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ABSTRACT This paper presents a novel Blind Source Separation method that can handle convolutive
mixtures that may be underdetermined. Our method combines TF masking and beamforming and exploits
the source signals sparsity in the Time-Frequency (TF) domain. Remarkable performance can be achieved
by TF masking-based methods, even in the underdetermined case, although they tend to generate unwanted
artifacts at the level of the separated signals. Besides, beamforming techniques can achieve satisfactory
performance only in the overdetermined and determined cases without distorting the estimated signals.
By combining these two approaches, we can leverage their respective strengths. Firstly, we exploit the source
signals sparsity in the TF domain to estimate probabilistic ‘‘bin-wise’’ masks by modeling the frequency
observation vectors with a complex Gaussian Mixture Model and using an EM algorithm. However, due to
the sensitivity of the EM algorithm to initialization, we propose properly selecting the initial values of the
model parameters using Hermitian angles between the frequency observation vectors and a reference vector.
Then, we utilize the estimated TF masks to estimate the Relative Transfer Functions of each source. Finally,
we propose a new technique to obtain an estimate of the spatial images of the separated sources, which can be
regarded as an underdetermined extension of the Linearly Constrained Minimum Power beamformer. Good
performance was observed in test results for our method, both in the determined and underdetermined cases,
compared to various existing methods with similar working hypotheses.

INDEX TERMS Blind Source Separation, Convolutive mixtures, speech separation, sparsity, TF masking,
beamforming.

I. INTRODUCTION
Blind Source Separation (BSS) is a very active research field
that aims at recovering a set of N unknown signals,1 called
sources and denoted sj(t) or their contributions on sensors,
called source images and denoted simg

ij (t), knowing only a
set of M mixtures of these sources, called observations and
denoted xi(t). This field has gained significant attention due
to its wide range of applications in various domains. Among

The associate editor coordinating the review of this manuscript and

approving it for publication was Ganesh Naik .
1In this paper, we suppose that the number of sources N is known.

these domains we can mention those of audio [1], [2], [3],
[4], [5], [6], [7], telecommunications [8], [9], biomedical
applications [10], [11] and astrophysics [12], [13]. BSS
methods have been used in the literature to handle several
types of linear mixtures. In this work, we are interested in
the case of convolutive mixtures, which represent the most
general and realistic case of linear mixtures and for which
each mixture xi(t) is expressed as follows [1]:

xi(t) =

N∑
j=1

Q∑
q=0

hij(q)sj(t − q);
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=

N∑
j=1

hij(t) ∗ sj(t);

=

N∑
j=1

simg
ij (t), i ∈ [1,M ], (1)

where:
• t is a discrete time index,
• Q represents the order of the finite impulse response
(FIR) of the mixing filters,

• hij(q) is an impulse response coefficient of the mixing
filter that connects the source with index j to the sensor
with index i,

• ‘‘∗’’ denotes the discrete-time linear convolution opera-
tor,

• simg
ij (t) are the spatial images of each source of index j
on each sensor of index i.

Since the performance of existing methods still needs
improvement, especially in the underdetermined situation
(i.e. for M < N ) [5], [7], [14], the case of convolutive
mixtures remains of interest in BSS research. These tech-
niques can be split into two main categories: frequency-
domain methods [1], [3], [7], [14], [15], which mainly handle
mixtures in the time-frequency (TF) domain, and time-
domain methods [6], [16], [17], which handle mixtures in the
time domain.

The performance of the latter category is generally quite
modest, especially when the reverberation time2 is large and
these methods generally require overdetermined mixtures
(i.e. M > N ) [6], [16], [17]. A detailed survey of these
methods has been provided in [6]. As for the frequency-
domain methods, they have shown their good performances
even in the determined case (i.e.M = N ) or underdetermined
case, and this despite the increasing reverberation time [3],
[4], [5], [7], [14], [15], [18], [19], [20], [21], [22], [23],
[24], [25], [26]. These frequency-domain methods begin by
transposing Eq. (1) to the TF domain using the Short Time
Fourier Transform (STFT) as follows:

Xi(n, f ) =

N∑
j=1

Hij(f )Sj(n, f ), n ∈ [0,T − 1], f ∈ [0,K − 1].

(2)

where:
• Xi(n, f ) and Sj(n, f ) are respectively the STFT of xi(t)
and sj(t); n represents the time dimension and f the
frequency dimension,

• K and T are respectively the length of the analysis
window3 and the number of time windows used by the
STFT,

• Hij(f ) is the discrete Fourier transform of hij(t) com-
puted on f points for source with index j.

2The reverberation time represents the time required for reflections of a
direct sound to decay by 60 dB below the level of the direct sound.

3Assuming that the length K of the used analysis window is significantly
larger than the order of the filters Q.

Using a vector formulation, Eq. (2) yields:

X (n, f ) =

N∑
j=1

Hj(f )Sj(n, f ), n ∈ [0,T − 1], f ∈ [0,K − 1],

(3)

where:
• X (n, f ) = [X1(n, f ), . . . ,XM (n, f )]T is the mixture
vector at each TF bin (n, f ),

• Hj(f ) = [H1j(f ), . . . ,HMj(f )]T is the mixing vector
or Acoustic Transfer Function (ATF) at each frequency
band f .

In the overdetermined and determined cases, frequency-
domain methods based on Independent Component Analysis
exploiting source signal independence can be used to
separate sources [27], [28]. However, these methods are
not applicable in the case of underdetermined mixtures. For
the underdetermined case, frequency domain BSS methods
generally rely on a sparsity [3], [4], [5], [7], [14], [18], [19],
[20], [23], [24] or a non-negativity [21], [22] assumption
in the TF plane. Non-negative Matrix Factorization (NMF)
methods exploiting the non-negativity of the sources have
shown their efficiency in several works [21], [22]. However,
these methods suffer from some limitations. Indeed, due to
the non-uniqueness of the unconstrained NMF solution and
the possible convergence of the algorithm towards spurious
local minima, the performances of these methods depend on
the parameter initialization. Moreover, these methods usually
converge slowly.

