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Abstract

This paper investigates the problem of separating galaxy spectra resulting from
the slitless spectroscopy system, which can e.g. be used in spatial missions like
the WISP survey and the Euclid project. We first derive a physical mixing model
linking observed data to source spectra, then simplify it to obtain two different
approximate but realistic models. The first simplified model being entirely
defined by a few parameters, we propose a semi-blind source separation method
which estimates these model parameters together with the source spectra. The
second simplified model is linear instantaneous, and has a special form which
is used to propose a new blind source separation method exploiting the non-
negativity and spatial sparsity of data, as well as the correlation of the target
source spectra in different light dispersion directions. Both methods are tested
on realistic simulated data and lead to very encouraging results, confirming their
effectiveness.

Keywords: Source separation; Spectrum decontamination; Astronomy; Slitless
spectroscopy; Euclid mission.

1. Introduction

Source separation aims at recovering a set of unknown source signals from
the observed mixtures of them. Blind Source Separation (BSS), where little
information about the mixing system is available, has largely been considered
in several application domains [1, 2]. In spectroscopy, the BSS methods have5

e.g. been used to separate source spectra in Earth observation [3, 4], chemistry
[5, 6], nuclear magnetic resonance [7, 8] and astronomy [9, 10, 11].
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Here, we address a new application concerning the separation of spectra mea-
sured with slitless spectroscopy. As will be explained in the following sections,10

the angular diversity used in the observation strategy leads to a new and specific
mixing model which cannot be handled by the existing methods, and requires
the development of new source separation methods presented in this paper. The
proposed methods may be used in spatial missions, like in the WFC3 Infrared
Spectroscopic Parallel (WISP) survey [12, 13] which is a large Hubble Space15

Telescope (HST) program or in the future Eulcid spatial mission [14], but they
can also be used in other slitless spectroscopy applications.

A typical application is the spectra decontamination required in the Euclid
project, which is a space mission of the European Space Agency (ESA), aiming20

at better understanding the nature of dark energy that is admitted to be respon-
sible for accelerating the expansion of the Universe [15]. The satellite launch is
currently planned for 2022. The Euclid near-infrared spectrograph will provide
spectra of more than 50 million galaxies. The detection of the strong emission
lines in these spectra will then permit to estimate the galaxy redshifts1 due to25

the Universe expansion.
The spectroscopy is performed using grisms, which are combinations of prisms
and diffraction gratings. A grism provides a so-called 2-dimensional (2D) spec-
trum of the light emitted by a celestial object (mainly galaxy or star) by differ-
ently refracting its different wavelengths, creating an effect like a rainbow where30

different wavelengths are mapped to different spatial positions in the grism dis-
persion direction. Spectroscopy in astronomy is usually done using a slit which
only allows the diffraction of light coming from a small zone of the sky. Slitless
spectroscopy, which will be used in the Euclid spectrograph, is however affected
by the superposition of 2D spectra of different objects as shown in Fig. 1. This

Figure 1: Superposition of the object spectra at the grism output.

35

contamination is the main source of error in the redshift estimation [16].
To reduce this problem, 2D spectra will be generated in several grism orienta-
tions. Thus, when the spectra of two objects are superimposed in one direction,
they are usually not mixed in other directions. This observation strategy does
not however totally solve the problem, because there are often other objects in40

the other directions which generate other mixtures. This issue may be better

1Redshift means the displacement of the object spectrum toward longer wavelengths, which
may be measured by comparing the wavelength of an emission line in the observed object
spectrum with the wavelength of the same emission line in a laboratory on Earth.
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understood by studying the configuration shown in Fig. 2. In this example,
when using a grism dispersing the light in the 0-degree direction, the spectra of
objects 1 and 2 will be mixed, as shown in Fig. 2-Middle, whereas a 90-degree
grism yields a mixture of the spectra of objects 1 and 3, as shown in Fig. 2-45

Right. Then, there are mixtures in both directions although the contaminating
objects are not the same.
Few researchers have addressed the problem of spectra decontamination in slit-
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Figure 2: Left: Object spatial positions, Middle: 2D mixed spectrum dispersed in 0-degree
direction by a grism, Right: mixed spectrum dispersed in 90-degree direction. Only mixed
spectra containing the contribution of object 1 are shown in these figures. The boxes with
solid lines in both directions contain the 2D spectrum of object 1, the boxes with asterisks

and circles respectively contain the spectra of objects 2 and 3. k
(0)
1 and k

(0)
2 correspond to

the first pixels of 2D spectra in 0-degree direction for objects 1 and 2, and L represents the
length of spectra (in pixels).

less spectroscopy. To our knowledge, except for our conference papers [17, 18],
only basic decontamination methods based on information provided by direct50

photometric imaging have been proposed in the literature [19, 20]. In this paper,
we formulate this issue as a source separation problem. For the sake of simplic-
ity, we only consider spectra generated in two directions (0 and 90 degrees).
However, other directions may be considered without fundamental modifica-
tions in the proposed approaches, provided they have been chosen such that55

there are different contaminating objects in different directions.
In this application, source separation can be applied in two different ways:

1. The global approach where the observation matrix contains all the ob-
served values in the field of view and the source matrix contains the spec-
tra of all the objects in this field. In this case, the mixing matrix will be60

huge and the computation time will probably be so long that the method
will be unrealizable. This approach is not retained and is not presented
in the paper.

2. The local approach, used in this article, where the source separation will
be applied object by object, and probably only for a certain number of65

objects of interest related to the objectives of the mission. In this case, the
observation matrix contains the pixels related to this target object and its
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contaminants, while the source vector contains the spectra of the object of
interest and its contaminants. The main advantage of the local approach
is that it is highly parallelizable so that a large number of processors70

may simultaneously execute a large number of local source separation
algorithms.

In Section 2, we present a physical model describing the relationship between
observations and sources. Two simplified mathematical models based on real-
istic assumptions are proposed in Section 3. In Section 4, a semi-blind source75

separation method exploiting available information on the instrument Point
Spread Function (PSF) and on the object light intensity profiles is proposed.
In Section 5, we propose a blind method which does not need this information.
Simulation results are presented in Section 6 before a conclusion in Section 7.

2. Models80

2.1. Object model

The telescope provides a signal corresponding to astronomical objects (mainly
galaxies) and the sky background. The contribution of the sky background can
be estimated and subtracted from the observed signal [21, 22]. A given object
with index i may be characterized by2: its spectrum si(λ), its center position85

(xi, yi), and its spatial light intensity profile fi(x− xi, y − yi).
Then, the light intensity of the object i, at a position with coordinates (x,

y) and at a wavelength λ, can be written as

qi(x, y, λ) = si(λ)fi(x− xi, y − yi). (1)

2.2. PSF model

Because of the instrument PSF, denoted as h, the object is spatially spread.
The light intensity of this “new spread object” is defined by

wi(x, y, λ) =

∫ ∫

R2

qi(u, v, λ)h(x− u, y − v)dudv

= si(λ)[fi(x− xi, y − yi) ∗ h(x, y)] = si(λ)Ii(x− xi, y − yi),(2)

where Ii represents the convolution of fi and h.90

2.3. Grism model

The grism disperses the observed image and generates 2D spectra of different
orders [23]. Whereas only the first-order spectrum is considered in this paper,
the other orders may also be taken into account in a similar manner.

