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ABSTRACT

In this paper, we define extended versions of two classical
source separation neural networks, which provide self-norm-
alized operation. We then analyze their convergence proper-
ties. We thus show how the conditions defining the positions
and stability of their equilibrium points are modified by the
proposed normalization of the weight updating terms. Es-
pecially, we prove that the standard version of a proposed
network applies to globally sub-Gaussian i.i.d source signals.

1. INTRODUCTION

Blind source separation is a generic signal processing tech-
nique, which applies e.g. to antenna or microphone array
processing [1]. Inits ”basic configuration”, two signals Y; (¢)
and Y>(¢) are available (e.g. from sensors), and these signals
are unknown linear instantaneous mixtures of two unknown
independent source signals X, (¢) and X, (t), i.e:

Yl(t) = 011X1(t) + 012X2(t) (1)
Ya(t) = a2 Xi(t) + aze Xa(t), (2)

where the terms a;; are unknown real-valued constant mix-
ture coefficients. The source separation problem then con-
sists in estimating the source signals X;(t) from the mixed
signals Y;(t), up to an arbitrary permutation and an arbit-
rary scaling factor.

Many solutions to this problem have been proposed since
the beginning of the eighties. For a survey of these ap-
proaches, the reader may e.g. refer to [2]. In this paper, we
restrict ourselves to a class of methods inspired from the
field of artificial neural networks. The first of these networks
was by the way one of the very first solutions to the source
separation problem. This recurrent network was proposed
by Hérault and Jutten [1] more than a decade ago and its
convergence properties were analytically studied a few years
later. Several papers were thus published by independent
authors about its convergence in the "basic configuration”
defined above. Sorouchyari [3] and Fort [4] used the same
type of method, based on the Ordinary Differential Equation
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(ODE) technique [5]. This approach was then revisited and
somewhat extended by Moreau and Macchi [6],[7]. Comon
et al. [8] presented another method which yields different
results. An approach bridging the gap between these two
methods was then proposed by Deville [9], so that the con-
vergence properties of the simplest versions of this network
are now well defined.

Two extensions of the Hérault-Jutten network were also
proposed in the literature for performing linear instantan-
eous source separation. On the one hand, Moreau and Mac-
chi [6],[7],[10] introduced a direct (i.e. non-recurrent) ver-
sion of the Hérault-Jutten network, based on the same ad-
aptation rule. This direct network is attractive because it
avoids the matrix inversion which must be performed with
the recurrent version in order to derive the network outputs
from its inputs and weights. Moreau and Macchi also stud-
ied the convergence properties of this network in the ”basic
configuration”, esp. using the ODFE approach’.

On the other hand, Cichocki, Kasprzak and Amari [11]
defined neural networks which may be considered as ex-
tensions of the above-mentioned ones. These extended net-
works contain additional self-adaptive weights, which are
updated so as to normalize the ”scales” of the network out-
puts. These networks were claimed to be thus able to pro-
cess ill-conditioned mixtures and badly-scaled source signals
to which the Hérault-Jutten network would not apply. Both
the direct and recurrent versions of this type of neural net-
works were described, and it was also proposed to cascade
them in a multilayer neural network in order to improve
performance. The convergence properties of such networks
in the "basic configuration” were analyzed using the ODE
method in [12].

In this paper, we propose another type of self-normalized
networks, i.e. the normalization here concerns the mag-
nitudes of the weight updating terms (more precisely, their
variances). As these networks are direct extensions of the
Hérault-Jutten and Moreau-Macchi ones, the features of the
latter networks which are of importance in the frame of this
paper are first summarized in Section 2. The principles of
the proposed networks are then depicted in Section 3 and
their convergence properties are analyzed in Section 4. The

Tn addition, Moreau and Macchi proposed and analyzed a
mixed version of this network [6],[7].
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Figure 1: Hérault-Jutten recurrent neural network.

conclusions drawn from this investigation are presented in
Section 5.

2. MAIN FEATURES OF THE CLASSICAL
NETWORKS

As stated in Section 1, we here summarize the features of
the two classical source separation artificial neural networks
which are of interest in the frame of their extension to the
proposed networks.