The TF clustering-based methods [4], [5], [7], [14], [18],
[19], [20] are among the most efficient and robust frequency-
domain methods. These techniques rely on the assumption
that the sources are W-disjoint orthogonal (WDO) in the TF
domain. This implies that, at most, one source is dominant
in each TF bin. The basic idea of these methods involves
estimating a separation mask denoted as Mj(n, f ), which
indicates the TF bins where a particular source Sj(n, f )
dominates. Each source has its specificmask. By applying the
estimated mask Mj(n, f ) to a frequency observation Xi(n, f )
(TF masking), we retain only the TF bins that belong to the
source Sj(n, f ). In various methods, channel features such as
amplitude ratios and phase differences between frequency
observations are computed at each TF bin. These features
are then utilized to estimate TF masks using either clustering
methods [1], [3], [7], [14], [29] or deep neural networks
(DNN) [30], [31], [32], [33]. It is worth noting that DNN-
based methods typically require a large amount of training
data, and their performance may significantly degrade if the
training and test settings differ. In contrast, clustering-based
methods directly utilize the extracted features to estimate TF
masks and do not require any training procedure.

Based on the employed clustering procedure for mask
estimation, BSS methods can be categorized into ‘‘full-
band’’ and ‘‘bin-wise’’ methods. In the case of ‘‘full-
band’’ methods, such as those proposed in [4], [5], [15],
and [19], the masks are estimated by processing all the
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frequency bands simultaneously. In contrast, ‘‘bin-wise’’
methods, like those described in [7], [14], [18], and [20],
estimate the masks by treating only one frequency band
at a time. Among the well-known ‘‘full-band’’ methods,
noteworthy examples are the ones proposed in [4] and [5].
To estimate the separation masks, these methods rely on
clustering the phase differences and amplitude ratios between
frequency observations. However, their performance can be
compromised in scenarios with high reverberation since the
linear phase assumption, which is fundamental to these
methods, does not hold under such conditions [4], [5].
Furthermore, when the maximum distance between the
sensors reaches half the wavelength of the highest frequency
among the source signals involved, an overlapping problem
known as ‘‘spatial aliasing’’ occurs [4], [5].
As for the best performing and most robust bin-wise

methods, we can mention those based on the clustering
of frequency observation vectors in each frequency band
[7], [18], [20]. Since these methods process each frequency
band separately, they are robust against the problems that
full-band methods suffer from. Nevertheless, the order of
the clusters is sometimes different when moving from one
frequency band to another, which requires an additional step
to reorganize them. This classical permutation problem, is
common to all bin-wise methods. The permutation problem
has been solved using various approaches [7], [18], [34],
[35], [36], [37]. Among these approaches, the two most
commonly employed methods are those based on the Time
Difference Of Arrival (TDOA) of the sources and those based
on the correlation between the different frequency bands
[7], [18], [34], [35]. For the first ones, the TDOA of each
source on the different sensors is exploited to solve the
permutation problem. Indeed, these TDOAs are estimated
using the separated signals in each frequency band, and
then they are classified to estimate the permutation matrix
at each frequency band. These approaches are very simple
but inefficient if the reverberation time is high. As for the
approaches proposed in [7], [18], [34], and [35], they are
based on the fact that there is a substantial correlation between
adjacent frequency bands of the same source. To measure this
inter-frequency correlation, several activity functions4 have
been proposed in the literature [7], [18], [34], [35], such as the
amplitude envelopes [34], the power ratios of the separated
signals [35], or the posterior probability sequences of the
masks [7], [18].
However, in practice, the WDO assumption made on the

sources is not entirely verified, resulting in artifact problems
in all BSSmethods based on TF clustering (full-band and bin-
wise). These artifacts arise from the TF masking procedure
and have more impact on the separated signals when there
is a substantial overlap of their spectra in the TF domain.
In [3], we have proposed a novel BSS method that addresses

4This function represents the evolution (activity) of each estimated signal
along time windows. The correlation between these activity functions in
adjacent frequency bands will be high if the separated signals come from
the same source.

these artifact issues. In this method, we estimate the Relative
Transfer Function (RTF) for each source using the TF masks
of the sources. The RTF represents the ratios between the
various mixing filters in the TF domain. By recombining
the various mixtures in the TF domain using these RTFs,
we can estimate undistorted spatial images instead of their
distorted versions as in [5], [7], and [14]. However, despite
the encouraging results of this method, it is important to note
that it is not applicable in the underdetermined case. Another
alternative to solve this ‘‘artifact problem’’ is to use adaptive
beamforming techniques, which are effective and robust even
in complex cases [38], [39], [40]. These techniques aim
to form a spatial filter that extracts a target signal from a
specific position while attenuating other signals (interference
and noise) coming from unwanted positions. It should
be noted, however, that the major problem with adaptive
beamforming techniques is that their basic version cannot
operate blindly. Indeed, these techniques require information
about the used microphone array and the target source, such
as the ATFs (or RTFs) of the involved sources. In practice,
this information is generally unknown and must be estimated
from the observations. Besides, these techniques can achieve
satisfactory performances only in the overdetermined and
determined cases [38], [39], [40].

