in the next loop (i.e., the second loop) by optimizing
the criterion J2. This second loop uses the same update rules and constraints as above, except that
they are applied to the multispectral data, instead of the hyperspectral ones. The resulting algo-
rithm is, therefore, the same as Eqs. (15)–(20), except that the matrix indices “h” are replaced
by “m.”

For each loop, the updating process is stopped when the number of iterations reaches a pre-
defined maximum value.

The second proposed method, i.e., CHMF-LQNMF, can be seen as an extension of the
coupled NMF (CNMF) one9,11 for a linear-quadratic mixture, since the CNMF method is
designed for a linear mixture. In this proposed method, an outer loop is used, wherein the hyper-
spectral and multispectral variables are alternately updated by using two inner loops.

In the first inner loop, the hyperspectral variables are updated in order to minimize the cri-
terion J1 by using the above-defined update rules [Eqs. (15), (17), and (18)] and the constraints
[Eqs. (19) and (20)]. The spectral parts of these hyperspectral variables obtained by using the
update rules [Eqs. (15) and (17)] are then spectrally downsampled (by averaging the samples of
the latter spectra over the wavelength domains considered in the multispectral image) and
injected as the initialization of the spectra used in the second inner loop. In this loop, the multi-
spectral variables are updated in order to minimize criterion J2 by using the above-defined
counterpart of Eqs. (15)–(20) intended for the multispectral variables.

The optimized spatial parts of these multispectral variables obtained by using the multispec-
tral counterpart of Eqs. (18)–(20) are then spatially downsampled (by means of the k-nearest-
neighbors interpolation technique) and used, in the next iteration of the outer loop, as the ini-
tialization of the first inner loop. These alternative unmixing processes are stopped when the
numbers of iterations, of the outer and inner loops, reach predefined maximum values.

The JHMF-LQNMFmethod can also be seen as an extension of the joint NMF (JNMF) one10

for a linear-quadratic mixture. This third proposed method uses only one loop, in which the
considered hyper/multispectral variables are jointly updated by using, at each iteration of the
loop, the hyperspectral and multispectral update rules of the considered multiplicative
LQNMF algorithm. The complete algorithm of this third proposed method includes two addi-
tional rules (in addition to Eqs. (15)–(20) and their multispectral counterpart), which are

EQ-TARGET;temp:intralink-;e021;116;153

fAh←ð1 − αÞfAh þ αgAdm; (21)

EQ-TARGET;temp:intralink-;e022;116;120

fAm←ð1 − αÞfAm þ αgAuh; (22)

where the matrix gAdm (respectively gAuh) represents the spatially downsampled (respectively
upsampled) version of fAm (respectively fAh) obtained by means of the k-nearest-neighbors
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interpolation technique. These additional update rules force the low- and high-spatial resolution
linear and quadratic fraction maps to be updated in a consistent manner by using a small positive
parameter α ∈�0; 1½. In this third proposed method, the stop condition used is also the maximum
number of iterations.

3.3 Fusion Stage

This stage consists of deriving the unobservable multisharpened high-spectral/high-spatial reso-
lution hyperspectral image by using Eq. (10). This stage is common to the three designed methods.

4 Test Results

Various experiments, based on synthetic and real images, have been conducted to assess the
performance of the designed methods and compare them to those of two linear NMF-based
methods from the literature.

4.1 Tested Data

4.1.1 Synthetic data

Two sets of eight hyperspectral endmember spectra are chosen from spectral libraries, with mea-
surements performed from 0.4 to 2.5 μm. The first set contains eight randomly selected spectra
from the spectral library compiled by the United States Geological Survey (USGS).31 The second
set contains eight spectra of materials used in urban areas, selected from the spectral library
compiled by the Johns Hopkins University (JHU).32 From these two sets of hyperspectral spec-
tra, two other sets of eight multispectral endmember spectra are created by averaging the samples
of the latter hyperspectral spectra over the wavelength domains considered in the Landsat TM
bands 1 to 5 and 7 (i.e., the 0.45 to 0.52, 0.52 to 0.60, 0.63 to 0.69, 0.76 to 0.90, 1.55 to 1.75, and
2.08 to 2.35 μm domains).

