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Abstract

An extended source separation neural network was recently derived
by Cichocki et al. [1] from the classical Hérault-Jutten network. It
was claimed to have several advantages, but its convergence prop-
erties were not described. In this paper, we exhaustively define
the equilibrium points of the standard version of this network and
analyze their stability. We prove that the stationary independent
sources that this network can separate are the globally sub-gaussian
signals. As the Hérault-Jutten network applies to the same sources,
we show that the advantages of the new network are not coun-
terbalanced by a reduced field of application, which confirms its
attractiveness.

1 Introduction

Blind source separation is a generic signal (and data) processing technique, which
applies e.g. to antenna or microphone array processing [2]. In its ”simplest config-
uration”, two sensors provide measured signals z1(t) and z2(t), which are unknown
linear instantaneous mixtures of two unknown independent source signals s1(t) and



s2(t), i.e. (see Fig. 1):
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Figure 1: Basic source separation configuration and direct Cichocki network.

where the terms a;; are unknown real-valued constant (non-zero') mixture coeffi-
cients such that? aj1a22 — a12a21 # 0. The problem is then to estimate the source
signals s;(t) from the measured signals z;(t), up to a permutation and scaling factor.

Hérault and Jutten are considered as having proposed the first solution to this
problem (see e.g. [2],[3]). Their approach is based on a recurrent artificial neural
network. This network was introduced about a decade ago and its convergence
properties were analytically studied a few years later. Several papers were thus
published by independent authors about its convergence in the ”simplest configu-
ration” defined above. Sorouchyari [4] and Fort [5] used almost the same method,
which was then revisited and somewhat extended by Moreau and Macchi [6],[7].
Comon et al. [8] presented another method which yields different results. An ap-
proach bridging the gap between these two methods was then proposed by Deville
[9], so that the convergence properties of the simplest versions of this network are
now well defined.

Two classes of structures related to the Hérault-Jutten network were then also
proposed for performing linear instantaneous source separation. On the one hand,
Moreau and Macchi [6],[7],[10] introduced a direct (i.e. non-recurrent) version of

!The case when at least one mixture coefficient a;; is zero is not detailed here for two
reasons. On the one hand, it is of no importance in this paper, because it implies that at
least one of the measured signals x1(t) and z2(t) is not a mixed signal, so that the initial
source separation configuration reduces to a classical adaptive filtering (or gain control)
problem, which should be treated with a simpler signal processing structure than the one
considered here. On the other hand, not considering that useless case somewhat simplifies
the stability analysis, as shown in Section 4.

2The latter condition corresponds to the invertibility of the mixing matrix A consisting
of the mixture coefficients a;;. This condition is required, otherwise the two measured
signals are identical (up to a scalar factor): in the latter case, the mixing matrix cannot
be inverted by using these measured signals, meaning that the source separation problem
cannot be solved.



the Hérault-Jutten network, based on the same adaptation rule. This network is
attractive because it avoids the matrix inversion which must be performed with
the recurrent version in order to derive the outputs from the inputs and network
weights. Moreau and Macchi also studied the convergence properties of this network
in the ”simplest configuration”, using the same type of method as Sorouchyari and
Fort. They also proposed and studied a mixed version of this network [6],[7].

On the other hand, Cichocki et al. [1] defined neural networks which may be
considered as extensions of the above-mentioned ones. These new networks contain
additional self-adaptive weights, which are updated so as to normalize the ”scales”
of the network outputs. These networks were claimed to be thus able to process ill-
conditioned mixtures and badly-scaled source signals to which the Hérault-Jutten
network would not apply. Both the direct and recurrent versions of this type of
neural networks were described, and it was also proposed to cascade then in a
multilayer neural network in order to improve performance. To our knowledge, the
papers published up to now only describe the principles of these networks as well as
their empirical performance derived from numerical simulations. On the opposite,
no theoretical proof has been provided about their convergence properties. This
may result from the fact that such analyses are significantly more complex than for
the Hérault-Jutten and Moreau-Macchi networks as will be shown in this paper,
due to the normalization scheme introduced by Cichocki in his networks.