Due to the problems mentioned above that TF clustering-
based BSS methods and adaptive beamforming techniques
suffer from, we propose a new method for possibly under-
determined convolutive mixtures, that combines these two
techniques. Indeed, combining these two techniques makes
it possible to benefit from their advantages while reducing
their limits. Several existing methods have also combined
these two techniques [41], [42], [43], [44]. However, the
methods proposed in [41] and [44] suffer from limitations
such as scaling indeterminacy in each frequency band or
an ideal anechoic space requirement. Similarly, the methods
proposed in [42] and [43], which are considered the most
efficient, rely on prior knowledge of the RTF of each source,
which may not always be available in practical scenarios and
yields a significant drawback for these methods. In contrast,
our method is completely blind, meaning we do not rely on
prior knowledge of the RTFs. Instead, we estimate the RTFs
blindly, eliminating the need for prior information.

The proposedmethod consists of three steps and is partially
based on our conference paper [1]. Indeed, in our conference
paper [1], we presented the main idea of the proposed method
without delving into details. The present paper builds upon
the conference paper by making significant improvements
to the various steps of the proposed method. It provides
a more comprehensive description of the overall method,
including a detailed derivation of the parameter update rules,
as well as additional experimental results. In the first step,
probabilistic bin-wise masks are estimated by exploiting the
sparsity of source signals in the TF domain. This is achieved
by modeling the frequency-domain observation vectors with
a complex Gaussian Mixture Model (cGMM) and using
an EM algorithm. To ensure accurate initialization of the
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EM algorithm, we suggest selecting initial values based on
Hermitian angles between the frequency observation vectors
and a reference vector. In the second step, these masks are
utilized to estimate the RTFs of each source. Finally, in
the third step, by exploiting the estimated masks and RTFs,
an underdetermined extension of the Linearly Constrained
Minimum Power (LCMP) beamformer is used to yield an
estimate of source spatial images.

The rest of this article is organized as follows. We provide
a detailed description of our proposed method in Section
II. Then, in Section III, we present the results of various
tests carried out to measure the performance of our method.
Finally, in Section IV, we close with a conclusion and outlook
for our work.

II. PROPOSED METHOD
The method proposed in this paper proceeds in three steps
(as illustrated in Fig. 1). The details of these three steps are
elaborated in Sections II-A, II-B, and II-C, respectively.

A. TIME-FREQUENCY MASK ESTIMATION
In this step, we focus on estimating probabilistic TF masks.
Our approach for estimating these masks is primarily based
on the method proposed in [20] and [45]. However, we have
made some modifications to enhance the mask estimation
process, which will be detailed further in this section.
To achieve this, we first estimate the posterior probabilities of
each source in each frequency band by modeling the mixture
vectors with a complex Gaussian Mixture Model (cGMM)
and using an expectation-maximization clustering algorithm.
These posterior probability sequences in each frequency band
are then utilized to solve the permutation problem between
different frequency bands, as illustrated in Fig. 2.

1) BIN-WISE CLUSTERING
If we suppose that for each source with an index j, there
exists a set of TF bins where this source is dominant (i.e. the
magnitude of this source is significantly greater than that of
the other sources at these TF bins), then Eq. (3) yields [1]:

X (n, f ) ≈ Hj(f )Sj(n, f ), ∀ n ∈ Ej(f ), (4)

where Ej(f ) is the set of temporal indices in which the source
Sj(n, f ) is dominant. In this section, we omit the index f
to simplify the notation because each frequency band is
processed independently in the first step. Therefore, X (n, f ),
Sj(n, f ) and Ej(f ) will be denoted as X (n), Sj(n) and Ej
respectively in this step.

We can see in Eq. (4) that when the sources are sufficiently
sparse in the TF domain, the clustering can be performed
based on the spatial diversity of the sources contained in the
mixture vector X (n). Therefore, as in [45] we choose in our
method to use the mixture vector X (n) in each frequency band
as a feature vector. As in [20] and [45], we assume that each
mixture vector X (n) conditioned by n ∈ Ej follows a zero-
mean conditional complex-valued Gaussian distribution.

This distribution is described as follows [1]:

p(X (n)|j, φj(n)Bj) =
1

πMdet(φj(n)Bj)

exp
(
−X (n)H (φj(n)Bj)−1X (n)

)
, (5)

where H denotes the Hermitian transpose, φj(n) represents
the time-varying spectro-temporal power of source Sj(n, f )
and Bj represents the spatial covariance matrix of size
M ×M , characterizing the time-invariant spatial properties
related toHj(f ). It should be noted that themultiplication ofBj
byφj(n) in Eq. (5) aims to simultaneously account for both the
source’s time-invariant spatial properties and its time-varying
characteristics.

As the mixture vector X (n) is modeled by (3), the density
function p(X (n)) of X (n) can also be described by the
following cGMM [20], [45]:

p(X (n)|θ) =

N∑
j=1

αjp(X (n)|j, φj(n)Bj), (6)

where αj are the mixture ratios and θ = {αj,Bj, φj(n)}Nj=1 (for
n = 1, . . . ,T − 1) is the set of mixing model parameters.
The mixture ratios αj should satisfy the following

conditions:
N∑
j=1

αj = 1, 0 ≤ αj. (7)

In contrast to the approach proposed in [45], which assumed
a uniform distribution for all the mixing model parameters θ ,
we draw inspiration from [7] and model the mixture ratios αj
using a symmetric Dirichlet distribution with the following
form:

p({αj}Nj=1) =
0(Nβ)
0(β)N

N∏
j=1

α
(β−1)
j , (8)

where the constant β is a positive hyper parameter that
controls the sparsity of the Dirichlet distribution5 and 0 is the
gamma function. The other parameters of the mixture model
are assumed to have a uniform distribution.

