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Abstract

In this paper, we first consider a linear instantaneous combination of two independent source signals.
We show that the cancellation of either source component in this combined signal corresponds exactly to
all the extrema of given types of its normalized kurtosis, where these types depend on the signs of the
source kurtosis. From this, we then derive a source separation method based on the optimization (i.e.
maximization and/or minimization, depending on the nature of the sources) of the normalized kurtosis
of a linear instantaneous combination of the observed mixtures of the sources. Finally, we discuss the

advantages obtained by taking into account the signs of the kurtosis of the sources and system outputs.

1 Introduction

Blind source separation is becoming a classical signal processing problem, which may be
summarized as follows [1]-[3]. In its standard version, n observed signals are available
and they are linear instantaneous mixtures of » unknown statistically independent source
signals. The mixture coeflicients are also unknown. The goal is then to restore the source
signals. This is achieved by designing a separating system which recombines the observed
signals in a linear instantaneous way, with coefficients which are most often adapted so
as to let the outputs of this system become independent. Various practical (approximate)
independence criteria have been proposed, based on this principle. Especially, several
methods consist in optimizing combinations of higher-order moments or cumulants associ-
ated with the outputs of the separating system. Among them, we here consider approaches
based on a criterion which concerns a moment or cumulant specific to each considered
output (see e.g [1],[2]). This criterion is most often optimized under a constraint [1],[2],
which may lead to numerical instability problems [3]. In this paper, we propose a different
method, which is based on the optimization of the normalized kurtosis of the considered
system output. To ease our analysis, we introduce a two-step approach, which makes it
possible to split the overall problem into two simpler sub-problems.
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2 Normalized kurtosis of a superposition of signals

As a first step, we consider a signal z(¢) which is a linear instantaneous combination of
two independent centered stationary signals (1) and z5(1):

z(t) = alwl(t) + 0{2.'1/'2<t), (1)

where a; and ay are real constant coefficients. Denoting k(u) = cumq(u)/[cums(u)]* the
normalized kurtosis of any centered signal u (expressed vs. the cumulants of this signal),
our calculations yield the following relationship (after simplifications) :

k(z) + k(x2)p?
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Let us note that, due to (1), z(¢) only contains a component resulting from z;(¢) if and
only if (iff) a, = 0 and therefore' iff p = 0. Similarly, z(¢) only depends on z,(t) iff oy = 0,
i.e. iff p = +o0o0. We here investigate the influence of the coefficients o and o, on k(z) for
fixed (but unknown) signals (%) and z3(¢). Due to (2)-(3), this influence is completely
taken into account by the corresponding value of the variable p that we introduced. We
therefore study the variations of k(z) vs. p. Our calculations show that they depend on
the signs of k(z1) and k(x3). In the case when k(zy) > 0 and k(z3) > 0, they are defined
by Table 1. The values of p which are of interest to us are the ones for which z(¢) only
depends on one of the signals z(¢) and z3(t), i.e. p =0 and p = +oo as shown above.
Table 1 shows that these values are exactly the ones which maximize k(z) in the considered
case. The other cases lead to the following results®. If k(z;) < 0 and k(zq) < 0, k(2)
increases when p is increased from 0 to p, and then decreases when p is increased from
ps to +oo. If k(z1) < 0 and k(z3) > 0, k(z) is an increasing function of p. Finally, if
k(z1) > 0 and k(z2) < 0, k(z) is a decreasing function of p. In each case, the values of p of
interest therefore correspond exactly to all the extrema of k(z) of given types (i.e. maxima
and /or minima), where these types depend on the considered case. This property suggests
to use the optimization (i.e. maximization and/or minimization, depending on the nature
of the sources) of the normalized kurtosis of a linear instantaneous combination of the
observed mixtures of the sources as a source separation criterion (note that this criterion
contains no normalization constraint on the magnitude of the weighing coefficients nor on
the estimated sources, and does not require to first whiten these sources). However, this
idea requires to be further refined, because the final separation criterion should be based on
the variations of the normalized kurtosis of this signal vs. a parameter ¢ which is controlled
in the actual separating system (and not only on the variations vs. p). This refinement of
the proposed approach requires to define more precisely the considered mixing conditions
and separating system. This corresponds to the second step of our investigation, which
will now be presented.