The extension of the spectrum in the focal plane of detectors is called the95

trace and may be curved [20]. When the curvature is negligible, the trace can

2We assume hereafter that all object points have the same spectrum up to scale factors.
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be modeled by a rectangular strip in the dispersion direction. In this paper, we
assume that two grisms with the dispersion directions 0 and 90 degrees are used
in the spectrograph. The 0-degree grism corresponds to a horizontal trace, in
the x direction, while the 90-degree grism is associated with a vertical trace in100

the y direction. For an object with index i, we get at the 0-degree grism output
a 2D image which reads [24, 25]

t
(0)
i (x, y) =

∫

λ∈Ωλ

wi (x−D(λ), y, λ) dλ

=

∫

λ∈Ωλ

Ii(x− xi −D(λ), y − yi)si(λ)dλ, (3)

where Ωλ represents the wavelength range covered by the grism and D(λ) is the
dispersion function in the x direction, defined as the mapping of the different
wavelengths to the different spatial positions on the trace. Ideally, the dispersion105

function should be a linear function of the wavelength. For example, for a 0-
degree grism and a point-like object, if D(λ) = bλ+ c, a given wavelength λ1 in
the spectrum is mapped to a spatial position whose abscissa is bλ1 + c+ xi.

Similarly, we obtain at the 90-degree grism output a 2D image defined by

t
(90)
i (x, y) =

∫

λ∈Ωλ

Ii(x− xi, y − yi −D(λ))si(λ)dλ. (4)

2.4. Integration in detector pixels110

The above equations are established for real (non-integer) values of spatial
coordinates x and y. In practice, the signal measured in a detector pixel, for
a given object i and using the 0-degree grism, is the integral of the above-

mentioned t
(0)
i (x, y) over the surface Ωp of that pixel. The measured value for

a pixel with index p is then115

o
(0)
i (p) =

∫∫

(x,y)∈Ωp

t
(0)
i (x, y)dxdy

=

∫∫

(x,y)∈Ωp

∫

λ∈Ωλ

Ii(x− xi −D(λ), y − yi)si(λ)dλdxdy. (5)

A similar equation may be derived for the 90-degree direction.

2.5. Contamination model

The number of contaminants for each target object can be determined from
direct (i.e. non-dispersed) images of the sky. This can easily be done from the
object positions and the instrument parameters. In fact, for each object, we120

can compute the coordinates of the box containing its 2D spectrum. If the box
of the target object overlaps with those of other objects, the latter objects are
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considered as the contaminants of the target object (see Fig. 2).
We assume that the object i is contaminated in the 0-degree (horizontal) direc-
tion by F0 other objects with indices belonging to the set ξ0 = {h1, ..., hF0

}, i.e.125

a pixel p of the detector receives photons from the object i and F0 other objects,
because of the mixing effect, explained in Section 1. The measured value in the
pixel p of the detector then reads

o(0)(p) =
∑

j∈{i}∪ξ0

o
(0)
j (p)

=
∑

j∈{i}∪ξ0

∫∫

(x,y)∈Ωp

∫

λ∈Ωλ

Ij(x− xj −D(λ), y − yj)sj(λ)dλdxdy. (6)

Similarly, when using the 90-degree grism, we assume that the object i is
contaminated in the 90-degree (vertical) direction by F90 objects with indices130

belonging to the set ξ90 = {v1, ..., vF90
}. The measured value in the pixel p of

the detector reads

o(90)(p) =
∑

j∈{i}∪ξ90

∫∫

(x,y)∈Ωp

∫

λ∈Ωλ

Ij(x− xj , y − yj −D(λ))sj(λ)dλdxdy. (7)

Considering the mathematical mixing model described by (6) and (7), we
aim at decontaminating the spectrum of the object i, considered as the object
of interest.135

3. Simplified models

The physical model presented in the previous section being too complex,
we here propose two simplified models which will be used respectively in our
semi-blind method presented in Section 4 and in our blind method presented in
Section 5.140

3.1. Simplified model 1: a parametric model

We begin by discretizing the integrals in (6) and (7) using the rectangle
method which yields in the 0-degree direction:

o(0)(p) =
∑

j∈{i}∪ξ0

∑

(xk,yr)∈Ωp

∑

λl∈Ωλ

Ij(xk − xj −D(λl), yr − yj)sj(λl)∆λ∆x∆y,

(8)

where ∆x, ∆y and ∆λ are the chosen spatial and spectral discretization steps.
Considering L wavelengths in Ωλ, Eq. (8) and its 90-degree counterpart can be
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rewritten as

o(0)(p) =
∑

j∈{i}∪ξ0

L∑

l=1

m
(0)
j (p, λl)sj(λl)

with m
(0)
j (p, λl) =

∑

(xk,yr)∈Ωp

Ij(xk − xj −D(λl), yr − yj)∆λ∆x∆y,

o(90)(p) =
∑

j∈{i}∪ξ90

L∑

l=1

m
(90)
j (p, λl)sj(λl)

with m
(90)
j (p, λl) =

∑

(xk,yr)∈Ωp

Ij(xk − xj , yr − yj −D(λl))∆λ∆x∆y.

(9)

To derive a parametric model for functions Ij , defined in Eq. (2), we here
assume that:

• The instrument PSF, h(x, y), can be modeled by a linear combination
of two circular 2-dimensional Gaussian functions. According to [21], this
model, which only depends on three parameters (σ1, σ2 and c), is suffi-
ciently flexible to provide an acceptable approximation of the PSF:

h(x, y) = cN

([
0
0

]
,

[
σ2
1 0
0 σ2

1

])
+ (1− c)N

([
0
0

]
,

[
σ2
2 0
0 σ2

2

])
,

(10)

where N (µ,Σ) represents a 2D Gaussian function with mean µ and co-
variance Σ.145

• The spatial light intensity profile of an object j can be modeled by a
2-dimensional Gaussian function:

fj(x− xj , y − yj) = N

([
xj

yj

]
,

[
σ2
aj

rjσaj
σbj

rjσaj
σbj σ2

bj

])
. (11)

The three parameters of this Gaussian function (σaj
, σbj , rj) depend on

the object shape when modeling this shape by an ellipse, characterized by
its major axis, minor axis and angle. Although there are more accurate
models, like the Sérsic profile [26], the Gaussian model is very simple and
can be used as an approximation of the actual profile3.150