Then, as in [45] an iterative Expectation-Maximization
(EM) algorithm is used to estimate the parameters θ , as
well as the posterior probabilities γj(n) at each TF bin
which are the desired probabilistic masks. These posterior
probabilities are calculated in the expectation step, using the
Bayes theorem [1]:

γj(n) =
α′
jp(X (n)|j, φ

′
j(n)B

′
j)

p(X (n)|θ ′)

=
α′
jp(X (n)|j, φ

′
j(n)B

′
j)∑N

l=1 α′
lp(X (n)|l, φ

′
l(n)B

′
l)

, (9)

5After conducting multiple tests to determine the optimal value for β, we
found that setting β to 100 resulted in the best performance in terms of the
estimated TF masks. As a result, this value will be used in the upcoming tests
section.
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FIGURE 1. Block diagram of the proposed method [1].

FIGURE 2. Mask estimation process of the proposed method.

where θ ′
= {α′

j,B
′
j, φ

′
j(n)}

N
j=1 is the set of parameter values of

the current iteration.
During the Maximization step, inspired by [45], the

parameters of the set θ are estimated with a Maximum
Likelihood (ML) approach by maximizing the auxiliary
function Q(θ, θ ′) defined by:

Q(θ, θ ′) =

T−1∑
n=0

N∑
j=1

γj(n)log
(
αjp(X (n)|j, φj(n)Bj)

)
+ log(p(θ)), (10)

where log(p(θ)) is expressed according to Eq. (8) by6:

log(p(θ)) = (β − 1)
N∑
j=1

log(αj) + const. (11)

After maximizing the function Q(θ, θ ′) with respect to each
parameter in θ as described in Appendix A, we find that the
update of themixing ratios is given by the following equation:

αj =

∑T−1
n=0 γj(n) + β − 1
T + N (β − 1)

. (12)

The two parameters φj(n) and Bj are updated respectively via
the following two equations:

φj(n) =
1
M
XH (n)B−1

j X (n), (13)

Bj =

∑T−1
n=0 γj(n)X (n)XH (n)/φj(n)∑T−1

n=0 γj(n)
. (14)

These two Expectation and Maximization steps are iterated
until convergence, i.e. until the difference between two

6The shape of the distribution p(θ ) is determined by the distribution of
p({αj}Nj=1), as the other parameters of the mixture model are assumed to
follow a uniform distribution.

successive values of the parameters θ is lower than a given
threshold.

The EM algorithm is sensitive to initialization, meaning
that the initial chosen values can impact the final results.
The reference method [20], [45] randomly initializes the EM
algorithm, which may not always yield the best results. In our
method, we suggest a different approach to initialize the EM
algorithm. We first initialize the probabilistic masks γj(n),
then estimate the initial values of the parameters θ . More
specifically, we initialize the masks based on the Hermitian
angle between the observation vector X (n) and the reference
vector h = [1, . . . , 1]T of size M × 1. The use of the
Hermitian angle is inspired by [14], and this angle can be
calculated using the following equation:

9H (n) = cos−1(|cos(8(n))|), (15)

where:

cos(8(n)) =
X (n)Hh

||X (n)|| . ||h||
. (16)

Next, we use a Fuzzy c-means clustering algorithm [46]
to classify the vectors of Hermitian angles, denoted as
9H = [9H (0), . . . , 9H (T − 1)]. The membership functions
obtained with this clustering algorithm are then used to
initialize the masks γj(n). It should be noted that using
Hermitian angles as an initialization method in the EM
algorithm is a novel approach, and it shows promise in
improving the convergence and accuracy of the algorithm.

We had previously omitted the frequency index f to sim-
plify notations. In the following, we propose reintroducing
this index to represent the corresponding frequency band.
Consequently, the sequences of posterior probabilities will be
denoted as γj(n, f ) in the following.
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2) PERMUTATION ALIGNMENT
Once the EM algorithm has converged, the classical per-
mutation problem between different frequency bands is
handled using the method presented in [7] and [18]. This
method is based on the inter-frequency correlation between
the sequences of posterior probabilities γj(n, f ) in each
frequency band. The first step of the method involves a global
optimization step, which maximizes a cost function based
on the correlation between the sequences γj(n, f ) and their
centroids [7]. This cost function, denoted as J , is formulated
as follows [7], [18]:

J ({ck}, {5f }) =

∑
f

N∑
k=1

corr(vfj , ck )|j=5f (k), (17)

where vfj corresponds to the vector of posterior probabilities
γj(n, f ), and centroids cj are calculated for each source
Sj(n, f ) based on the current permutation vector 5f at
frequency band f [7].
The second step, which aims at improving the estimation

of the permutation matrix obtained in the first step, involves a
local optimization procedure that maximizes the correlation
between a specific set of frequencies (harmonic and adjacent
frequencies). These two steps are iterated until convergence
to estimate the permutation matrix 5 of size N × K . After
convergence, the desired masks Mj(n, f ) are obtained as the
posterior probability γj(n, f ) with the estimated permutation
matrix 5, as the following equation shows:

Mj(n, f ) = γj′ (n, f )|j′=find(5(:,f )=j), j ∈ [1,N ]. (18)

B. RELATIVE TRANSFER FUNCTION ESTIMATION
The accurate estimation of the mixing vectors Hj(f ) (or ATF)
is the most crucial element to successfully apply beam-
forming techniques. These vectors are traditionally estimated
using the DOA of the sources with a plane wave model [47]
or using the signals that have been pre-separated via TF
masking [41], [44]. However, these estimating approaches
are not always reliable due to limitations such as the scaling
indeterminacy present in each frequency band or requirement
of an ideal anechoic space, which can result in modest
performance of beamforming in certain scenarios.

