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ABSTRACT

Electronic systems are progressively replacing mechanical
devices or human operation for identifying people or ob-
jects in everyday-life applications. HEspecially, the radio-
frequency contactless identification systems available today
have several advantages, but they cannot handle easily sev-
eral simultaneously present items. This paper describes a
solution to this problem, based on source separation tech-
niques. The effectiveness of this approach is experimentally
demonstrated, using workstation and real-time DSP-based
implementations of the proposed system. More precisely,
various source separation methods are compared, and the
new proposed approaches are shown to be the most at-
tractive ones, thanks to their good performance and self-
normalized (i.e. "automated”) operation.

1. INTRODUCTION

Many real-world situations require to identify people, anim-
als or objects. Typical examples are owner identification be-
fore starting car engines, access control for restricted areas,
cattle identification or control of the flow of manufactured
products in factories. In the past, the approaches used to
perform such identifications were mainly based on mechan-
ical devices (such as keys for starting car engines), or human
operation (e.g. visual inspection of people, cattle or products
in the above examples). These approaches are progressively
being replaced by various types of electronic systems, and
especially by systems based on radio-frequency (RF) com-
munication.

Such an RF system [1] is shown in Fig. 1.
sists of a base station inductively coupled to portable iden-
tifiers (or ”tags”) which contain an LC resonator, a con-
troller and non-volatile programmable memory (EEPROM).
The memory contents are specific to each tag and allow to
identify the tag-bearer (person or object). The basic mode
of operation of this system may be modelled as follows. The
base station emits an RF sine wave, which is received by a
single tag. The tagis thus powered and answers by emitting
a sine wave at the same frequency (due to inductive coup-
ling), modulated by its encoded memory contents. The base
station receives this signal, demodulates it, and decodes it
so as to determine the memory contents [2]. The overall
identification system then checks these data and controls its
actuators accordingly.

It con-
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Figure 1: Single-tag RF identification system.

This type of system is attractive because it yields con-
tactless operation between the base station and tags (thus
avoiding constraints on the positions of the tag-bearers), and
because it operates with battery-less tags. However, when
two tags are placed in the RF field of the base station, both
tags answer this station. The demodulated signal determ-
ined by this station is then a mixture of two components,
and cannot be decoded by this basic station. This system is
therefore unable to identify two simultaneously present tag-
bearers. A few attempts to solve this type of problem have
been presented in the literature. Some consist in making
the base station and tags communicate according to a pre-
defined protocol, so that each tag successively provides its
contents This approach is not attractive because it entails
slow operation and yields a complex system, since signific-
ant circuitry must be added to the base station and tags in
order to implement the communication protocol. Another
approach consists in using tags which operate at different
frequencies. This again yields complex circuitry and re-
quires a large frequency band to be allocated to the system,
which is not always possible. The approach presented in
this paper aims at avoiding all these drawbacks. This is
achieved by resorting to blind source separation techniques.

The remainder of this paper is organized as follows. The
overall structure of the proposed system is presented in Sec-
tion 2. Alternative approaches for its source separation unit
are depicted in Section 3. The experimental performance of



the resulting versions of this system is reported in Section
4. Conclusions and prospects are presented in Section 5.

2. OVERALL PROPOSED SYSTEM

The system that we propose for simultaneously handling two
tag signals is an extension of the standard system described
above. It relies on a base station containing two reception
antennas and two demodulators, which yield two mixed sig-
nals. These mixed signals are processed by a source separ-
ation unit, which extracts the two components correspond-
ing to the two tags. Then, by decoding these separated
signals, the memory contents of the two tags are obtained
independently!.