The Hérault-Jutten (HJ) approach [1] is based on the
recurrent network shown in Fig. 1, where c12 and ¢3; are
the adaptive weights of this network®. These weights are
updated according to the following nonlinear unsupervised
learning rule, based on the higher-order statistics of the out-
put signals:

2al) — _a flou(o))alss (1), 3)
or in a discrete-time version:
ciy(n+1) = cij(n) — af[si(n)]gls; (n))], (4)

where a is a positive adaptation gain, s;(t) and s;(t) are
the (estimated) centered versions of the network outputs
S;i(t) and S;(t), and f and g are typically odd functions.
Briefly, the motivation for this learning rule is to force the
network outputs S1(¢) and Sz (t) to become (almost) statist-
ically independent, thus making them become respectively
proportional to the sources Xi(t) and X»(t), or vice-versa.

When arbitrary odd nonlinear functions f and g are
used, the network is only able to separate (some types of)
symmetric sources [13]. As shown in [13], this restriction
may be avoided by using either f = (.) or g = (.) (and not
both because this would result in using only the second-
order statistics of the signals and it would not guarantee
that this algorithm reaches separation [1]). Especially, two
sets of functions are attractive, due to their simplicity and
to the type of sources to which they apply, i.e:

f= ()3 and g = (.), (5)

and
f=() andg=()" (6)

2As compared to the original papers by Hérault and Jutten,
the signs of the weights ¢12 and c2; have been changed in Fig. 1,
in order to be homogeneous with the other figure of the current
paper. The rules (3) or (4) used to update these weights have
been modified accordingly.
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Figure 2: Moreau-Macchi direct neural network.

The choice between these two sets of functions is to be made
depending on the considered type of sources (to ensure that
the network weights converge to values which yield separ-
ated signals at the network outputs). More precisely, (5)
applies to globally sub-Gaussian sources [3]-[7],[9], whereas
(6) applies to globally super-Gaussian sources®.

As stated in Section 1, the approach proposed by Mor-
eau and Macchi (MM) [6],[7],[10], is based on a direct (i.e.
non-recurrent) version of the HJ network (see Fig. 2), ad-
apted with the same rule (3) as the latter network. Moreau
and Macchi showed that for this network too, the functions
defined in (5) allow to separate sub-Gaussian signals.

3. PRINCIPLES OF THE PROPOSED
NETWORKS

As stated in Section 1, we here propose source separation
neural networks which operate with self-normalized weight
updating and which are derived from the HJ and MM net-
works. The need to introduce such a normalization in the
latter networks may be justified as follows. The weights of
these networks are updated according to the rule (3). The
selection of the adaptation gain a of this rule leads to the
classical convergence speed/accuracy trade-off of adaptive
systems, which may be summarized as follows. If this gain
is high, the increments of the network weights, which corres-
pond to the right term of (3), are large. This has two con-
sequences. On the one hand, the weights may thus converge
quickly towards the values for which these networks provide
separated signals, which is a desirable feature. But on the
other hand, the fluctuations of these weights around their
equilibrium values once convergence has been reached re-
main large. The networks thus provide "noisy” partly mixed
signals on their outputs instead of cleanly separated sources.
On the contrary, a low adaptation gain yields good conver-
gence accuracy at the expense of low convergence speed.
Moreover, the achieved convergence trade-off also de-
pends on the functions f and g of the rule (3). In particular,
multiplying any of these functions by a given scaling factor
is equivalent to multiplying the adaptation gain a by this
factor. One could therefore think of jointly selecting the val-
ues of the gain a and functions f and g when designing the

3This may be shown e.g. by adapting the approach of [3] to
the functions defined in (6).