In this paper, we are rather interested in the estimation
of the Relative Transfer Functions (RTFs), denoted Fij(f ),
defined by:

Fij(f ) =

[
H1j(f )
Hij(f )

,
H2j(f )
Hij(f )

, . . . ,
HMj(f )
Hij(f )

]T
,

j ∈ [1,N ], i ∈ [1,M ]. (19)

In fact, we demonstrated in [3] that once estimated, these
RTFs allow us to reconstruct spatial images, while avoiding
artifacts caused by the TF masking operation.

It is important to note that certain methods, such as those
proposed in [42] and [43], also utilize the RTFs as steering
vectors for beamforming. However, these methods rely on
prior knowledge of the RTFs, which may not always be

readily available in practical scenarios, yielding a significant
drawback for these methods. In contrast, our method does not
rely on such prior knowledge. Instead, we present an effective
approach for estimating these vectors, which enables us
to subsequently estimate the spatial images simg

ij (t) without
relying on prior information. Indeed, for TF bins ‘‘(n, f )’’ that
satisfy Assumption (4) for a source with index j, we have [1]:

Xp(n, f )
Xi(n, f )

=
Hpj(f )Sj(n, f )
Hij(f )Sj(n, f )

=
Hpj(f )
Hij(f )

= F (p)
ij (f ), p ∈ [1,M ], (20)

where F (p)
ij (f ) represents the p-th element of the vector Fij(f ).

In order to determine these filter ratios, we first identify a
set of TF bins for each source with index j and in each
frequency band with index f that best validates our working
hypothesis (4). These selected indices are denoted as njf and
they correspond to the indices ‘‘n’’ that satisfy the following
condition [1]:

n ∈ {njf } if Mj(n, f ) ≥ η · max(Mj(:, f )), (21)

where η is a threshold to be set and max(Mj(:, f )) is the
maximum value of the maskMj(n, f ) at each frequency band.
These best single-source TF bins (njf , f ) are then utilized
to estimate the filter ratios F (p)

ij (f ), p ∈ [1,M ], using the
following relation, where the average Ê [.] is computed over
the index njf [1]:

Ê
[
Xp(njf , f )
Xi(njf , f )

]
≈
Hpj(f )
Hij(f )

= F (p)
ij (f ). (22)

C. ESTIMATION OF SOURCE SPATIAL IMAGES
Unlike the approach adopted in [4], [5], [7], [14], [15],
[18], [19], [20], and [29], which consists of estimating the
source spatial images by directly applying the estimated
masks Mj(n, f ) on the observations (TF masking), the
proposed method adopts a different approach based on
beamforming techniques to estimate the spatial images of
the sources. One advantage of the approach proposed in this
paper for estimating the source images Ŝ img

ij (n, f ) is that
it can significantly reduce the presence of artifacts in the
separated signals, which are common issues encountered in
TFmasking-based methods [4], [5], [7], [14], [15], [18], [19],
[20], [29].

Beamforming techniques can be applied in both over-
determined and underdetermined cases. However, in the
underdetermined case, the interference suppression capabil-
ity of beamforming is limited, as a beamformer with M
sensors can only attenuate a maximum ofM−1 interferences
at each TF bin [39], [40].

Several recent techniques have extended the MVDR
beamformer [38] to address the underdetermined case [41],
[42], [43]. Similarly, we propose a novel technique in this
step of our method to estimate the spatial images of the
source. This technique can be seen as an extension of
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the LCMP beamformer [40] to handle the underdetermined
scenario. The objective of the LCMP beamformer is to
estimate an optimal filter, denoted as w(f ), that minimizes
the output power while satisfying the following constraints
wH (f )C(f ) = gH . The desired filter is obtained as the
solution to the following minimization problem [1]:

w(f ) = argmin
w(f )

{
wH (f )RX (f )w(f )

}
s.t. wH (f )C(f ) = gH , (23)

where C(f ) is the constraint matrix, RX (f ) is the covariance
matrix of the observed data, and g = [1, 0, · · · , 0]T is
a vector with N elements. The beamforming coefficients,
assuming that the N sources in the TF domain are uncorre-
lated, are computed as follows [40]:

w(f ) = R−1
X (f )C(f )(CH (f )R−1

X (f )C(f ))−1g. (24)

Depending on whether the situation is overdetermined,
determined or underdetermined, the approach to estimating
the coefficients of these filters w(f ) and the strategy we adopt
for using them will vary.

In the next two subsections, we assume that the sources are
uncorrelated and that the observations are centered in each
frequency band.

1) OVERDETERMINED AND DETERMINED CASES
Our approach utilizes the RTFs Fij(f ) and the LCMP
beamformer to estimate the spatial images simg

ij (t) in the
overdetermined and determined cases. For each source within
each frequency band, we generate a beamformer wij(f ) that
filters the mixture X (n, f ). This beamformer is determined
by:

wij(f ) = R−1
X (f )Cij(f )(CH

ij (f )R
−1
X (f )Cij(f ))−1g, (25)

where g = [1, 0, . . . , 0]T represents the constraint vector
of size N × 1, and Cij(f ) is the constraint matrix of size
M × N . The first column of Cij(f ) contains the RTF Fij(f )
of the source sj(t), while the remaining columns contain
the RTFs Fir (f ) of the other sources (where r ̸= j). The
covariance matrix RX (f ) is defined as:

RX (f ) = E{X (n, f )XH (n, f )}. (26)

Here, statistical expectations are approximated by averaging
over T time frames. The final estimation of the TF spatial
images is given by:

Ŝ img
ij (n, f ) = wHij (f )X (n, f ). (27)

2) UNDERDETERMINED CASE
In the underdetermined case, we introduce a novel technique
for estimating the spatial images of sources. This technique
can be seen as an extension of the LCMP beamformer [40]
specifically designed to handle the underdetermined case.
The fundamental idea behind this technique is to classify the
TF bins in each frequency band into D =

(N−1)!
(M−1)!(N−M )! + 1

groups, where M distinct sources dominate each group.
We use the estimated masks Mj(n, f ), j = 1, . . . ,N , to
classify these bins. Next, to estimate a specific source,
we construct a unique beamformer for each group where
the desired source is one of the dominant sources. Each
beamformer is designed to suppress a set of M − 1
interferences within the group. Finally, for groups where the
desired source is not one of the dominant sources, we estimate
the contribution of this source in those TF bins using a soft
TF masking approach.