More precisely, the modulation/demodulation scheme
used in this system is such that the mixed signals provided
by the demodulators are restricted to their simplest pos-
sible form, i.e. they are linear instantaneous mixtures (as
defined in Subsection 3.1) of the components correspond-
ing to the two tags (this is shown from a theoretical and
experimental point of view in [2]). Various source separa-
tion approaches suited to such mixtures have been proposed
since the eighties. A survey of this field may be found in
[3]. In this paper, we consider some of these approaches
which are based on similar principles, and we investigate
their performance when applied to the proposed system. We
also introduce modified versions of this type of approaches
and we benchmark them against the considered classical
solutions. All these approaches are described in Section 3.
They were selected in this investigation for the following
reasons. First, their convergence properties are well defined
and they are such that these approaches do apply to the type
of sources considered in this application, as will be shown
in the subsequent sections of this paper. In addition, these
approaches are based on adaptive algorithms, which makes
them able to track easily evolving mixtures which occur in
our application when tag-bearers are moving. Finally, they
use very simple computations, which makes them attract-
ive for the final real-time implementation targetted in this
investigation.

It should be noted that the system thus obtained meets
the requirements defined in Section 1: 1) it yields fast oper-
ation by allowing two tags to communicate simultaneously
with the base station; 2) all the tags have the same simple
structure as in the standard single-tag system, and the ad-
ded complexity only appears in the base station, 1.e. in a
single location of the system, so that its cost is limited; 3)
the system uses a single carrier frequency.

3. SOURCE SEPARATION PROBLEM AND
SOLUTIONS

3.1. Problem statement

In the "simplest configuration” of the blind source separa-
tion problem, two signals E(t) and E»(t) are available, and
these signals are unknown linear instantaneous mixtures of
two unknown supposedly independent source signals X (¢)

1 A more detailed description of this extended system may be
found in [2].

and X5 (¢), i.e:

El(t) =a11X1(t)+(l12Xz(t) (1)
Eg(t) = (121)(1(t) -I- (122X2(t), (2)

where the terms a;; are unknown mixture coefficients. T'he
goal is then to estimate the source signals X;(¢) from the
mixed signals F;(t). As stated above, this generic prob-
lem 1s faced in the system considered in this paper, where
the mixed signals are the demodulator outputs, whereas the
sources to be restored are the encoded tag memory contents.
The remainder of this section describes all the solutions to
this generic problem which are considered in this paper.

3.2. Classical neural networks

Three related approaches available from the literature are
considered in this paper. The first one is the recurrent
neural network proposed by Hérault and Jutten [4], whose
weights c12 and c2; are updated according to2.

deij(t .

a0 o0l 1), )
where a is a positive adaptation gain, s;(¢) and s;(t) are the
(estimated) zero-mean signals corresponding to the network
outputs S;(t) and S;(t), and f and g are odd functions.
When arbitrary odd nonlinear functions f and g are used,
the network is only able to separate (some types of) sym-
metric sources [2]. As shown e.g. in [2], this restriction may
be avoided by using either f = (.) or g = (.) (and not both
because this would result in using only the second-order
statistics of the signals and it would not guarantee that this
algorithm reaches separation [4]). Especially, two sets of
functions are attractive, due to their simplicity and to the
type of sources to which they apply, i.e:

f= ()3 and g = (.), (4)

and

f=() andg= ()3 (5)
The choice between these two sets of functions is to be made
depending on the considered type of sources (to ensure that
the network weights converge to values which yield separ-
ated signals at the network outputs): (4) applies to globally

sub-gaussian sources (see e.g.[5]), i.e. to sources such that
R <9, where R is the ratio defined as:
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and where z;(t) are the zero-mean versions of the sources

X;(t) and E{} stands for mathematical expectation. It

may be shown® that (5) applies to globally super-gaussian
sources, i.e. to sources such that R > 9.

2As compared to the original papers by Hérault and Jutten,
the signs of the weights ¢12 and c3; have been changed here, in
order to be homogeneous with the subsequent approaches con-
sidered in the current paper. The network structure is modified
accordingly.

3This may be shown e.g. by adapting the approach of [5] to
the functions defined in (5).



In the system considered in this paper, the sources are
globally sub-gaussian, as shown (from a theoretical and ex-
perimental point of view) in [2]. All the source separation
experiments reported in this paper were therefore performed
with networks operating with the functions defined in (4).