After that, these hyperspectral and multispectral spectra are used to produce two sets of syn-
thetic images. Each set of images corresponds to one of the above two sets of (hyperspectral and
multispectral) spectra and contains two subsets of images. The first subset of images is created
according to the mathematical linear mixing model, and the second subset is generated according
to the linear-quadratic mixing model. Note here that the linear and linear-quadratic mixing mod-
els are considered to assess the performance of the used linear and linear-quadratic methods
when these methods are applied without any information about the nature of data mixture.

Each subset of the first set contains a 200 × 200-pixel high-spectral/high-spatial resolution
hyperspectral image (used as a reference image), a 100 × 100-pixel high-spectral/low-spatial
resolution hyperspectral image and, a 200 × 200-pixel high-spatial/low-spectral resolution mul-
tispectral image. In the second set, each subset contains the same 200 × 200-pixel high-spectral/
high-spatial resolution reference hyperspectral image, a 50 × 50-pixel high-spectral/low-spatial
resolution hyperspectral image, and a 200 × 200-pixel high-spatial/low-spectral resolution mul-
tispectral image (Figs. 1 and 2). Each hyperspectral image in each set is generated with 184
spectral bands, while each multispectral image is generated with 6 spectral bands.

The linear abundance fractions of high-spatial resolution hyperspectral and multispectral
images are created from a real classification of land cover, with eight classes, by averaging
pixel classification values over a nonoverlapping sliding 2 × 2-pixel window in order to create
mixed pixels.

The linear abundance fractions of high-spectral/low-spatial resolution hyperspectral images
are created by downsampling the above linear high-spatial resolution abundance fractions. The
downsampling process is performed by means of the k-nearest-neighbors spatial interpolation
technique and by considering, respectively, in the first and second sets of images, two scale
factors (2 and 4) between the considered hyperspectral and multispectral images. The quadratic
abundance fractions are generated from the linear ones in the same manner as described in the
above initialization stage of the proposed methods.

Benhalouche et al.: Hyperspectral and multispectral data fusion based on linear-quadratic. . .

Journal of Applied Remote Sensing 025008-7 Apr–Jun 2017 • Vol. 11(2)



4.1.2 Real data

In this work, real data are also used. These real data (radiometrically corrected and geometrically
coregistered), acquired on the same day (March 3, 2003) and at the same time, cover a part of the
Oran urban area, Algeria. The high-spectral/low-spatial resolution hyperspectral image is from
the Earth Observing-1 (EO-1) Hyperion sensor. This image, with 30-m spatial resolution, con-
tains 125 spectral bands (after removing, from the original 242-spectral band data cube, the low
signal-to-noise ratio spectral bands as well as the noncalibrated and overlapping spectral bands).
Two pan-sharpened multispectral images are used. The first one, acquired by the Landsat
enhanced thematic mapper plus (ETM+) sensor, is characterized by 6 spectral bands and 15-m
spatial resolution. The second one [acquired by the EO-1 advanced land imager (ALI) sensor],
with 10-m spatial resolution, contains 9 spectral bands.

4.2 Performance Evaluation Criteria

For the tested synthetic data, the spectral and spatial qualities of the estimated unobservable
high-spectral/high-spatial resolution multisharpened hyperspectral image are evaluated by com-
paring it with the reference hyperspectral image. To evaluate the spectral reconstruction quality,

Fig. 1 Spectral band (in the 0.815-μm region) of the original high-spatial resolution hyperspectral
image, low-spatial resolution hyperspectral image, estimated high-spatial resolution hyperspectral
images—synthetic data: randomly selected spectra, linear-quadratic mixing model, scale factor: 4.
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the spectral angle mapper (SAM)11 criterion is used. This criterion is calculated between each
pixel spectrum in the reference image and its analogue in the estimated image. A smaller angle
indicates a better spectral reconstruction. In the spatial domain, the used criterion is the peak
signal-to-noise ratio (PSNR).11 This spatial criterion is calculated between each spectral band in
the reference image and its analogue in the estimated multisharpened image. The higher the
PSNR value, the better the spatial reconstruction quality.