According to (2), Ij is the convolution between h (the instrument PSF) and fj
(the spatial light profile of the object j). Since the convolution of two Gaussian

3We measured the quality of the Gaussian fit for 10 synthetic galaxy images (within a
radius of 8 pixels around the galaxy center). The normalized mean square error was between
0.0073 and 0.0497 with a mean of 0.0325 and a standard deviation of 0.0182.
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functions is a Gaussian function whose mean and covariance matrix are respec-
tively the sum of means and the sum of covariance matrices of the two original
Gaussian functions, we can write

Ij(x− xj , y − yj) =cN

([
xj

yj

]
,

[
σ2
aj

+ σ2
1 rjσaj

σbj

rjσaj
σbj σ2

bj
+ σ2

1

])

+ (1− c)N

([
xj

yj

]
,

[
σ2
aj

+ σ2
2 rjσaj

σbj

rjσaj
σbj σ2

bj
+ σ2

2

])
, (12)

which is a parametric model4. If the parameters of the model (12) are known,

the mixing coefficients m
(0)
j (p, λl) and m

(90)
j (p, λl) in Eq. (9) can be computed

from them and from the known dispersion functionD(λ), otherwise these mixing
coefficients depend on these unknown parameters.

Now we collect {o(0)(p)}p=1...P0
, observed values in the 0-degree direction,

and {o(90)(p)}p=1...P90
, observed values in the 90-degree direction, to define an

observation vector o =
[
o(0)(1), ..., o(0)(P0), o

(90)(1), ..., o(90)(P90)
]T

. The mix-
ing model (9) can then be written in the following matrix form:

o = Ms, (13)

where155

• The global vector of source spectra s is defined as

s = [sTi , s
T
h1
, ..., sThF0

, sTv1
, ..., sTvF90

]T , (14)

with sj = [sj(λ1), sj(λ2), ..., sj(λL)]
T . Here, si represents the spectrum of

the target source, sh1
, ..., shF0

are the spectra of its contaminant objects in
the 0-degree direction, and sv1

, ..., svF90
are the spectra of its contaminants

in the 90-degree direction.

• The mixing matrix M is defined as

M =

[
M

(0)
i M

(0)
h1

... M
(0)
hF0

0 ... 0

M
(90)
i 0 ... 0 M

(90)
v1 ... M

(90)
vF90

]
, (15)

where the entry (p, l) of each matrix M
(0)
j of size P0 × L (resp. matrix160

M
(90)
j of size P90 × L) is equal to m

(0)
j (p, λl) (resp. m

(90)
j (p, λl)) defined

in (9).

4It is also possible to consider σ2
aj

+σ
2
1 , rjσaj

σbj , σ
2
bj

+σ
2
1 , σ

2
aj

+σ
2
2 and σ

2
bj

+σ
2
2 as new

parameters.
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3.2. Simplified model 2: a linear instantaneous model

This time, we make no assumption about the PSF and object light profile
models. Instead, to simplify the observation model, described by (6) and (7),
we use the following separability assumption:

Ii(x, y) = Ii1(x)Ii2(y). (16)

This assumption is realistic for small objects because the PSF is nearly circular.
For extended objects, if the object is circular, or elliptical and oriented in the x
or y directions, the assumption is still valid. Otherwise, it involves some approx-
imation error, but simulations show that this error is negligible in comparison
with other errors, especially the high level of noise (see Appendix A for more
details). Using this approximation, (6) becomes for a pixel with spatial index
p = (n,m):

o(0)(n,m) =
∑

j∈{i}∪ξ0

a
(0)
j (m)e

(0)
j (n), (17)

where

a
(0)
j (m) =

∫

y|(x,y)∈Ωp

Ij2(y − yj)dy, (18)

and

e
(0)
j (n) =

∫

x|(x,y)∈Ωp

∫

λ∈Ωλ

Ij1(x− xj −D(λ))sj(λ)dλdx. (19)

Using this approximation, the coefficient a
(0)
j (m) does not depend on the x-

coordinate of the pixel (i.e. n): the integral defining a
(0)
j (m) has the same value165

for all detector pixels located on a horizontal line. In a similar way, e
(0)
j (n) does

not depend on m.
The same approach applied to the mixing equation (7) leads to the following

approximation:

o(90)(n,m) =
∑

j∈{i}∪ξ90

a
(90)
j (n)e

(90)
j (m), (20)

where

a
(90)
j (n) =

∫

x|(x,y)∈Ωp

Ij1(x− xj)dx, (21)

and

e
(90)
j (m) =

∫

y|(x,y)∈Ωp

∫

λ∈Ωλ

Ij2(y − yj −D(λ))sj(λ)dλdy. (22)

We can collect all the measured values in P pixels situated in a rectangular
N×M zone, receiving radiations from the object i and F0 contaminating objects
in the 0-degree direction, to form an M ×N matrix X(0) whose entry (m,n) is
o(0)(n,m). Then, we can write the mixing equation (17) in the following matrix
form:

X(0) = A(0)E(0), (23)
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where

A(0) =




a
(0)
i (1) a

(0)
h1

(1) ... a
(0)
hF0

(1)

...
...

...
...

a
(0)
i (M) a

(0)
h1

(M) ... a
(0)
hF0

(M)


 ,

E(0) =




e
(0)
i (1) ... e

(0)
i (N)

e
(0)
h1

(1) ... e
(0)
h1

(N)
...

...
...

e
(0)
hF0

(1) ... e
(0)
hF0

(N)



. (24)

Similarly, we get the following matrix model in the 90-degree direction:

X(90) = A(90)E(90), (25)

where the element (n,m) of X(90) is o(90)(n,m), the element (n, j) of A(90) is

a
(90)
j (n), and the element (j,m) of E(90) is e

(90)
j (m).

In the following two sections, we propose two source separation methods: a170

semi-blind method based on the parametric model presented in section 3.1, and
a blind method based on the linear-instantaneous mixing model of section 3.2.
We emphasize that the word blind is used here according to its meaning in the
source separation community and refers to the fact that the mixing matrix is
unknown. This does not mean that the methods are able to estimate the spectra175

of objects that have not been detected in photometric images of the sky: our
methods need to know the number of sources in the mixing model and their
approximate positions: information which must be extracted from photometric
images.

4. Semi-blind method180

This method is based on the simplified model 1, described in Section 3.1.
Consider the vector of unknown parameters

θ = [θPSF ,θj |j ∈ {i} ∪ ξ0 ∪ ξ90] , (26)

where

• θPSF = [σ1, σ2, c] is the vector of the PSF parameters,

• θj =
[
xj , yj , σaj

, σbj , rj
]
is the vector of the position and the spatial light

profile parameters of object j.