T'wo extensions of the Hérault-Jutten network were also
proposed in the literature for performing linear instantan-
eous source separation. The first one, introduced by Moreau
and Macchi [6], is based on a direct (i.e. non-recurrent) ver-
sion of the Hérault-Jutten network, adapted with the same
rule (3) as the latter network. This direct network is at-
tractive because it avoids the matrix inversion which must
be performed with the recurrent version in order to derive
the network outputs from its inputs and weights. Moreau
and Macchi also studied the convergence properties of this
network in the "simplest configuration”. They especially
showed that, for this network too, the functions defined in
(4) allow to separate sub-gaussian signals.

Cichocki et al. [7] then defined neural networks which
may be considered as extensions of the above-defined ones.

The Cichocki networks contain additional self-adaptive weights

c11 and ¢33, which are updated so as to normalize the ”scales”
of the network outputs, according to the rule:
dcii(t)
dt

= —alf[s:(t)]gls:()] — 1. (7)

These networks were claimed to be thus able to process
ill-conditioned mixtures and badly-scaled source signals to
which the Hérault-Jutten network would not apply. Both
the direct and recurrent versions of this type of neural net-
works were described, and it was also proposed to cascade
them in a multilayer neural network in order to improve
performance. In this paper, we only consider the direct ver-
sion of these networks, as it yields the same advantage as
the Moreau-Macchi network over the corresponding recur-
rent structure. Moreover, we focus ourselves on the single-
layer version of this network. We showed [8] that, for this
network too, the functions defined in (4) allow to separate
sub-gaussian signals.

3.3. New self-normalized neural networks

In this paper, we also propose another type of self-normalized
source separation neural networks. Before describing them,
we would like to justify in more detail the need for intro-
ducing a normalization in the Hérault-Jutten and Moreau-
Macchi networks.

The latter networks are adapted according to the rule
(3). The value selected for the adaptation gain a of this
rule has a major influence on the speed and accuracy of the
convergence of these networks, as will now be shown. Let
us first consider the case when the gain a is high. The incre-
ments of the network weights, which correspond to the right
term of (3), are then large. This has two consequences. On
the one hand, the weights may thus converge quickly towards
the values for which these networks provide separated sig-
nals, which is a desirable feature. But on the other hand, the
fluctuations of these weights around their equilibrium val-
ues once convergence has been reached remain large. The
networks thus provide "noisy” partly mixed signals on their
outputs instead of cleanly separated sources, which may

be a problem: in the considered application, these signals
may then entail decoding errors if they are too noisy. On
the contrary, a low adaptation gain a yields well separated
source signals, but the latter signals are obtained only after
a long convergence time, which may not be acceptable in
applications where (near-)real-time operation is required.
This phenomenon corresponds to the classical convergence
speed/accuracy trade-off encountered in adaptive systems.

"To solve the above problem, one could think of selecting
the value of the gain a when designing the considered sys-
tem, so as to trade-off the convergence speed and accuracy
of the network, depending on the requirements set on these
two parameters in the considered application. However, in
addition to the gain a, the achieved convergence trade-off
also depends on two other types of parameters. The first one
consists of the functions f and g of the rule (3). This rule
shows that the achieved convergence trade-off depends on
the overall nature of these functions. In particular, mul-
tiplying any of these functions by a given scaling factor
is equivalent to multiplying the adaptation gain a by this
factor, which modifies the convergence speed and accuracy
as explained above. Due to this equivalence, one could think
of selecting these functions and the gain a altogether during
system design, to achieve the desired convergence trade-off.
However, (3) shows that the convergence compromise also
depends on the magnitudes of the output signals (through
the resulting values of f[si(¢)] and g[s;(t)]) and therefore on
the magnitudes of the mixed signals. For instance, if the
functions f and g are set to (4), applying a scaling factor
A to both mixed signals (and therefore to si(t) and s;(t))
is equivalent to applying a factor A* to the adaptation gain
a. This means that these signal magnitudes have a huge
influence on the convergence trade-off. Unlike the previous
parameters, these magnitudes are not fixed when designing
the considered system: in many applications, the tag loca-
tions are not predefined, so that the magnitudes of the mixed
signals are unkwown, as they depend on the tag-antenna dis-
tances. Consequently, the convergence speed and accuracy
of the network are not controlled, which is a major draw-
back of the Hérault-Jutten and Moreau-Macchi networks.
A practical system should therefore include some additional
means for ensuring that its operation does not depend on
the magnitudes of the mixed signals. In the solution to this
problem proposed below, this feature is inherently provided
by the considered source separation neural networks.