considered system, so as to trade-off the convergence speed
and accuracy of the network, depending on the requirements
set on these two parameters in the considered application.
However, (3) shows that the convergence compromise also
depends on the magnitudes of the output signals (through
the resulting values of f[s;(t)] and g[s;(t)]) and therefore on
the magnitudes of the mixed signals. For instance, if the
functions f and g are set to (5), applying a scaling factor
A to both mixed signals (and therefore to s;(t) and s;(¢))
is equivalent to applying a factor A* to the adaptation gain
a. 'This means that these signal magnitudes have a huge
influence on the convergence trade-off. Unlike the previous
parameters, these magnitudes are not fixed when design-
ing the considered system, as they depend on the intrinsic
emission ”levels” (or energies) of the sources and on their
locations with respect to the sensors which measure their
mixtures. Consequently, the convergence speed and accur-
acy are not controlled, which is a major drawback of the HJ
and MM networks. A practical system based on these net-
works should therefore include some additional means for
ensuring that its operation does not depend on the mag-
nitudes of the measured mixed signals. In the solution to
this problem proposed below, this feature (and others [14])
is inherently provided by the considered source separation
neural networks.

More precisely, the type of networks that we propose is
based on the same structures as above: they may contain
one or several layers, and each layer may have a recurrent
or a direct forms. These forms are resp. shown in Fig. 1
and 2 for the case of two source signals, and are extended to
the case of a higher number of sources in the same way as
for the HJ and MM networks. The proposed networks differ
from the previous ones in the algorithm used to update their
weights, which here reads:

deii(t) _ _ flsi(t)] glsi(t)]
dt \/b[fQ(sz)] \/E[QQ(SJ)]

or in a discrete-time version:

(7)

flsitm)] _ glsi(n)]
VEF (0] /Elg* (5))]
where E[.] stands for mathematical expectation. When an

equilibrium point achieving source separation is reached,
the variance of the correcting term:

flsi(m] _ glss(n)]
VE(si)] /Elg*(s))]

of the rule (8) is equal to one, thanks to the normalizing
terms. This value is independent from the scales (and stat-
istics) of the source and mixed signals, which is the main
motivation for introducing this rule here, as explained above.
Moreover, this variance is independent from the separat-
ing functions. The achieved convergence trade-off therefore
only depends on the selected adaptation gain a, so that it can
be fixed when designing the system. T'he proposed networks
thus solve the problem of the classical approaches reported
above.

In practice, the normalizing terms

cij(n+1) =cij(n) —a

(8)

(9)

E[f?(si)] and
E[g?(s;)] are most often unknown and are therefore es-
timated using first-order low-pass filtering. In other words,

at each time step, the terms E[f(s:)] and E[g*(s;)] in (8)
are resp. replaced by Ny ;(n+1) and Ny ;(n+1) which are
updated according to the rules:

Npi(n+1) = Nyi(n) +n(f*[si(n)] = Ny.i(n)) (10)
Ngj(n+1) = Ngj(n)+ 77(92 [si(n)] = Ng,;(n))(11)

where 7 1s a positive adaptation gain. The weight adapta-
tion rule then reads:

i) glsi ()]
\/Nf,i(” +1) \/Ngyj (n+1)

For the sake of brevity, the single-layers versions of these
two types of new networks, resp. based on a Direct and a
Recurrent structures, and both operating with Normalized
Weight Updating, are called D-NWU and R-NWU in the

remainder of this paper.

ciy(n+1) = ciy(n) — a

(12)

4. CONVERGENCE PROPERTIES

The main properties of the proposed networks concern their
convergence, i.e. the positions and stability of their equilib-
rium points, as this defines the types of sources that these
networks can separate. These properties are derived by
analyzing the asymptotic behavior of the adaptation rules
of these networks. Unlike for the classical networks, the
overall set of rules to be analyzed here not only includes
the adaptation (12) of their weights, but also the adapta-
tion (10)-(11) of the normalizing terms that we introduced.
This extended case still remains in the scope of the general
ODE convergence analysis method mentioned in Section 1,
although it leads to more complex calculations, as will now
be shown. This analysis is carried out for stationary inde-
pendent identically distributed (i.i.d) centered* sources.