If θ is exactly known, and subject to the validity of the model described
in (13), we can calculate the mixing matrix M from these parameters and the
known dispersion function D(λ), thanks to Eq. (12), (9) and (15). Then, the

10



problem of estimating the global vector of sources s, defined in (14), can be
formulated as the minimization of the standard squared Euclidean norm:

J1 = ||o−Ms||22, (27)

which leads to the simple least squares estimate

ŝ = (MTM)−1MTo. (28)

The light flux, measured based on the number of photons received on the de-185

tector or the number of electrons generated by it, cannot be negative. To take
into account this non-negativity of sources, we can use the non-negative least
squares method presented in [27]. A simpler approach is to replace negative
values in ŝ by zero.

In some cases, the mixing matrix M may be ill-conditioned, i.e. its condition190

number (defined as the ratio of its largest singular value to the smallest) is
too large. In our application, this situation can occur if, for example, two
contaminants are spatially very close and have almost the same profile. In this
case, better results may be obtained by adding a regularization term to the cost
function J1. Using a smoothing constraint, we can e.g. minimize the criterion195

||o −Ms||22 + ||Γs||
2
2, where the Tikhonov matrix Γ is the following difference

matrix:

Γ = β




2 −1 0 · · · 0

−1 2 −1
. . .

. . .

0 −1 2 −1
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · 0 −1 2




, (29)

and the parameter β determines the contribution of the smoothness constraint.
The least squares solution then becomes: ŝ = (MTM+ ΓTΓ)−1MTo.

Finally, the contributions of the target object i in the 2D spectra observed
in both directions may be estimated by

ô
(0)
i = M

(0)
i ŝi, ô

(90)
i = M

(90)
i ŝi, (30)

where ŝi is the estimated spectrum of the object i corresponding to the first200

part of the vector ŝ (see Eq. (14)), and M
(0)
i and M

(90)
i correspond to the first

part of the mixing matrix M (see Eq. (15)).
In practice, the parameters of the model proposed in Section 3.1 are not

perfectly known so that the above method may lead to unsatisfactory results.
Here, we present a semi-blind method which estimates the parameter vector θ205

together with the source signals.
Note that even though θ is unknown, its variation domain, defined by the

extreme values θmin and θmax, is supposed to be known thanks to our knowledge
on the physical constraints, the instrument characteristics, and the availability
of direct images.210
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The idea is to minimize J2 = ||o − M(θ)s||22 under the constraint θ ∈
[θmin,θmax], where M(θ) represents the value of the mixing matrix M for a
given value of the parameter vector θ. A simple and fast solution is to consider
θ as a master variable, whereas s becomes a salve variable. In each step of the
loop for updating θ, the slave variable s is set to its optimal value, i.e. to its
value which minimizes the criterion J2 with respect to s for the considered value
of θ. This optimum is nothing but the least squares solution, i.e.

ŝ/θ = [M(θ)TM(θ)]−1M(θ)To. (31)

Setting s = ŝ/θ in J2, the cost function to be minimized (only with respect to
θ) becomes

J3(θ) = ||o−M(θ)[M(θ)TM(θ)]−1M(θ)To||22. (32)

We use an iterative trust-region-reflective algorithm5 to solve the following con-
strained optimization problem:

θ̂ = argmin
θ∈[θmin,θmax]

J3(θ). (33)

After the convergence, the final value of θ̂ estimated by this iterative algorithm is
used to calculate the mixing matrix M(θ̂). Finally, we deduce from this matrix

the estimator of the global vector of sources: ŝ = [M(θ̂)TM(θ̂)]−1M(θ̂)To.
The non-negativity of sources may also be taken into account as described in
the non-blind method.215

The contributions of the object i in the 2D spectra observed in both direc-
tions may then be estimated using (30).
Once more, it is also possible to add a regularization term to the cost function
J2. In this case, ŝ/θ = [M(θ)TM(θ) + ΓTΓ]−1M(θ)To, and the cost function
J3 becomes ||o−M(θ)ŝ/θ||

2
2+ ||Γŝ/θ||

2
2. The above algorithm may then be used220

with this new cost function.

5. Blind method

In this method, we make no assumption about the model of the PSF and
about the spatial light profile of objects. The method is based on the second
simplified model described in Section 3.2 and Eq. (23) and (25). We here225

provide some general comments about the mixture.

1. A pixel, according to its position, can receive radiations from a different
number of objects. For example, in Fig. 2-Middle, the leftmost pixels are
illuminated only by object 1, while those in the middle receive photons
from objects 1 and 2.230

5The fmincon MATLABR© function was used to this purpose.
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2. Thanks to direct high-resolution photometric images of the sky, we ap-
proximately know the position (xj , yj) of each object. The parameters of
the dispersion function D(λ) (see Eq. (3)) and the length L of the 2D
spectrum (in pixels) corresponding to the wavelength range of the grism

are also known. Thus, we can compute the index k
(0)
j of the first pixel of

the 2D spectrum of a given object j, with respect to a reference point, in

the 0-degree direction. An example of k
(0)
1 , k

(0)
2 and L is provided in Fig.

2-Middle. Thus, we can write

e
(0)
j (n) =

{
z
(0)
j (n− k

(0)
j ) n ∈]k

(0)
j , L+ k

(0)
j ]

0 otherwise
, (34)

where e
(0)
j (n) is defined in (19) and z

(0)
j (n) stands for the non-zero part of

e
(0)
j after correcting its shift k

(0)
j with respect to the reference point. As

a result, some elements of E(0) in (23)-(24) are known to be zero.
Similarly, some elements of E(90) in (25) are known to be zero, and we
can define

e
(90)
j (m) =

{
z
(90)
j (m− k

(90)
j ) m ∈]k

(90)
j , L+ k

(90)
j ]

0 otherwise
, (35)

where e
(90)
j (m) is defined in (22) and z

(90)
j (m) is the non-zero part of e

(90)
j

after correcting its shift with respect to the reference point.

The mixing model described by (23) and (25) corresponds to a linear instan-
taneous mixture, suggesting the use of Blind Source Separation (BSS) methods,
which have been applied to astronomical data in several applications. For ex-235

ample, methods based on Independent Component Analysis (ICA) [1, 2, 28]
have been used to separate the Cosmic Microwave Background (CMB) from
the foreground sources [29, 30, 31, 32, 33], separate the components of galaxy
images provided by the Hubble space telescope [34], or separate artefacts from
astrophysical image data [35]. Other methods, based on the Non-negative Ma-240

trix Factorization (NMF) principle [36, 37, 38], have been e.g. used to separate
particle spectra in the interstellar dust [10] or to separate stellar spectra in the
dense fields [11].