More precisely, the type of networks that we propose is
based on the same structures as above: they may contain
one or several layers, and each layer may have a recurrent
or a direct forms. The proposed networks differ from the
previous ones in the algorithm used to update their weights,
which here reads:

dei;(t) _ flsi(t)] gls; (t)] (8)

dt = T JE(s0)] VEG (s, )]

where the normalizing terms /E[f?(s;)] and \/FE[g?(s;)]
are estimated in practical situations, using first-order low-
pass filtering. The variance of the correcting term

flsi(8)] g[s5(#)]
VEI£2(s)] \/Ble?(s))]
separation is achieved, thanks to the normalizing terms.
This value is independent from the scales (and statistics) of

of this rule is equal to one when source



the source and mixed signals, which is the main motivation
for introducing this rule here, as explained above. Moreover,
this variance is also independent from the separating func-
tions. The adaptation gain a may therefore be selected in-
dependently from all these parameters when designing the
system, so as to achieve the desired convergence trade-off.
Moreover, this rule is well-suited to non-stationary situ-
ations, which occur e.g. when tag-bearers are moving: in

this case, using short-term estimates of /E[f?(s:)] and

E[g?(s;)] makes it possible to automatically track the
evolution of the characteristics of the considered signals.
These networks lead to the same type of considerations as
above about the functions f and g to be selected, e.g. among
(4) and (5), depending on the type of sources to be processed

[9], [10].

4. EXPERIMENTAL RESULTS

The results presented below were obtained with the experi-
mental setup defined in [2]. More precisely, we here restrict
ourselves to the versions of this setup in which the source
separation algorithms were implemented on a workstation.
The results thus obtained were then confirmed by imple-
menting some of these source separation algorithms on a
real-time DSP-based setup [2].

4.1. Separation from artificial mixtures

The first set of source separation experiments was performed
with artificial mixtures of real sources, successively applied
to each one of the five types of neural networks defined in
Section 3, i.e:

o the Hérault-Jutten network,
e the Moreau-Macchi network,
o the single-layer direct Cichocki network,

o the two single-layer versions of the networks that we
proposed in this paper, resp. based on a recurrent
and a direct structure, and resp. denoted NWUr and
NWUd below (where ”"NWU?” refers to the Normal-
ized Weight Updating algorithm used in these net-
works).

The goal of these experiments was twofold. On the one
hand, they aimed at checking that all these networks can
actually separate the source signals which occur in the real
considered system, assuming these signals are mixed in a
linear instantaneous way. On the other hand, they allowed
us to compare the performance of all these networks in vari-
ous situations and to select the best networks.

More precisely, these experiments were performed in the
following conditions. In order to create artificial linear in-
stantaneous mixtures of real source signals, a single tag was
first placed in the RF field of the base station. The resulting
output of one of the demodulators of the base station was
sampled, thus providing a single source signal X;(t). This
tag was then removed and a second tag was placed in the RF
field of the base station. The same measurement procedure
as above was carried out for this second tag, thus providing
another source signal X5(t). Two artificial mixtures £ (¢)

and F» (t) of these two sources were then computed accord-
ing to (1)-(2). These mixed signals were then provided to
software implementations of the considered networks operat-
ing with floating-point numbers on a workstation. T'wo cases
were successively considered for the values of the mixture
coefficients a;;. In both cases, a1 and as; were set to 1.
The complexity of the considered mixture was then defined
by the values of a1z and as1, which were selected as follows:

o The first experiments were performed with a2 = 0.4
and a21 = 0.3. These values correspond to a medium
mixture ratio, and are similar to the actual values in
the experimental setup [2].

e The other experiments were performed with a2 =
az1 = 0.98. This corresponds to a very high mixture
ratio, which may esp. occur in long-range systems
when two tags are very close one to the other as com-
pared to the tag-antenna distances. The sources are
then expected to be quite hard to separate, since the
two mixed signals £ (t) and E>(t) provided to the
networks are very similar, as can be seen by applying
these values of the mixture coefficients a;; to (1)-(2).