The weight adaptation rule (12) is first slightly modified
as follows. For a small adaptation gain n, (10) yields the
following first-order approximation:

| P_E<Lbﬂﬂ_0]_
VNpi(n+1)  /Nyi(n) 2\ Nyi(n)

1

A similar expression may be derived for ———. In-
V/Ng,j(n+1)

serting both expressions in (12), one gets:

4In practical situations, the source, mixed and network output
signals are not necessarily centered. As explained above, estim-
ates of the mean values of the network outputs are then adaptively
determined, so as to derive estimated centered versions of these
signals, to be used in the adaptation rules. The overall adapt-
ation algorithm of the system then includes additional updated
parameters, i.e. the estimated mean outputs. The latter paramet-
ers should also be taken into account in the convergence analysis.
This is achieved by using the same method as for the adaptive
normalizing terms taken into account hereafter. Therefore, for
the sake of clarity, we here restrict ourselves to a situation where
only the latter terms need be introduced. More precisely, the sig-
nals are here assumed to be centered, so that the output signals
S1(t) and Sy (t) are used directly in the adaptation rules (10)-(12)
as the centered signals s; () and s, (t) and the algorithm does not
use estimated mean values for network outputs.



flsi(n)]  gls;(n)]
\/ny n \/Nq77 n)

where e(n) corresponds to a small perturbation and depends
on the fonctions f and g and on the network outputs. The
ODE method also applies to this generalized version of the
weight updating rule. More precisely, it can be shown [5]
that its perturbation term —ane(n) may be neglected in the
analysis as €(n) remains uniformly bounded in a fixed com-
pact (this results from the fact that the perturbation term
then becomes negligible when a and 7 are very small). Com-
bining this approximated weight adaptation rule with (10)-
(11) yields the overall algorithm to be analyzed, which reads
explicitly:

cij(n+1) =cij(n)— —ane(n), (14)

3 — _ gt _glsa(n)]
cm(n +1) = C12(n) \4[Nf(1()7]l) \/[Ng’(z()y]t)
021(n+1) ‘ c21(n) a\/Nfsg(n) ‘\/Ng"l('"’) -
Nia(n+ ) = N a(n) +n(f°[s 1(n)] — 7f,1(n))
Nya(n+1) = Nf,z(”) +1(f2[s2(n)] = Ny2(n))
Noa(n+1) = Nga(n) +n(g’[s1(n)] = Nga(n))
Noa(n+1) = Nga(n) +n(g[s2(n)] = Noo2(n))

(15)

This overall algorithm may be expressed in vector form as:

9n+l =9n+H(9n7§n+1)7 (16)

where 60,,, {41 and H(8,,,{,41) are column vectors defined
as:

fn = [612(71)’ 021(71)7 nyl(n)7 ]Vf72(n)7 Ngyl(n)a Ngﬂ(")]Tv

(17)
E"+1 = [yl(n)7y2(n)]’r7 (]8)
oty = [-o L At
f[*z( )] 9[91(")]
\/Nfz(n) V/Ngi(
n(f*[s1(n)] — Nfl(n)L
n(f*[s2(n)] = Ny 2(n)),
(g’ [s1(n)] = Nga(n)),
n(g*[s2(n)] = No2(n))]" (19)

4.1. Equilibrium points

The equilibrium points of (16) are defined as the vectors 8*
for which
lim Fps [H(9*7€ﬂr+1)] = 07 (20)
n— 00
where Fjg+[.] denotes the mathematical expectation associ-
ated to the asymptotic probability law of the vector £n41
for a given vector §*. When applying the condition (20) to
the specific function H(f,,&,41) defined in (19), the first
two components of this function yield two equations which

implicitly define the network outputs corresponding to equi-
librium points and which read as follows®:

flsi(n)]  gls;(n)]
\/Nf,i(n) \/Ng,a(”)

As the sources are supposedly i.i.d, the network outputs
at any given equilibrium point are also i.i.d. Moreover, (15)
shows that Ny i(n) and Ny ;(n) are only derived from the
previous values of the network outputs and are therefore
here statistically independent from s;(n) and s;(n). The
equilibrium condition (21) is therefore equivalent to:

E

] =0, i#£je{,2}. (21)

1

" [m} BT (m)lglss (n)]] = 0, i # 5 € {1, 2},
(22)

which may be simplified into:

Elfsi(n)]gls;(n)]] =0, 25 € {1,2}. (23)

The explicit expressions of the network weights at each equi-
librium point, with respect to the source statistics and mix-
ture coefficients, may then be derived by combining (23)
with: i) the mixture equations (1)-(2), which do not depend
on the considered network, and ii) the specific input/output
relationship of the considered network. However, these cal-
culations may be avoided here by noting that (23) is exactly
the same as the equilibrium condition derived for the clas-
sical non-normalized (i.e. HJ and MM) networks. As the
HJ and R-NWU networks also share the same input/output
relationship, defined by their common recurrent structure,
one directly concludes that they have exactly the same equi-
librium points. Similarly, the D-NWU network has the same
equilibrium points as the MM one, due to their common dir-
ect structure.