To illustrate this technique, let’s consider the simplest
underdetermined case with N = 3 sources and M = 2
mixtures in this paragraph. Furthermore, we focus on
estimating the spatial image simg

i1 (t) of source s1(t) on the
sensor with index ‘‘i’’. It is important to note that the spatial
images of the other sources (simg

i2 (t) and simg
i3 (t)) are estimated

using the same methodology. To begin, we classify the TF
bins into D =

(N−1)!
(M−1)!(N−M )! + 1 = 3 groups based on the

following classification scheme:

(n, f ) ∈


E12(f ) if min{M1(n, f ),M2(n, f )} > M3(n, f )
E13(f ) if min{M1(n, f ),M3(n, f )} ≥ M2(n, f )
E23(f ) if min{M2(n, f ),M3(n, f )} > M1(n, f )

(28)

where Ejp(f ) gathers the TF bins where both sources sj(t)
and sp(t) are dominant. Then, at each frequency band, we
generate two beamformers, w12(f ) and w13(f ). The first
beamformer filters the TF bins in the set E12(f ), while the
second beamformer filters the TF bins in the set E13(f ). The
expressions for these beamformers are as follows [1]:{

w12(f ) = R−1
12 (f )C12(f )(CH

12(f )R
−1
12 (f )C12(f ))−1g

w13(f ) = R−1
13 (f )C13(f )(CH

13(f )R
−1
13 (f )C13(f ))−1g

(29)

where g = [1, 0]T and the constraint matrices C12(f ) and
C13(f ) are given by:{

C12(f ) = [Fi1(f ),Fi2(f )]
C13(f ) = [Fi1(f ),Fi3(f )]

(30)

The covariance matrices R12(f ) and R13(f ) are defined
by7 [1]:{

R12(f ) = E[Z12(n, f )ZH12(n, f )], for (n, f ) ∈ E12(f ),
R13(f ) = E[Z13(n, f )ZH13(n, f )], for (n, f ) ∈ E13(f ),

(31)

where the mixtures Z12(n, f ) and Z13(n, f ) are defined by [1]:{
Z12(n, f ) = (M1(n, f ) +M2(n, f ))X (n, f ), (n, f ) ∈ E12(f )
Z13(n, f ) = (M1(n, f ) +M3(n, f ))X (n, f ), (n, f ) ∈ E13(f )

(32)

7In these equations, the statistical expectations are approximated by
averages over the time frames of the two sets E12(f ) and E13(f ).
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The final estimate of the TF spatial images S img
i1 (n, f ) is

expressed as [1]:

Ŝ img
i1 (n, f ) =


wH12(f )Z12(n, f ) if (n, f ) ∈ E12(f )
wH13(f )Z13(n, f ) if (n, f ) ∈ E13(f )
M1(n, f )Xi(n, f ) if (n, f ) ∈ E23(f )

(33)

The temporal versions of the estimated spatial images are
then obtained by applying the inverse STFT to the signals
Ŝ img
i1 (n, f ) as follows:

ŝimg
i1 (t) = ISTFT{Ŝ img

i1 (n, f )}. (34)

It is important to note that Eq. (33) can be used to estimate
the spatial image of any source (with index j) in any sensor
(with index i). Furthermore, it should be mentioned that our
method can be readily generalized to cases where N > 3.

III. TEST RESULTS
A. TEST CONDITIONS
In this section, we will evaluate the separation performance
of the proposed method through three different experiments.
The first and second experiments will evaluate the separation
performance on determined and underdetermined artificial
mixtures of speech signals, respectively. In contrast, the
third experiment will evaluate these performances on real
underdetermined mixtures from the Signal Separation Eval-
uation Campaign (SiSEC) database [48]. For comparison,
we selected methods known for their effectiveness and
compatibility with our working hypotheses and test protocol.
These methods are TFS [42], UCBSS [14], TFLC [43] and
those proposed by Sawada et al. [7] (referred to as Sawada)
and Ito et al. [20] (referred to as Ito). These methods have
been chosen for their good performance and applicability in
the determined and underdetermined cases. The experiments
were conducted using multiple sets of mixtures of speech
signals. Each set consisted of two mixtures of speech
sources,8 which were sampled at a rate of 16 kHz and had
a duration of 10 s each. The mixing filters were generated
using the toolbox described in [49], which simulates an
acoustic roomwith dimensions 4.45 m× 3.55 m× 2.5 m and
characterized by a varying Reverberation Time (RT 60). The
coefficients hij(t) of these mixing filters depend on the inter-
microphone distance d , the angular distance δϕ9 between the
source signals, and the microphone-source distance D.
For the computation of the STFT, an analysis window of

length 2048 was used in tests where RT 60 < 250 ms and a
length of 4096 was used when RT 60 ≥ 250 ms.

In all tests, the Hanning window was employed as the
analysis window, with an overlap of 75% and the threshold
η introduced in (21) was set to 0.95.

8The sources used were taken from the database of the 2011 Signal
Separation Evaluation Campaign (SiSEC 2011).

9δϕ represents the absolute value of the difference between directions of
arrival of the sources.