The performance achieved in each experiment is defined
by the two parameters considered in Section 3, i.e. the con-
vergence speed and accuracy of the selected network. The
convergence speed is measured by the number of samples
required for all network weights to have converged to their
equilibrium values, which is called the ”convergence time”
and denoted T. below?. The convergence accuracy is meas-
ured by the Signal to Noise Ratio Improvement (SN RI)
provided by the network. This parameter, which takes large
values when the network restores well separated sources, is
defined by: SNRI = (SNRI, + SNRI,)/2 where SNRI;
denotes the Signal to Noise Ratio Improvement at network
output ¢, expressed in dB. For the Hérault-Jutten and NW Ur
networks, when source separation is achieved exactly, S;(t)
becomes equal to ai; X;(t) [4],[10]. For these two networks,
SN RI; is therefore defined by:

: V)2
SNRI, = 10l0gyo | LA Zau X))} | (9)

E{(Si(t) — ai Xa(t))?}
Similar expressions are derived in the same way for the other
considered networks.

As explained in Section 3, the overall performance of a
given network is defined by the trade-off between 7. and
SNRI achieved by this network. This trade-off was de-
termined by performing experiments for various values of
the network adaptation gain a, recording the values of 7.
and SN RI obtained in these conditions and plotting the
resulting variations of SNRI vs 1.. The results thus ob-
tained are shown in Fig. 2 and 3, resp. for the two con-
sidered sets of mixture coefficients. The main part of these
figures is the one corresponding to the range of values of 1.
required in practical applications, which may be defined as
follows. The data received from a tag by the base station of
a standard single-tag system consists of a series of identical
frames, which contain about 2000 samples. Moreover, when
the tag enters the field of the base station and progressively

4These convergence times were estimated from the plots rep-
resenting the evolution of the network weights vs time.
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Figure 2: SNRI vs convergence time 7., when aj2 = 0.4
and a2; = 0.3. Each plot corresponds to a neural network:
Hérault-Jutten: -.-.  Moreau-Macchi: ....  Cichocki: * *
NWUr: — NWUd: - -

starts emitting, the base station has to wait until it receives a
clean synchronization sequence (situated at the beginning of
a frame) before it can start decoding the received signal. In
other words, the base station has an intrinsic latency period
of typically one frame. Therefore, in a multi-tag system,
one would like the source separation network to converge
during this latency period, so that it would then provide
separated sources from the first completely clean received
frame. Thus, adding such a network to the original single-
tag identification system in order to achieve multi-tag cap-
ability would not slow this system down. A typical target
value for 7. is therefore about one frame, or 2000 samples.
Moreover, various applications can accept somewhat higher
response times (i.e. typically a few frames), as the dura-
tion of a single frame is only about 70 ms, which is quite
low as compared to the response times actually required
from a user point of view in many identification applica-
tions. Therefore, a selection among the considered networks
is made hereafter by taking into account their performance
not only around 7T, = 2000 samples, but also in a range
typically covering 7c = 2000 to 10000 samples (i.e. up to 5
frames).

Fig. 2 and 3 first show that the Moreau-Macchi network
should preferably not be used in the considered application,
as 1t cannot achieve the desired 7. for high mixture ratios.
The Cichocki network is not attractive either because: i) it
cannot reach 7. ~ 2000 samples (or its SN RI is then rather
low) and ii) for any 7. in the considered range, its SN RI is
lower than or equal to that of the remaining three networks,
i.e. Hérault-Jutten, NWUr and NWUd. Among the latter
three networks, the preferred ones depend as follows on the
main parameter of interest in the considered application.
All three networks can reach 7. ~ 2000 samples (with an
acceptable SNRI), but this is almost the limit achievable
by the NWUd network. Therefore, if minimizing 7. is of
utmost importance in the considered application, the HJ and
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Figure 3: SNRI vs convergence time 7., when aj2 = 0.98
and az; = 0.98. Each plot corresponds to a neural network:
Hérault-Jutten: -.-.  Moreau-Macchi: ....  Cichocki: * *
NWUr: — NWUd: - - (for the Moreau-Macchi and
Cichocki networks, lower values of T, than those provided
in this figure cannot be reached, as 1. and SN R/ then be-
come very sensitive to an increase of the adaptation gain
a, and these networks eventually diverge when a is further
increased).