4.2. Stability analysis

Each equilibrium point 6* of (16) may be stable or not,
depending on the properties of the function H and on the
statistics of the vectors (£n)n>0. The ODE approach used
in this paper to analyze stability approximates the discrete
recurrence (16), under some conditions® on H, by a continu-
ous differential system that reads:

de .
E = nl])llloo EQ[H(H,€W,+1)]. (24)
The differential system (24) is locally stable in the vi-
cinity of an equilibrium point 8* if and only if (iff) the as-
sociated tangent linear system:

df ) *
=6 -0") (25)

is stable, i.e. iff all the eigenvalues of .J(8*) have negative
real parts. For any state 8, J(6) denotes the Jacobian matrix

5For readability, the limit lim,_, o and the subscript §* are
omitted in the mathematical expectations E[.] below.

5The adaptation gains a and 5 should be sufficiently small.
The other conditions on H concern its regularity [5].



of the system, i.e.
entries:

the matrix of partial derivatives with

O(Es[H (8, n41)]"Y)
0603) ’

where Eo[H (8, £n+1)](i) is the 7' component of Eo[H(8,6nt1)]
and 6 is the 7t component of vector 6. The expression of
J(8*) corresponding to the function H defined in (19) and to
any fixed equilibrium point #* may be derived as follows.
Considering the different natures of the components of H
(and 8), we split J(8*) into sub-matrices, i.e:

J(6%) = ( A ) (27)

where the sub-matrices A, B, C, D resp. have the following
dimensions: 2x2, 2x4, 4x2, 4x4. Each of these sub-matrices
is successively considered hereafter. As shown is (26), A is
derived by taking into account only the first two components
of H and 6, which are related to the weights and their adapt-
ation rule (as opposed to the other adaptive parameters, i.e.
the normalizing terms of the adaptation rules). Moreover,
assuming that the order of the operations can be changed in
(26), the calculation of A consists of two major steps, i.e:
B(H(0,6n11) )

) 86(7) !
and ii) the derivation of the asymptotic expectations of the
latter expressions. For the considered function H, the first
step yields the intermediate matrix M composed of the fol-
lowing elements:

Jiy(8) = lim

n—+00

(26)

i) the computation of the partial derivatives

miy = —a ! a(f[s1(n)]g[52(n)])
Nyi1(n)Ny2(n) c12(n)
(28)
mi2 = —a 1 9(/ls1(r)]gls2(n)])
Ny1(n)Nga(n) c21(n)
(29)
ms = —a ! 8(f[32(n)]g|;51(”)])
Ny2(n)Nga(n) c1z2(n)
(30)
my; = —a ! a(f[SQ(n)]g[sl(”)])_
Nys2(n)Ngi(n) c21(n)
(31)

As a second step, the matrix A is derived by taking the
asymptotic expectation of M. To this end, it should be

noted that the factors ! and 2ULsi(mldls;(m))
\/Nf,z(”)Ng,j(") cri(n)

of each element of M are independent, due to the fact that
the sources are ii.d (this is based on the same principle
as in the above analysis of equilibrium points). Taking the
asymptotic expectation of M therefore yields:

A= < a1z a12812 > (32)

a?lﬁ?l a21ﬁ22

with:

Oy = lim FEp+ ]— (33)
n—+co IVf,i(n)f\ng (n)

Bi; = lim P —aa(f[Si(n)]g[sk(”)])

e csi(n)

with k # i, [ # j. (34)

Moreover, the factors (3;; may be interpreted as follows.
One may easily derive how the above presentation would
be modified if the normalizing terms N;; and Ny, were
not included in H and 6: the Jacobian matrix would then
only consist of A, which would still be expressed as in (32),
except that it would not include the factors a;; (which is
equivalent to setting a;; = 1 in (32)). In other words, the
factors 3;; are the elements of the Jacobian matrix of the
non-normalized counterpart of the network considered here
(i.e. of the HI or MM network). Their explicit expressions
are therefore available from the literature.