For the tests with real data, a modified quality with no reference (mQNR) criterion is pro-
posed and used for spatial–spectral reconstruction quality assessment. The standard QNR33 has
been modified in order to be used in the considered multisharpening processes. This modified
spatial–spectral criterion reads

EQ-TARGET;temp:intralink-;e023;116;138mQNR ¼ ð1 −DλÞσð1 −DsÞρ; (23)

where σ and ρ are real-valued exponents (set to 1 in the conducted experiments), and Dλ and Ds

are spectral and spatial distortion indices, respectively. The spectral index reads

Fig. 2 Spectral band (in the 0.815-μm region) of the original high-spatial resolution hyperspectral
image, low-spatial resolution hyperspectral image, estimated high-spatial resolution hyperspectral
images—synthetic data: selected urban material spectra, linear-quadratic mixing model, scale fac-
tor: 4.
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EQ-TARGET;temp:intralink-;e024;116;735Dλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

LhðLh − 1Þ
XLh

j¼1

XLh

r¼1;r≠j
jUIQIðXfj ; XfrÞ − UIQIðXhj ; XhrÞjω

ω

vuut ; (24)

where ω is a positive integer exponent (set to 1 in the conducted experiments). Xf: is one spectral
band of the multisharpened hyperspectral image. Xh: is one spectral band of the hyperspectral
image. The spatial distortion index Ds is calculated as follows: for each spectral band of the
multispectral image, a spatial distortion subindex is calculated, by using the standard index
defined in Ref. 33, between the considered multispectral band and hyperspectral bands that
are covered by the considered multispectral range. The final spatial distortion index Ds repre-
sents the mean of the calculated subindices. These two distortion indices use the universal image
quality index (UIQI) defined in Ref. 34. The range of mQNR, Dλ, and Ds is [0, 1]. A higher
mQNR value indicates a higher spatial–spectral reconstruction quality. A smaller spatial (respec-
tively spectral) distortion value indicates a better spatial (respectively spectral) reconstruction.

4.3 Results and Discussion

The proposed methods are applied to the above defined data. The maximum number of iterations
used in each of the two loops of the HMF-LQNMF method is set to 10. The same number is also
considered in the JHMF-LQNMF method wherein the small positive joint parameter α is set to
0.01. In the CHMF-LQNMF method, the maximum number of iterations of the outer (respec-
tively inner) loop is set to 3 (respectively 10).

In these investigations, two linear-NMF-based fusion methods from the literature are also
applied to the considered data. The first one is the CNMF method,9,11 and the second one is
the JNMF method.10 The CNMF and JNMF methods are used in two scenarios. In the first
one (Sc. 1), only the endmember spectra and linear abundance fractions are considered, whereas
in the second scenario (Sc. 2), in addition to the endmember spectra and linear abundance frac-
tions, the pseudoendmember spectra (respectively quadratic abundance fractions) are considered
as new endmember spectra (respectively new linear abundance fractions). These two scenarios
are considered in order to assess the performance of these two linear-based literature methods
when they are applied without any information about the nature of data mixture.

The CPU used in the conducted experiments is an Intel® Core™ i5 processor running at
1.80 GHz, with a memory capacity of 4 GB.

The computational costs and the means of the spectral and spatial criteria of the tested meth-
ods are given in Tables 1–4.

Table 1 Computational costs and means of the spectral and spatial criteria, for the randomly
selected spectra, with a linear mixing model.