In our application, however, the source spectra are not always independent
so that the BSS methods based on ICA cannot be used6. Data involved in245

the mixtures being non-negative, we could be tempted to use the NMF prin-
ciple. Nevertheless, the solution of the classical NMF is not unique and the
NMF algorithms may converge towards spurious minima. In fact, in our tests
on simulated data, classical unconstrained NMF provided poor results. Here,
we propose a new method, based on the specific model defined by (23) and250

6We measured the correlation coefficient between several pairs of spectra, and for some of
them the result was significantly different from zero.
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(25), which constrains the optimization algorithm, and so increases its chance
to converge towards the right solution. This method exploits the fact that the
target source spectrum to be decontaminated is shared by two different mix-
tures corresponding to its contamination in the 0- and 90-degree directions. In
the following, the notation H(a : b, c : d) describes a sub-matrix made up of the255

rows from a to b and the columns from c to d of a matrix H.

From (19), (22), (34) and (35), it is clear that both signals z
(0)
i and z

(90)
i

correspond to “convolved”7 versions of the target spectrum si(λ) so that they
are highly correlated. Thus, we propose to estimate the unknown matrices A(0),
E(0), A(90), E(90) by minimizing the following cost function:

J4 = 0.5||X(0) −A(0)E(0)||22 + 0.5||X(90) −A(90)E(90)||22 − αρ, (36)

subject to

A(0), E(0), A(90), E(90) ≥ 0

E(0)(j, n) = 0 if n /∈]k
(0)
j , L+ k

(0)
j ] ∀j ∈ {i, ξ0}

E(90)(j,m) = 0 if m /∈]k
(90)
j , L+ k

(90)
j ] ∀j ∈ {i, ξ90},

where α is a positive regularization parameter and ρ is the empirical correlation
coefficient between the row vectors

z
(0)
i = E(0)(1, 1 + k

(0)
i : L+ k

(0)
i ) (37)

and
z
(90)
i = E(90)(1, 1 + k

(90)
i : L+ k

(90)
i ), (38)

i.e. the non-zero portions of the first rows of E(0) and E(90), which are related
to the spectrum of the target object i. Thus, the regularization in (36) aims

to provide a solution which maximizes the correlation between z
(0)
i and z

(90)
i .

Here ρ = σ12/(σ1σ2) where σ12 is the empirical covariance, defined as

σ12 =
1

L
z
(0)
i .z

(90)
i

T
−

(
1

L
z
(0)
i .1

)(
1

L
z
(90)
i .1

)
, (39)

and σ2
1 and σ2

2 are the empirical variances of z
(0)
i and z

(90)
i , defined as

σ2
1 =

1

L
z
(0)
i .z

(0)
i

T
−

(
1

L
z
(0)
i .1

)2

,

σ2
2 =

1

L
z
(90)
i .z

(90)
i

T
−

(
1

L
z
(90)
i .1

)2

, (40)

with 1 a column vector whose L elements are equal to one.
260

7It is not a standard convolution because in (19) and (22) there is −D(λ) instead of −λ.
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To update a matrix R, we use the following rule in each iteration of a
projected gradient algorithm [37]:

R← max

{
R− µ

∂J4
∂R

, 0

}
, (41)

with µ a positive small gradient step size.
Thus, matrices A(0) and A(90) are updated using the above rule and these

gradients [39]:

∂J4
∂A(0)

= D(0)E(0)T ,
∂J4

∂A(90)
= D(90)E(90)T . (42)

where D(0) = A(0)E(0) −X(0) and D(90) = A(90)E(90) −X(90).
To update matrices E0 and E90 except their first row (which contains the com-
mon target source), we use these gradients [39]:

∂J4
∂E(0)(2 : end, 1 : end)

= [A(0)(1 : end, 2 : end)]TD(0),

∂J4
∂E(90)(2 : end, 1 : end)

= [A(90)(1 : end, 2 : end)]TD(90). (43)

From the above discussion, we know which elements of matrices E(0)(2 :265

end, 1 : end) and E(90)(2 : end, 1 : end) must be zero. Thus, after applying the
update rules, these elements are replaced by zeros.

For the first row of these matrices, we have to compute the gradients with

respect to z
(0)
i and z

(90)
i using the definitions of z

(0)
i , z

(90)
i and ρ. At first, we

compute the derivatives of ρ with respect to z
(0)
i and z

(90)
i . Since ρ = σ12/(σ1σ2),

we can write

∂ρ

∂z
(0)
i

=
σ1σ2

∂σ12

∂z
(0)
i

− σ2σ12
∂(σ2

1)
1
2

∂z
(0)
i

σ2
1σ

2
2

=
σ1σ2

∂σ12

∂z
(0)
i

− 1
2σ2σ12σ

−1
1

∂σ2
1

∂z
(0)
i

σ2
1σ

2
2

=
σ2
1
∂σ12

∂z
(0)
i

− 1
2σ12

∂σ2
1

∂z
(0)
i

σ3
1σ2

. (44)

From (39), we get

∂σ12

∂z
(0)
i

=
1

L
z
(90)
i −

(
1

L
1T

)(
1

L
z
(90)
i .1

)
=

1

L
(z

(90)
i − z̄

(90)
i 1T ), (45)

where z̄
(90)
i represents the mean of z

(90)
i . From (40), we obtain

∂σ2
1

∂z
(0)
i

=
2

L
z
(0)
i − 2

(
1

L
1T

)(
1

L
z
(0)
i .1

)
=

2

L
(z

(0)
i − z̄

(0)
i 1T ), (46)
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where z̄
(0)
i is the mean of z

(0)
i . The derivative of ρ with respect to z

(90)
i can be

computed in a similar way.270

As a result, using (37) and (38), the gradients of J4 with respect to z
(0)
i and

z
(90)
i read

∂J4

∂z
(0)
i

= [A0(1 : end, 1)]TD0(1 : end, 1 + k
(0)
i : L+ k

(0)
i )

− α
σ2
1(z

(90)
i − z̄

(90)
i 1T )− σ12(z

(0)
i − z̄

(0)
i 1T )

Lσ3
1σ2

, (47)

∂J2

∂z
(90)
i

= [A90(1 : end, 1)]TD90(1 : end, 1 + k
(90)
i : L+ k

(90)
i )

− α
σ2
2(z

(0)
i − z̄

(0)
i 1T )− σ12(z

(90)
i − z̄

(90)
i 1T )

Lσ3
2σ1

. (48)

z
(0)
i and z

(90)
i are updated using these gradients. Then, the non-zero portions

of the first rows of E(0) and E(90), corresponding to z
(0)
i and z

(90)
i , defined in

(37) and (38), are set to the updated values and the other elements of these first
rows are set to zero.275

After estimating z
(0)
i and z

(90)
i using this method, the contributions of the

target object in the 2D spectra observed in both directions may be estimated
by (see (23), (25), (37) and (38)):

X̂
(0)
i = A(0)(1 : end, 1)E(0)(1, 1 + k

(0)
i : L+ k

(0)
i ),

X̂
(90)
i = A(90)(1 : end, 1)E(90)(1, 1 + k

(90)
i : L+ k

(90)
i ). (49)

This method is summarized in Algorithm 1.
280

A simpler version of the blind method may be derived by assuming that the

signals z
(0)
i and z

(90)
i are equal (instead of highly correlated): z

(0)
i = z

(90)
i = zi.