B. PERFORMANCE MEASURES
We selected three commonly used metrics in the BSS
community to evaluate performance of the tested methods:
Signal to Distortion Ratio (SDR), Signal to Interference
Ratio (SIR), and Signal to Artifact Ratio (SAR). The SDR
metric measures the overall performance of any BSS method,
while the SIR metric assesses the method’s performance in
terms of interference reduction. The SAR metric provides
information on the method’s performance regarding the
presence of artifacts in the separated signals. All three criteria
are provided by the BSSeval toolbox [50] and are expressed
in decibels (dB). Computation of these criteria requires
knowledge of the true spatial images of the sources simg

ij (t),
which is necessary to decompose each estimated spatial
image ŝimg

ij (t), as follows [50]:

ŝimg
ij (t) = simg

ij (t) + espatij (t) + eintij (t) + eartifij (t), (35)

where espatij , eintij and eartifij are error terms indicating spatial
distortion, interference, and artifacts caused by the separation
process, respectively. These performance metrics are defined
for each source with index j based on the decomposition (35)
of ŝimg

ij (t) by calculating the energy ratios as follows [50]:

SDRj = 10 log10

∑M
i=1

∑
t s

img
ij (t)2∑M

i=1
∑

t

(
espatij (t) + eintij (t) + eartifij (t)

)2
SIRj = 10 log10

∑M
i=1

∑
t

(
simg
ij (t) + espatij (t)

)2
∑M

i=1
∑

t e
int
ij (t)

2

SARj = 10 log10

∑M
i=1

∑
t

(
simg
ij (t) + espatij (t) + eintij (t)

)2
∑M

i=1
∑

t e
artif
ij (t)2

(36)

Then the average SDR, SIR, and SAR are computed as
follows: 

SDR =
1
N

∑N

j=1
SDRj

SIR =
1
N

∑N

j=1
SIRj

SAR =
1
N

∑N

j=1
SARj

(37)

C. SEPARATION RESULTS IN THE DETERMINED CASE
In the first experiment, we were interested in the measure-
ment of the performance of our method as a function of
RT 60, and this for RT 60 ∈ {50, 100, 150, 250, 500}ms, in the
determined case M = N = 2. In this experiment we used
two different microphone-source distances D ∈ {1 , 2} m
and three different inter-source angles δϕ ∈ {80◦, 45◦, 15◦}.
Fig. 3 groups the performance obtained as a function of RT 60
for d = 1m. Since we have 60 realizations,10 this figure
presents each metric’s mean and standard deviation (SDR,
SIR, and SAR).

10We averaged over the three values of δϕ, the two values of D, and ten
different realizations of the source signals, i.e. 60 mixtures in total.
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FIGURE 3. Mean (on the left) and standard deviation (on the right) of SDR, SIR and SAR in the determined case as a function of RT60.

From Fig. 3, it can be observed that our method out-
performs the other five reference methods (TFLC, Sawada,
UCBSS, Ito, and TFS) in the determined case, regardless of
the reverberation time. Indeed, for example, for RT 60 =

50ms, our method surpasses all the reference methods
by more than 5.07 dB, 0.41 dB and 3.25 dB in terms of
SDR, SIR and SAR, respectively. Furthermore, the standard
deviation of the proposed method is generally lower than
those of the reference methods. We observe, in particular the
superiority of our method in terms of SAR, which shows
that our method is the most effective in terms of artifact
reduction. We note that the performances of all reference
methods degrade as RT 60 increases, particularly when it
exceeds 250ms. In fact, the separation performance of all
referencemethods becomes poor, while ourmethod continues

to perform well. Finally, our experiments demonstrate that
our method outperforms the TFLC method, which requires
prior knowledge of the RTFs of the sources. This confirms
the superiority of our method, particularly since it continues
to provide good performance even without prior information
about these RTFs.

D. SEPARATION RESULTS IN THE UNDERDETERMINED
CASE
In this second experiment, we are interested at first in
the behavior of our method as a function of RT 60 in the
underdetermined case, where M = 2 and N = 3.
The inter-microphone and microphone-source distances are
respectively fixed at d = 1m and D = 1m. The other
parameters are similar to those of the first experiment.
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FIGURE 4. Mean (on the left) and standard deviation (on the right) of SDR, SIR and SAR in the underdetermined case as a function of RT60.

Fig. 4 represents the performance obtained in this second
experiment. From this figure, we can see again that in the
underdetermined case, the best performances are obtained
using our method regardless of the RT 60 value. Indeed,
our method shows improvements of more than 0.88 dB,
0.57 dB and 3.19 dB in terms of SDR, SIR and SAR,
respectively, compared to the reference methods, for RT 60 =

50ms. Furthermore, the standard deviation of our method is
usually lower than that of the reference methods. However,
it is important to note that all methods show a decrease
in performance compared to the determined case. This
observation is expected and can be explained by the fact that
as the number of sources increases, the sparsity assumption
made by these methods on the sources becomes less accurate.
We note again that there is a large difference in terms of SAR

between our method and the reference methods, confirming
that the artifacts introduced by our method are far less
significant than those introduced by the reference methods.
Furthermore, our method significantly outperforms the TFS
method, even though both methods combine TF masking and
beamforming. This difference in performance can mostly be
attributed to the fact that our method uses probabilistic (soft)
TFmasks, whereas the TFSmethod uses binary TFmasks that
are known to generate more artifacts in the separated sources.