NWUr networks should be preferred. On the contrary, if the
emphasis is laid on the performance of the network for high
mixture ratios, while the value of T, (Within the considered
range) is not critical, NWUd should be preferred.

Up to this point, we only considered the performance (in
terms of 7, and SN RI) of the considered networks. But,
as explained in Section 3, another feature of these networks
should also be taken into account, i.e. their ability to op-
erate in a self-normalized (i.e. ”automated”) way. Then,
in addition to the Moreau-Macchi and Cichocki networks
which were not accepted above, the Hérault-Jutten network
is also rejected here. In other words, the preferred networks
in the considered application are NWUr and NWUd (and
the eventual selection between these two networks depends
whether the emphasis is laid on a low 7. or on high mixture
ratios, as explained above). Therefore, only these two net-
works are considered hereafter. Moreover, their adaptation
gain a is set to the value which yields 7, ~ 2000 samples in
the experiments with similar mixture coefficients reported
above, i.e: a = 107 for both networks.

4.2. Separation from real mixtures

The second set of source separation experiments was per-
formed with the actual system. To this end, two tags were
placed simultaneously in the RF field of the base station,
and the resulting mixed output signals FE;(t) and FE(t)
of the two demodulators were measured. These two real
mixed signals were then used as the inputs of the software
NWUr or NWUd network. Figure 4 shows the evolution of
the weights thus obtained for the NWUr network, when its
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Figure 4: Evolution of the weights of the NW Ur network for
real mixtures.

learning gain is set to @ = 107, This gain value yields
T ~ 2000 samples, which is completely coherent with the
results obtained with artificial mixtures in Subsection 4.1.
The experiments performed with the NWUd network lead
to the same results.

Figure 4 also shows that the network weights converge
towards different values. This results from the fact that
the values of the network weights for which source separa-
tion is achieved depend on the values of the mixture coef-
ficients [10], which are here different due to the physical
asymmetry of the setup. As these mixture coefficients are
unknown here, the theoretical network weight values corres-
ponding to source separation and the experimental SN R/
(9) cannot be computed. Another approach should there-
fore be used to check if the networks succeed in restoring
the source signals. The alternative method used here con-
sists in providing the network outputs to the decoders of
the system. As explained above, these decoders wait for the
first synchronization sequence in the network outputs, and
then provide the restored tag data. Comparing these data
with the original data stored in the tags (which are only
known in these tests) here shows that they are exactly the
same. In other words: 1) the NWUr and NWUd neural net-
works do not slow down the system, because they converge
in a period of about one frame, during which the decoders
have to wait for a synchronization sequence anyway, and 2)
after convergence they provide a perfect restoration of the
sources from an application point of view, in the sense that
they restore the bitstreams of the tags without any errors.

5. CONCLUSIONS AND PROSPECTS

The investigations presented in this paper demonstrate that
source separation techniques make it possible to achieve
multi-tag capability with limited means in identification sys-
tems. More precisely, among all the source separation meth-
ods that we compared, the new approaches that we proposed
in this paper were shown to be the most attractive ones,
thanks to their good performance and self-normalized (i.e.
” automated”) operation.

Future activities will concern the separation of a lar-
ger number of tag signals, and the use of source separation
for reducing background RF noise, thus allowing i) higher

distances between the base station and tags, or ii) lower
power consumption. Also, the available a priori knowledge
about the sources was only partly used in the approaches
considered up to now. This allowed us to develop a ver-
satile approach, which may be extended to other (identific-
ation) systems. However, a fine-tuned approach dedicated
to the specific system considered in this paper may also be
developed, by using a source separation unit which would
take more advantage of this knowledge about the sources to
be processed.
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