In this case, the third term of the cost function (36), i.e. αρ, will be removed.
Then, the gradient of (36) with respect to zi (supposing α = 0) reads

∂J4
∂zi

= [A(0)(1 : end, 1)]TD(0)(1 : end, 1 + k
(0)
i : L+ k

(0)
i )

+[A(90)(1 : end, 1)]TD(90)(1 : end, 1 + k
(90)
i : L+ k

(90)
i ). (50)

The third step of Algorithm 1 then becomes:285

3) Compute the gradient (50). Update the portions of the first rows of E(0) and

E(90) using the rule (41) and the definitions of z
(0)
i = z

(90)
i = zi provided in (37)

and (38).
The initialization of A(0),A(90),E(0) and E(90) may be done using random val-
ues. A better idea may be to initialize them using the results of the non-blind290

16



Algorithm 1 : Blind method

- Initialize A(0),A(90),E(0),E(90).
repeat

1) Compute D(0) = A(0)E(0) −X(0) and D(90) = A(90)E(90) −X(90), then
the gradients (42). Update A(0),A(90) using the rule (41).

2) Compute D(0),D(90), then the gradients (43). Update E(0),E(90) except
their first rows using the rule (41). Set to zero the elements specified in
(34), (35).
3) Compute the gradients (47) and (48). Update the portions of the first

rows of E(0) and E(90) using the rule (41) and the definitions of z
(0)
i and

z
(90)
i provided in (37) and (38).

until convergence
- Estimate the contributions of the object i in the 2D spectra using (49).

method, described at the beginning of Section 4, by assuming point-like objects
(i.e. σaj

= σbj = rj = 0 ∀j in (12)), and by using estimated values of the ob-
ject positions and the PSF parameters. The rough estimated values of M and
s provided by the non-blind method (see Eq. (27) and (28) and the paragraph
before them) may then be used to get a first estimate of the entries of matrices295

A(0),A(90),E(0) and E(90) using (18), (19), (21) and (22). This initial estimate
is then improved by the blind method.
It is also possible to add a smoothing criterion to the cost function, like that
used in the semi-blind method.

6. Test results300

In this section, we present some simulation results using data that we gen-
erated by the first version of the TIPS simulator8, first considering a simple
scenario with only 4 sources, then in a realistic dense field.

6.1. A simple scenario with 4 objects

In the first example, we consider a simple simulated scenario, shown in Fig.305

3, where four realistic galaxies are placed in the sky such that in each of the 0-
and 90-degree directions there are mixtures of two spectra. In fact, from this
figure it is clear that when the light is dispersed in the 0-degree direction there
will be two mixtures: the first one contains 2D spectra of objects 1 and 4 while
the second one contains spectra of objects 2 and 3. Similarly, in the 90-degree310

direction, the spectra of objects 1 and 3 and those of objects 2 and 4 are mixed.

8This public version of TIPS was available here [40]. The new versions of this simulator,
which are used to generate the official internal Euclid data, have been modified with respect
to that first version.
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Figure 3: Spatial positions of 4 galaxies used in the simulation (coordinates: pixel indices).

6.1.1. Noiseless case

At first, from a source catalog defining magnitudes, shapes, locations and
real spectra of 4 galaxies, and using the TIPS simulator, we generate observed315

noiseless 2D spectra in both the 0 and 90-degree directions. The boxes contain-
ing the 4 above-mentioned mixed 2D spectra are shown in Fig. 4.
To decontaminate each galaxy spectrum, we use the two mixtures containing
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Figure 4: Noiseless mixed 2D spectra in the 0-degree (left) and 90-degree (right) directions.
The numbers label the beginning of the spectrum of each object in each mixture.

its contributions. Semi-blind and blind methods are used to this purpose.
To illustrate the results of the semi-blind method, we used the mixture of320

object 3 with object 2 in the 0-degree direction and with object 1 in the 90-
degree direction, shown in Fig. 4, to construct the vector o in Eq. (13). After
applying the semi-blind method, without a smoothing constraint, we obtained
the estimated 2D spectrum of object 3 in both directions.
To check the quality of this estimation, we determine the contribution of ob-325

ject 3 in the 2D mixed spectra, by putting only this object at the input of the
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Figure 5: Estimated 2D spectrum of object 3 in both directions by the semi-blind method,
compared with the actual spectrum.

TIPS simulator and measuring the corresponding actual 2D spectrum of this
object (in both directions) at its output. Fig. 5 shows the actual and estimated
spectra, which are very similar.
To better interpret the results, we can present and study the so-called 1D spec-330

trum, defined here as the central row of the 2D spectrum (i.e. the row, in the
dispersion direction, containing the center of an object and corresponding to
the maximum intensity). The first three rows of Fig. 6 shows a comparison
between:

• The actual 1D spectrum of object 3, which corresponds to the 3rd row335

of its actual 2D spectrum represented in Fig. 5, for both directions: the
amplitude of the 1D spectrum is related to the color (or the gray scale) of
the 2D spectrum.

• The observed (i.e. mixed) 1D spectrum of object 3, which corresponds to
the 4th row of its observed 2D spectrum, in both directions, represented340

in Fig. 4. We can easily see the contamination of object 3 by object 2 in
the 0-degree direction and by object 1 in the 90-degree direction, mainly
characterized by the presence of spurious emission lines.

• The estimated 1D spectrum of object 3 in both directions, obtained by
the semi-blind method, which confirms its effectiveness.345

Our tests with different values of θmin and θmax in the semi-blind method show
that although the performance slightly varies with these values, it is not so sen-
sitive to it unless the random initial values of the parameters, which are chosen
in the interval [θmin,θmax], are too far from their actual values (especially for
the object positions). If wider intervals are chosen, convergence is generally350

slows down and the computation time increases, because in this case the initial
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Figure 6: 1D spectra in the noiseless case. Left: 0-degree direction, Right: 90-degree direc-
tion. First row: actual spectra of object 3, Second row: observed mixed spectra, Third row:
estimated spectra of object 3 using the semi-blind method, Forth row: estimated spectra of
object 3 using the blind method.

random values are usually further from their actual values.