Unmixing-based fusion method

CNMF JNMF LQNMF-based

Sc. 1 Sc. 2 Sc. 1 Sc. 2 HMF-LQNMF CHMF-LQNMF JHMF-LQNMF

Scale
factor: 2

Time (s) 17.53 21.38 2.19 3.24 7.39 21.53 10.58

Criterion Ideal

SAM (deg) 0 1.88 5.78 1.57 1.70 0.82 0.77 0.76

PSNR (dB) ∞ 34.80 25.16 30.62 28.23 42.03 37.44 42.27

Scale
factor: 4

Time (s) 6.48 15.64 2.04 3.61 6.04 10.69 8.01

Criterion Ideal

SAM (deg) 0 3.78 5.79 3.31 3.38 0.82 0.77 0.79

PSNR (dB) ∞ 29.10 25.14 29.43 27.20 42.05 37.38 42.21

Note: Bold values refer to the best results.
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Globally, these tables show that the proposed approaches (HMF-LQNMF, CHMF-LQNMF,
and JHMF-LQNMF) yield very good spatial and spectral fidelities for the estimated multisharp-
ened hyperspectral images. These tables also show that the proposed methods highly outperform
the tested linear-based literature methods (in both scenarios) in the linear and linear-quadratic
configurations. It should be noted here that the superiority of the proposed methods in the linear-
quadratic configuration is quite expected, since these methods are designed for the linear-quad-
ratic mixing model, which is not the case of the used linear-based literature ones. For spectra that
are actually mixed according to the linear model, the performance improvement obtained with
the three proposed methods intended for linear-quadratic mixtures, as compared with the two
methods intended for linear mixtures, may be due to the following phenomena. In scenario 1, it
may be due to the fact that the proposed linear-quadratic methods decompose the observed data
over a higher number of spectra, which makes them able to approximate these data more accu-
rately. In scenario 2, all considered methods use the same number of spectra for decomposing the

Table 2 Computational costs and means of the spectral and spatial criteria, for the randomly
selected spectra, with a linear-quadratic mixing model.

Unmixing-based fusion method

CNMF JNMF LQNMF-based

Sc. 1 Sc. 2 Sc. 1 Sc. 2 HMF-LQNMF CHMF-LQNMF JHMF-LQNMF

Scale
factor: 2

Time (s) 7.48 21.94 2.37 3.35 8.46 10.94 10.47

Criterion Ideal

SAM (deg) 0 3.28 4.72 1.62 1.64 1.34 1.08 1.20

PSNR (dB) ∞ 30.88 27.69 31.96 29.40 38.76 35.80 38.82

Scale
factor: 4

Time (s) 5.56 14.46 2.09 4.79 6.55 7.72 7.47

Criterion Ideal

SAM (deg) 0 3.31 4.92 3.06 3.04 1.20 1.05 1.14

PSNR (dB) ∞ 30.77 27.50 30.37 28.59 37.72 35.94 37.84

Note: Bold values refer to the best results.

Table 3 Computational costs andmeans of the spectral and spatial criteria, for the selected urban
material spectra, with a linear mixing model.

Unmixing-based fusion method

CNMF JNMF LQNMF-based

Sc. 1 Sc. 2 Sc. 1 Sc. 2 HMF-LQNMF CHMF-LQNMF JHMF-LQNMF

Scale
factor: 2

Time (s) 12.12 23.61 2.16 3.24 8.52 10.95 10.58

Criterion Ideal

SAM (deg) 0 1.33 1.09 0.84 0.97 0.29 0.29 0.28

PSNR (dB) ∞ 37.00 38.04 33.27 26.23 45.76 41.54 45.56

Scale
factor: 4

Time (s) 6.30 18.80 2.03 2.38 6.23 7.96 8.09

Criterion Ideal

SAM (deg) 0 1.43 1.14 1.67 1.74 0.29 0.28 0.28

PSNR (dB) ∞ 35.72 37.04 31.55 25.68 45.84 41.60 45.40

Note: Bold values refer to the best results.
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Fig. 3 Histogram of the SAM criterion (deg) and PSNR criterion values (dB)—synthetic data: ran-
domly selected spectra, linear-quadratic mixing model, scale factor: 4.

Table 4 Computational costs andmeans of the spectral and spatial criteria, for the selected urban
material spectra, with a linear-quadratic mixing model.