1m1(t) and z,(t) are assumed to have non zero average power.
2The cases when k(xz1) = 0 or k(z2) = 0 lead to very similar results and are omitted here and in the
next section for the sake of brevity.
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Table 1: Variations of k(z) vs. p, in the case: k(x1) > 0 and k(xz2) > 0. Notations: 1)
ps = k(x1)/k(z2), 2) ks = k(z) for p = p;.

3 Application to a separating system

We assume that the following observed signals are available:

yi(t) = anxi(l) + anza(t) (4)
Ya(t) = anzi(t) + aznxs(t), (5)

where z; are the source signals and a;; are the real constant mixture coefficients. The basic
unit of the separating system that we propose then provides the signal:

s(t) = yi(t) — eya(1), (6)
where ¢ is a tunable real coefficient. The values of ¢ which are of interest to us are those for
which s() only depends on one of the signals (1) and z4(t), i.e. resp. ¢ = ¢y = a12/as
and ¢ = ¢; = ay1/az. We then have to investigate the variations of k(s) vs. ¢. This analysis
is simplified by taking advantage of the preliminary calculations that we presented above.
To this end, we split the variations of k(s) into two aspects:

dk(s)  dk(s)dp
de dp de’ (7)

%(ps) was studied above (z here corresponds to s). We therefore only have to : i) determine
the expression of p vs. ¢, which is specific to the considered separating system (to this
end, combine (4)-(6) and identify the resulting expression with those of the first step of
this analysis), ii) study fl—i, iii) combine these results with those of the first step. Taking
into account Table 1, we thus get Table 2. This table shows that the maxima of k(s) for a
finite ¢ exactly correspond to the values ¢; and ¢, i.e. to the two solutions of the source
separation problem, in the considered case (this also holds if p; > p..). This allows us to
introduce a new source separation criterion, which consists in maximizing the normalized
kurtosis of the output signal of the considered system (for a finite ¢; this is not repeated
for the other cases hereafter). Similar criteria are derived for the other cases, based on
the following results. If k(z1) < 0 and k(z2) < 0 the two source separation solutions
correspond to the two minima of k(z). In the case of a negative-kurtosis source and
a positive-kurtosis one, their extractions respectively correspond to the only maximum
and the only minimum of k(z). The latter result is of importance because some practical
applications require to extract a positive-kurtosis useful signal from mixtures of it together
with a negative-kurtosis interfering signal ("noise”). In such a situation, many traditional
source separation methods cannot take advantage of that a priori knowledge and therefore
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Table 2: Variations of k(s) vs. ¢, in the case: k(xzy) > 0, k(zz) > 0 and p; < pe (and
¢z > ¢1, but one can always get in this case by renumbering the sources). Notations: 1)
21 and cyq are the two values of ¢ surrounding ¢; and such that p = p, 2) ps, is the value
of p for ¢ = +o0.

have to extract both signals, leaving it up to the designer to decide which output of the
separating system provides the signal of interest. On the contrary, by maximizing k(z) the
proposed approach then only extracts a single signal (thus reducing computational load)
and guarantees that this is the signal of interest. Moreover, if both signals are now of
interest, the proposed method can extract them in parallel by adapting two above-defined
basic units resp. so as to maximize and minimize k(z). This is to be contrasted with the
deflation approach which is often used in the related methods mentioned in Section 1: in
the latter approach, the sources are extracted serially, which may decrease convergence
speed and accuracy.

4 Conclusions

In this paper, we derived a source separation criterion based on the optimization of the
(signed®) normalized kurtosis (and which does not require any whitening nor any coeffi-
cient or source normalization constraints). This approach may be seen as a generalization
of the classical average power minimization criterion which only applies to the case when a
reference (i.e. unmixed) signal is available. Our future work will esp. concern extensions
of the proposed approach to more than two sources and convolutive mixtures.
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3After this paper was accepted, we discovered that J. K. Tugnait recently published papers about a
related approach. However, that approach uses the absolute value of the normalized kurtosis and cannot
therefore take advantage of the features related to the signs of the kurtosis discussed in Section 3.