We then applied our blind method, randomly initialized, to the same mixture
as used above. The correlation constraint parameter and the gradient step size
were α = 10 and µ = 0.001. The last row of Fig. 6 shows the estimated 1D
spectrum of object 3 obtained by this method in both directions. Once more,
the decontamination is satisfactory. To compare the performances of the two
methods, the Signal-to-Interference Ratio (SIR), in dB, for each galaxy before
and after decontamination is computed by

SIRbefore(i) =
1

2

∑
r={0,90}

10 log10

∥∥∥Actual
(r)
i

∥∥∥
2

2∥∥∥Observed
(r)
i −Actual

(r)
i

∥∥∥
2

2

(51)

SIRafter(i) =
1

2

∑
r={0,90}

10 log10

∥∥∥Actual
(r)
i

∥∥∥
2

2∥∥∥Estimated
(r)
i −Actual

(r)
i

∥∥∥
2

2

(52)
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where Actual
(r)
i , Observed

(r)
i and Estimated

(r)
i are respectively the actual

(and noiseless), observed and estimated 2D spectra related to object i in the355

r-degree direction.

To decontaminate each of the galaxy spectra in the scenario shown in Fig.
4, we applied our semi-blind and blind methods to the couple of mixed spectra
where this galaxy spectrum is present. Results are summarized in Table 1 and360

confirm the effectiveness of both methods. The blind method provides better

Table 1: SIR (in dB) before and after decontamination of noiseless mixture, and the compu-
tation time.

Semi-Blind Blind
galaxy SIRbefore SIRafter Time SIRafter Time

1 1.93 dB 25.55 dB 9.76 min 33.03 dB 0.32 min
2 2.72 dB 28.08 dB 20.76 min 33.35 dB 0.21 min
3 1.80 dB 27.11 dB 9.84 min 33.82 dB 0.18 min
4 3.41 dB 27.59 dB 15.25 min 20.96 dB 0.26 min

results for three objects and requires much less computation time than the semi-
blind method.

6.1.2. Noisy data

We then repeated the same simulation using noisy data. Four realistic mixed365

2D spectra simulated by the TIPS simulator are shown in Fig. 7. The high level
of noise may be remarked by comparing this figure with Fig. 4. The estimated
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Figure 7: Observed noisy 2D spectra in the 0-degree (left) and 90-degree (rigth) directions.

1D spectra of object 3 in both directions are compared with the actual spectrum
in Fig. 8. The decontamination using both methods is quite successful although
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the estimated sources are very noisy. Note that our methods are designed to370

separate, and not to denoise, source spectra. Results are summarized in Table
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Figure 8: 1D spectra in the noisy case. Left: 0-degree direction, Right: 90-degree direction.
First row: actual spectra of object 3, Second row: observed mixed spectra, Third row: es-
timated spectra of object 3 using the semi-blind method, Forth row: estimated spectra of
object 3 using the blind method.

2. As can be seen, the SIR is improved by both methods. Note that even
when the decontamination is perfectly achieved, according to (52), the SIR
after decontamination is equal to the output signal to noise ratio, which is small
because of the high noise level. The two methods provide globally comparable375

results but the blind method requires much less computation time.

6.2. Simulation results for a realistic dense field

6.2.1. Data simulation

Here, we test our methods in a scenario where the spatial density of simulated
extragalactic objects is much more realistic. Thus, 1000 objects are randomly380

distributed over a 1000 × 1000 pixel scene. The object positions are shown in
Fig. 9. Using a source catalog defining magnitudes, shapes, locations and real

Table 2: SIR (in dB) before and after decontamination of noisy mixture, and the computation
time.

Semi-Blind Blind
galaxy SIRbefore SIRafter Time SIRafter Time

1 -8.20 dB 2.68 dB 5.13 min 2.09 dB 0.40 min
2 -7.21 dB 3.71 dB 6.09 min 3.71 dB 0.22 min
3 -6.99 dB 3.64 dB 6.29 min 4.11 dB 0.28 min
4 -7.67 dB 2.61 dB 5.03 min 3.70 dB 0.25 min
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Figure 9: Spatial configuration of galaxies in a realistic dense field.

spectra of 1000 stellar objects, the TIPS simulator generated mixtures of 2D
spectra in 0 and 90-degree directions. From a scientific point of view, the objects
of interest in this work are assumed to have an Hα emission line9 in the interval385

[1200 - 2000] nm whose flux must be greater than 3×10−16 erg/s/cm2.10 Among
the 1000 objects in the above field, only 35 objects satisfy these conditions. In
the following, the decontamination results using our methods will be presented
for these 35 objects.

6.2.2. Contaminant detection390

Given an object of interest to decontaminate, we must at first determine the
objects which contaminate it. This may be easily done from the object positions
and the instrument parameters. In fact, for each object, we can compute the
box containing its 2D spectrum. If the box of the target object overlaps with
that of other objects, the latter objects are considered as the contaminants of395

the target object.

6.2.3. Decontamination results

We tested different versions of our semi-blind and blind methods to decon-
taminate 35 objects of interest in two different configurations: first in a noiseless
case, then in a noisy one where strong and realistic noise was added to mixtures.400

With the semi-blind method, the best results were obtained by adding a smooth-
ing constraint with β = 0.2 in (29). The best results of the blind method were

obtained by assuming z
(0)
i = z

(90)
i and by initializing matrices using the non-

blind estimation as explained at the end of Section 5.
For each of the 35 target objects, the contamination performances were com-405

puted using the SIR formulas defined in (51) and (52). The mean and standard
deviation of 35 SIR values before and after decontamination in the noiseless case

9
Hα is the main emission line in the star-forming galaxy spectra, created by a hydrogen

atom when an electron falls from the third lowest to the second lowest energy level.
10These values, initially considered for the objects of interest in the Euclid mission, have

slightly changed since the work reported in this paper.
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are provided in Table 3 for the semi-blind and blind methods. Both methods
provide satisfactory results, leading to a nearly 19-dB average SIR improvement.
As an example, Fig. 10 shows 1D spectra related to the first target object in

Table 3: Mean and standard deviation of SIR (in dB) before and after decontamination of
noiseless mixture in the dense field.

SIRafter

SIRbefore Semi-blind Blind
mean std mean std mean std

-5.52 dB 7.49 dB 13.55 dB 7.55 dB 13.59 dB 7.40 dB

410

the noiseless case. As can be seen, the emission line related to a contaminating
object in the 0-degree direction, and the continuum due to contaminating ob-
jects in both directions are largely removed by both methods.
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Figure 10: 1D spectra in the noiseless case for one of the objects of interest in the dense field
scenario. Left: 0-degree direction, Right: 90-degree direction. Solid line: actual spectra of the
target object, Dashed line in the first row: observed mixed spectra, Dashed line in the second
row: estimated spectra using the semi-blind method, Dashed line in the third row: estimated
spectra using the blind method.