Unmixing-based fusion method

CNMF JNMF LQNMF-based

Sc. 1 Sc. 2 Sc. 1 Sc. 2 HMF-LQNMF CHMF-LQNMF JHMF-LQNMF

Scale factor: 2 Time (s) 11.46 24.42 2.22 3.81 7.77 10.78 10.51

Criterion Ideal

SAM (deg) 0 1.30 1.07 1.02 1.06 0.71 0.33 0.71

PSNR (dB) ∞ 36.99 38.02 31.94 25.60 35.39 39.94 35.39

Scale factor: 4 Time (s) 6.61 19.51 1.93 2.82 6.33 8.58 7.93

Criterion Ideal

SAM (deg) 0 1.35 1.11 1.83 1.89 0.37 0.32 0.37

PSNR (dB) ∞ 36.04 37.21 31.24 25.57 41.63 39.79 41.24

Note: Bold values refer to the best results.
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Fig. 4 Histogram of the SAM criterion (deg) and PSNR criterion values (dB)—synthetic data:
selected urban material spectra, linear-quadratic mixing model, scale factor: 4.

Table 5 Values of the computational costs and of the evaluation criteria for the real data: EO-1
Hyperion with Landsat ETM+.

Unmixing-based fusion method

CNMF JNMF LQNMF-based

Sc. 1 Sc. 2 Sc. 1 Sc. 2 HMF-LQNMF CHMF-LQNMF JHMF-LQNMF

Time (s) 8.32 33.24 1.92 4.27 6.35 14.11 13.73

Criterion Ideal

Dλ 0 0.11 0.13 0.10 0.09 0.13 0.05 0.14

Ds 0 0.60 0.59 0.59 0.59 0.27 0.32 0.29

mQNR 1 0.35 0.35 0.37 0.38 0.64 0.64 0.60

Note: Bold values refer to the best results.
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observed data, but the spectra used in the proposed linear-quadratic methods are more con-
strained (and constrained in a way that is compatible with the actual nature of the observed
data). This constraint may help these iterative algorithms reach a better solution (it should
be remembered that standard NMF methods yield many spurious solutions). In addition,

Table 6 Values of the computational costs and of the evaluation criteria for the real data: EO-1
Hyperion with EO-1 ALI.

Unmixing-based fusion method

CNMF JNMF LQNMF-based

Sc. 1 Sc. 2 Sc. 1 Sc. 2 HMF-LQNMF CHMF-LQNMF JHMF-LQNMF

Time (s) 11.83 42.37 2.98 7.76 10.84 26.23 25.94

Criterion Ideal

Dλ 0 0.23 0.25 0.23 0.24 0.24 0.07 0.24

Ds 0 0.71 0.70 0.69 0.69 0.44 0.48 0.45

mQNR 1 0.23 0.22 0.24 0.23 0.43 0.48 0.42

Note: Bold values refer to the best results.

Fig. 5 Spectral band for real data (EO-1 Hyperion and EO-1 Landsat ETM+), in the 0.815-μm
region, of the low-spatial resolution hyperspectral image and the estimated (by all the tested meth-
ods) high-spatial resolution hyperspectral images.
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these tables prove that the results obtained when the scale factor is 2 between the spatial res-
olutions of the considered images are most often better than those obtained when the scale factor
is 4. This is expected: the lower the scale factor between the spatial resolutions of the hyper-
spectral and multispectral data, the better the fusion results.

Also, considering the linear-quadratic configuration, and when the scale factor is 4 between
the spatial resolutions of the hyperspectral and multispectral data, Figs. 1 and 2 show the spectral
band, in the 0.815-μm region,11 of the original high-spatial resolution hyperspectral image, the
low-spatial resolution hyperspectral image, and the obtained (by all the tested methods) high-
spatial resolution hyperspectral images.

From Figs. 1 and 2, one may hardly see any differences between the spectral bands of the
original and estimated images with a visual inspection. Therefore, for a better discrimination
between the tested methods (proposed methods and NMF-based literature ones considering
the first scenario), Figs. 3 and 4 show the histogram over all pixels of the SAM criterion,
and the PSNR criterion values for all hyperspectral wavelength regions, for the used synthetic
data in the linear-quadratic mixture configuration, and when the scale factor is 4.