Then, we are interested in the behavior of our method as a
function of δϕ, d , and D in this underdetermined case while
fixing RT 60 = 100ms. Fig. 5 shows the performance in
terms of SDR obtained in this experiment. From this figure, it
can be observed that the performance of our method remains
stable as a function of δϕ and d , indicating that our method
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FIGURE 5. Mean of SDR in the underdetermined case as a function of δϕ,
d and D.

is insensitive to changes in these two parameters. However,
we notice a slight degradation in the performance of both
the proposed and the reference methods as the microphone-
source distance D increases.
Finally, despite the encouraging performance of the

proposed method, its computation time is almost comparable
to that of the Ito method and is at least twice as slow as that
of the other reference methods.

E. SEPARATION RESULTS OF THE SISEC DATA
This third experiment focuses on evaluating the performance
of our method in the case of real11 underdetermined mixtures

11The sources are played through loudspeakers placed in a meeting
room. Each source is recorded separately using a pair of omnidirectional
microphones, and the resulting recordings are then combined to create the
mixture.

from the SiSEC database [48], where M = 2 and N = 3, to
assess ourmethod’s effectiveness in real-world environments.
To accomplish this, we utilized some sets from this database
that correspond to mixtures of female and male speech
signals. In this experiment, we consider two reverberation
times RT 60 = 130 ms and RT 60 = 250 ms and two
inter-microphone distances d = 5 cm and d = 1 m.
Table 1 presents the average performance obtained in this
third experiment in terms of SDR, where each value in this
table represents the average value of SDR on six different
mixtures.12

TABLE 1. SDR in dB of the SiSEC data.

From Table 1, it can be observed that our method achieves
the best performances in terms of SDR for both male
and female speech voices. Indeed, our method outperforms
the reference methods Sawada [7], UCBSS [14], Ito [20],
TFS [42], and TFLC [43] by approximately 1.53 dB, 4.81 dB,
0.61 dB, 1.96 dB, and 1.72 dB respectively, for RT 60 =

130ms. Similarly, for RT 60 = 250ms, our method achieves
an improvement of approximately 1.22 dB, 4.12 dB, 0.42 dB,
1.90 dB, and 1.14 dB over the same reference methods. These
results are consistent with those obtained in the case of
underdetermined artificial mixtures.

IV. CONCLUSION AND PERSPECTIVES
In this article, we proposed a newBSSmethod for convolutive
mixtures that can be underdetermined, combining TF mask-
ing and beamforming. By combining these two techniques,
we aim to minimize the artifacts that impact the signals
separated by most BSS methods that use only TF masking.
Our method differs from existing methods [42], [43] in that
it blindly estimates the RTFs of the sources, eliminating the
need for any prior information about them. Additionally,
we introduced a new technique that extends the LCMP
beamformer, allowing us to obtain undistorted spatial images
of the separated sources even in the underdetermined case.
According to the results of the tests conducted in this article,
the proposed method outperforms the methods proposed in
[7], [14], [20], [42], and [43] in terms of SDR, SIR, and
SAR, both in the determined case (M = N = 2) and the
underdetermined case (M = 2,N = 3). Furthermore, these
results were validated by testing the considered methods on
real underdetermined mixtures.

12We averaged the two values of d and three different realizations of
source signals, i.e., six mixtures in total.
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Regarding perspectives, it would be interesting to propose
a technique for estimating the number of sources N , as our
method assumes this information is known, which may only
sometimes be the case.

APPENDIX A
DERIVATION OF THE MAXIMIZATION STEP
UPDATE EQUATIONS
In this appendix, we present the derivation of the equations
for updating the mixing model parameters θ used in the
Maximization step in Section II-A1. Indeed, these equations
are obtained by maximizing the auxiliary function Q(θ, θ ′)
defined in (38) according to each parameter in θ and using
the posterior probabilities γj(n) obtained in the expectation
step of Section II-A1:

Q(θ, θ ′) =

T−1∑
n=0

N∑
j=1

γj(n)log(αjp(X (n)|j, φj(n)Bj))

+ log(p(θ ))

=

N∑
j=1

(
T−1∑
n=0

(γj(n)) + β − 1)log(αj)

−M
N∑
j=1

T−1∑
n=0

γj(n)log(φj(n))

−

N∑
j=1

T−1∑
n=0

(γj(n))log(det(Bj))

−

T−1∑
n=0

N∑
j=1

(
γj(n)
φj(n)

XH (n)B−1
j X (n)

)
+ C, (38)

where C is a constant independent of θ .
The equation for updating αj is obtained using the

Lagrangemultipliermethod, with the constraint
∑N

j=1 αj = 1.
Consider the function:

L(αj, λ) = Q(θ, θ ′) + λ(
N∑
j=1

αj − 1). (39)

We calculate the partial derivative of (39) with respect to αj,
we get:

αj =

∑T−1
n=0 (γj(n)) + β − 1

(−λ)
. (40)

By summing up Eq. (40) for j = 1, . . . ,N , we get:

λ = −(T + N (β − 1)) (41)

From (40) and (41), we find:

αj =

∑T−1
n=0 γj(n) + β − 1
T + N (β − 1)

. (42)

As for the updating equation of φj(n), we compute the
partial derivative of (38) with respect to φj, we then obtain:

−M
γj(n)
φj(n)

+
γj(n)

φ2
j (n)

XH (n)B−1
j X (n) = 0, (43)

which gives us the equation for updating φj(n) as follows:

φj(n) =
1
M
XH (n)B−1

j X (n). (44)

As for the update equation of Bj, we compute the partial
derivative of (38) with respect to Bj, using some matrix
algebra properties we obtain:

−(
T−1∑
n=0

γj(n))B
−1
j + B−1

j (
T−1∑
n=0

γj(n)X (n)XH (n)/φj(n))B
−1
j = 0,

(45)

which gives us the equation for updating Bj as follows:

Bj =

∑T−1
n=0 γj(n)X (n)XH (n)/φj(n)∑T−1

n=0 γj(n)
. (46)
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