The SIRs were also computed in the noisy case for each of the 35 target415

objects. The histograms of the SIR improvement, defined as the difference
between the SIRs after and before decontamination, are shown in Fig. 11. As
can be seen, the SIR is improved for all the objects using the blind method, and
for all the objects except one using the semi-blind method. This improvement,
and therefore the quality of decontamination, is different for different objects,420

and mainly depends on the object brightness and the level of contamination
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in two directions. The mean and standard deviation of 35 SIR values before
and after decontamination in this noisy case are listed in Table 4. The blind
method provides slightly better results than the semi-blind one: the average SIR
is improved about 16dB by the blind method and about 14dB by the semi-blind425

method.
Fig. 12 illustrates the decontamination results for the first target object in the
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Figure 11: Histograms of the SIR improvement (with counts as label) for the 35 target objects
using the semi-blind (left figure) and blind (right figure) methods in the noisy case.

noisy case, and confirms the effectiveness of both methods.

Table 4: Mean and standard deviation of SIR (in dB) before and after decontamination of
noisy mixture in the dense field.

SIRafter

SIRbefore Semi-blind Blind
mean std mean std mean std

-14.15 dB 4.30 dB -0.07 dB 5.02 dB 2.10 dB 2.81 dB

For both methods, the computation time is different for different objects,430

and increases with the number of contaminants. The blind method is 20 to
100 times faster than the semi-blind method and in our tests it leads often to
better results. This may be explained as follows. First, note that the semi-blind
method is basically based on a “convolutive” model (see Eq. (6) and (7)) and
is supposed to directly estimate the object spectra (denoted by sj). In other435

words, it must achieve both source separation and “deconvolution”. On the
other hand, the blind method is based on an instantaneous model and aims at
estimating the signals ej , defined by Eq. (19) and (22), which are the results of
“convolution” between the spectrum of an object and its spatial profile in the
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Figure 12: 1D spectra in the noisy case for one of the objects of interest in the dense field
scenario. Left: 0-degree direction, Right: 90-degree direction. Solid line: actual spectra of the
target object, Dashed line in the first row: observed mixed spectra, Dashed line in the second
row: estimated spectra using the semi-blind method, Dashed line in the third row: estimated
spectra using the blind method.

dispersion direction. This method does not aim to “deconvolve” spectra: its440

task is logically simpler. This difference could explain the better performance
of the blind method. Moreover, the mixing matrix in the semi-blind method is
much larger than that of the blind method. For example, consider a scenario
where the observed area of the sky contains 3× 500 pixels in each of the 0 and
90-degree directions, with 3 objects each containing 500 wavelength samples (a445

target object and a contaminant in each direction). In the mixing equation
of the semi-blind method (Eq. (13)), the observation vector o will be of size
3000× 1, the source vector s of size 1500× 1, and the mixing matrix M of size
3000×1500. On the other hand, for each of the mixing models used in the blind
method (Eq. (23) and (25)), the observation matrix X in each direction will be450

of size 3 × 500, the source matrix E in each direction of size 2 × 500 and the
mixing matrix A in each direction of size 3× 2 only. This may explain why the
blind method is much faster.

7. Conclusion

In this paper, we investigated the problem of spectra decontamination in455

slitless spectroscopy. The proposed methods may be used in space missions like
the WISP survey and the Euclid project, and more generally in other slitless
spectroscopy applications.
We first established a physical model linking observed data to source spectra
in two dispersion directions, then simplified it to get a parametric model and460

a linear instantaneous model. Based on the parametric model, we proposed
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a semi-blind method which estimates source spectra together with the model
parameters. A blind method, based on the linear instantaneous model, was
also proposed. This method exploits the non-negativity and spatial sparsity of
data, and the correlation between spectra of the target source in two dispersion465

directions.
Both methods were tested on noiseless and noisy realistic simulated data, first
using a simple scenario with 4 objects, then with a realistic dense field. The
obtained results are very encouraging and confirm the effectiveness of the pro-
posed methods. Quantitatively, in all our tests, the signal to interference ratio470

is improved by both methods for almost all the considered objects. From an
astronomer point of view, one of the most important things is the ability of the
decontamination method to eliminate emission lines and continuum of contam-
inating objects, so as to facilitate the detection of the emission lines belonging
to the object of interest. As can be seen in our tests, both methods succeed in475

accomplishing this task satisfactorily, even though the blind method provides
slightly better results.
Several issues may be considered in future investigations. If some information
is available about the noise covariance matrix or about the spectral or spatial
variations of the PSF, it may be used to enhance our algorithms. In this paper,480

only first-order spectra generated by grisms were considered. For very bright
objects, zero-order and second-order spectra are not negligible and should be
taken into account. In practice, the dispersed spectra may be slightly curved.
in this case, this curvature should be considered and corrected before applying
our methods. Finally, in our work, we considered only two grisms. If several485

grisms with different orientations are available, merging their information may
improve the estimation quality.

Acknowledgement

The authors would like to thank the developers of the TIPS simulator, and
in particular J. Zoubian who helped them to install and use the first version490

of this simulator, and N. Fourmanoit for helpful discussions. They also thank
their colleagues in the SIR organizational unit of the Euclid Project.

Appendix A: Testing the plausibility of the simplified model 2

In Section 3.2, we used the separability assumption (16) to derive the sim-
plified model 2, described by Eq. (17) and (20), which is a linear instantaneous
model. While the precision of the separability assumption is difficult to check
directly, we can perform a test to check the plausibility of the resulting linear

instantaneous model. According to Eq. (17), the convolved spectrum e
(0)
j , de-

fined by Eq. (19), does not depend on the y-coordinate of the pixel (i.e. m): the
integral defining it has the same value for all detector pixels located on a vertical
line. This effect may be measured in the following manner. If the mixing model
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(17) is valid, for a unique non-contaminated object i, Eq. (17) reads:

o(0)(n,m) = a
(0)
i (m)e

(0)
i (n). (53)

As a result, in different rows of the box containing the observed 2D spectrum
related to this object, we should have the same signal up to a scale factor.495

Consequently, the observed spectra on different rows will be proportional. This
effect may be e.g. observed in Fig. 5 (0-degree, bottom), which shows the ac-
tual 2D spectrum of object 3. To check this effect, we performed the following
test. We put a single object at the input of the TIPS simulator and obtained at
the output its (non-contaminated) 2D spectrum, then measured the correlation500

coefficient between observations in different rows of the box. Repeating this test
with objects with different shapes and characteristics, we computed 84 corre-
lation coefficients. 76.19% of the results were greater than 0.99, 14.29% were
between 0.95 and 0.99, and the other 9.52% were between 0.90 and 0.95. Thus,
we can consider that the linear instantaneous model, based on the separability505

assumption, is quite realistic.
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