From these figures, it is clear that the proposed methods globally yield less spectral and
spatial distortion than the tested literature methods.

For the real data, the obtained results with all the tested methods are given in Tables 5
and 6. Note here that the number of endmembers estimated by the method described in
Ref. 28 is 10.

Fig. 6 Spectral band for real data (EO-1 Hyperion and EO-1 ALI), in the 0.815-μm region, of the
low-spatial resolution hyperspectral image and the estimated (by all the tested methods) high-spa-
tial resolution hyperspectral images.

Benhalouche et al.: Hyperspectral and multispectral data fusion based on linear-quadratic. . .

Journal of Applied Remote Sensing 025008-15 Apr–Jun 2017 • Vol. 11(2)



These tables also confirm the good overall performance of the designed methods in com-
parison with the linear-based literature JNMF and CNMF methods. It should be noted here that
the proposed methods provide better results than the methods from the literature for both Ds and
Dλ measures. The improvement obtained forDs may be explained by the fact that the considered
real data are related to an urban environment, and therefore, with probable nonlinearities (of
linear-quadratic type), in these observed data, which generate nonzero linear-quadratic abun-
dance coefficients that represent the spatial aspect of the considered data model. Thus, taking
into account these linear-quadratic coefficients may explain the improvement of the spatial dis-
tortion index Ds for the sharpened data with the three proposed linear-quadratic methods. These
tables also prove that the results improve when the scale factor between the spatial resolutions of
the hyperspectral and multispectral data is lower. Indeed, the results obtained with the fusion of
real data from Hyperion EO-1 with Landsat ETM+ (where the above scale factor is 2) are sig-
nificantly better than those obtained with the fusion of the real data from Hyperion EO-1 with
ALI (where the above scale factor is 3). These tables also show that CHMF-LQNMF is the
method that globally provides the best results.

Also, Figs. 5 and 6 show the spectral band for real data, in the 0.815-μm region, of the low-
spatial resolution hyperspectral image and the estimated (by all the tested methods) high-spatial
resolution hyperspectral images. These figures show that our proposed methods give rather good
visual results in comparison with tested literature methods, especially when considering the
fusion of Hyperion EO-1 and ALI data.

Finally, it should here be noted that the given computational costs (for all conducted experi-
ments) are only indicative, and are not used as comparison criteria. These computational costs
are given so that readers may just have an idea about the execution time of each used method.
Indeed, it is difficult to compare, using the computational costs, differently constructed methods
(with different numbers of used loops).

5 Conclusion

In this paper, new methods, called HMF-LQNMF, CHMF-LQNMF, and JHMF-LQNMF, were
proposed for fusing observable high-spectral/low-spatial resolution hyperspectral and high-spa-
tial/low-spectral resolution multispectral images. These methods, related to LQSU techniques,
are based on the LQNMF multiplicative algorithm.

The proposed methods consist of first unmixing the hyperspectral and multispectral data. The
obtained high resolution spectral and spatial parts of information are then recombined, according
to the linear-quadratic mixing model, in order to obtain multisharpened high-spectral/high-spa-
tial resolution hyperspectral data. In the first method, the hyperspectral and multispectral var-
iables are independently optimized, once they have been coherently initialized. These variables
are alternately updated in the second method, and jointly updated in the third method.

The proposed methods were applied to various synthetic and real data, and their performance,
in spatial and spectral domains, were evaluated with established performance criteria.

Experimental results show that the proposed LQNMF-based methods yield good overall
spectral and spatial fidelities for the multisharpened hyperspectral data, and significantly out-
perform the linear-based JNMF and CNMF multisharpening literature methods.

The proposed methods are easy to implement, and the high qualities of the obtained multi-
sharpened data can certainly contribute to the accurate identification and classification of an
observed region at a finer spatial resolution.
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