Using the same approach, it may be shown that all the
elements of sub-matrix B are proportional to:

lim e [f[s:(m)]gls, ()] (35)

n—+ oo

Since #* is an equilibrium point, all these elements, and
therefore the complete sub-matrix B, are zero. J(8%) is
thus block-triangular, so that its Eigenvalues consist of all
the Figenvalues of its sub-matrices A and ). Therefore, its
sub-matrix C need not be determined. Eventually, straight-
forward calculations show that:

D = —nl4, (36)

where I, is the fourth-order identity matrix.

All the Eigenvalues of ) are equal to —rn. As 7 is set
to a positive value, their real part is always negative, i.e.
they always meet the above-defined stability condition. The
stability of the considered networks therefore only depends
on the Eigenvalues of A. Deriving them from (32) yields the
eventual stability condition, which reads:

Bi1B22 — Pr2B21 >0
{ 12811 + 021822 < 0 (37)

if A >0, where A is defined as:

A = (a12p11 — 0/21522)2 + dar2a21812821. (38)
If A < 0, the stability condition is restricted to:

128311 + 21822 < 0. (39)

These conditions are direct extensions of the ones for the
non-normalized networks. More precisely, the expression of
the Jacobian matrix of the latter networks is obtained by
setting a;; = 1 in the generalized matrix (32), as explained
above. As the above stability conditions were derived from
(32), this entails that the stability conditions for the non-
normalized networks are also obtained by setting o;; =1 in

(37)-(39), thus yielding:

(aamer



if A >0, with A = (,@11 — ﬁ22)2 + 4312321, and

B+ P22 <0 (41)
if A < 0. In other words, the stability conditions for the R-
NWU and D-NWU networks are extensions of the conditions
for the the HJ and MM networks, obtained by inserting the
factors «;; in the latter equations.

To make these results more explicit, we now apply them
to the most clasical case, i.e. to the R-NWU network oper-
ating with the separating functions (5) (the other cases are
treated in the same way). To this end, we use the expression
of the Jacobian matrix of the corresponding HJ network at
any equilibrium state provided in [3]. This expression espe-
cially entails that, for the R-NWU network:

A > 0
B = PBaa.

Due to (42), the stability condition for the R-NWU network
is here (37). Besides, it should be noted that (33) implies
a;; > 0. Combining this property with (43), (37) may be
simplified in:

(42)
(43)

Bi1 <0 (44)
This should be compared to the stability condition for the
corresponding HJ network. For this network too, A > 0.
Its stability condition is therefore (40), which may here be
simplified by using (43). This turns out to yield again
(44). This means that, in the specific case considered here,
the factors a;; have no influence on the stability condition.
Moreover, the overall result thus obtained (for i.i.d sources),
is that the R-NWU network operating with the separating
functions (5) has exactly the same equilibrium points as the
corresponding HJ network, and exactly the same stability
condition at each such point. It is therefore able to separate
the same (supposedly i.i.d) sources as the latter network,
i.e. the globally sub-Gaussian signals.

{ Bi1P22 — P12B21 > 0

5. CONCLUSION

In this paper, we have defined extended versions of the clas-
sical HJ and MM source separation neural networks, which
provide self-normalized operation (especially with respect
to the source scales). We have analyzed their convergence
properties by means of the ODE technique. We have thus
shown (for i.i.d sources) that the proposed normalization of
the weight updating rule does not modify the positions of
the equilibrium points of the networks but yields a gener-
alized form for their stability condition. In specific cases
however, this condition turns out to be identical to the ori-
ginal one. Especially, we have shown that the R-NWU net-
work operating with the classical functions (5) applies to
globally sub-Gaussian signals. An industrial application of
these results will be reported in another paper [15].
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