Therefore, at the current stage, the Cichocki networks seem to be more powerful
than the simpler formely proposed structures, but despite these advantages one is
entitled to hesitate to use them, as their behaviour is not well defined. Especially, it
is not known whether these networks have spurious stable equilibrium points, that
is weight values towards which they may converge without providing separated sig-
nals at their outputs. Similarly, it is not known whether they are able to separate
a limited or large class of source signals. Such restrictions have been shown to exist
for the Hérault-Jutten and Moreau-Macchi networks. Similar limitations are there-
fore expected to arise with the Cichocki networks, and they should be determined.
This paper therefore aims at precisely defining the conditions of operation of these
networks. The convergence analysis needs only be performed for the single-layer
versions of the Cichocki networks, because the overall properties of multilayer net-
works are directly derived from those of the individual layers that compose them.
Moreover, only the direct version of these networks is considered hereafter, because
it is more attractive than the recurrent one as explained above, and because similar
results are expected for both versions, based on the similarity observed between the
properties of the Hérault-Jutten and Moreau-Macchi networks.

The remainder of this paper is organized as follows. The considered source separa-
tion network is defined in Section 2. Its equilibrium points are studied in Section
3, while the stability of these points is investigated in Section 4. Section 5 presents
the conclusions drawn from this investigation and outlines potential extensions.

2 Definition of the considered network

This section briefly describes the principles of the direct Cichocki network which
is analyzed in the subsequent sections. This investigation is performed for the
”simplest configuration” defined in Section 1, and the source signals s (t) and s2(t)
are assumed to be stationary, zero-mean and statistically independent. At each



time step t, the network (shown in Fig. 1) receives both mixed signals z;(t) and
x2(t) defined by (1)-(2) and processes them as follows:

1. It computes its output signals y; (t) and y2(t) corresponding to the current
input signals and internal weight values w;;, i.e.%:

yi(t) = wuzi(t) + wizz2(t) (3)
y2(t) = worz1(t) + waaza(t). (4)

2. It also updates its four real-valued weights w;; according to the following
adaptation rules:

dw;—jt(t) = —ulflyi@®lglyi@®] - 1], i€ {1,2} (5)
dw;iff(t) = —ufly®lgly; (O], i#75€{1,2}, (6)

where p is a small positive adaptation gain and f and g are distinct odd
functions, called the ”separating functions” below.

The principles of the adaptation rules (5) and (6) may be summarized as follows:

e Rule (6) is used for updating the cross-coupling weights w;2 and wsy. It
aims at making the outputs independent and thus resp. proportional to
each source. It is the same rule as that of the Hérault-Jutten and Moreau-
Macchi networks.

e Rule (5) is used for updating the direct weights wi; and wys. It aims at
normalizing the ”scales” of the output signals y; (¢) and y»(t) respectively.
The scaling coefficients w11 and wss are meant to self-adapt to the pro-
cessed signals. This rule is specific to the Cichocki network (whereas in the
Hérault-Jutten and Moreau-Macchi networks, wy; and woo are fixed to 1).
The above-mentioned advantages of the Cichocki network result from the
adaptation of these weights.

The last parameters which must be defined in order to fully specify the considered
network are the selected separating functions f and g. These parameters appear in
the Cichocki, Hérault-Jutten and Moreau-Macchi networks. Various functions have
been considered in the papers related to all these networks. The most commonly
used set of functions is:

f(x)=2* and g(z) ==. )

The current paper only concerns this specific set of functions.

3The weight values w;; depend on t. For readability, this is often omitted in the
notations used below.



3 Equilibrium points

Hereafter, we denote resp. A and W the 2x2 matrices with terms a;; and w;;. We
define P = W A and we denote p;; its terms. (1)-(4) then yield:

yi(t) = pusi(t) +pi2sa(t) (8)
y2(t) = poa15i(t) + paosa(t). 9)

The equilibrium points of the adaptation rules (5)-(6) of the network correspond to
all the constant weight matrices W (or to the associated matrices P) such that:

dw;; (t)

< Ta

>=0, 4,j€ {172}7 (10)
where <> stands for mathematical expectation. (10) may be rewritten by using
(5)-(6) and by inserting (8)-(9) in the latter equations. Developing and solving
these equations yields the equilibrium points defined in Table 1. The four points
F, ., correspond to source separation without any permutation, i.e. each network
output y;(t) is proportional to () the source having the same index i. The four
points G, ¢, correspond to source separation with a permutation, i.e. y1 () o s2(t)
and ya(t) o s1(t). So, at any of these points (called the ”separating equilibrium
points” below), the network does achieve the source separation function defined in
Section 1. On the contrary, at any of the eight points H, c, c,, its outputs are
mixtures of the source signals as all terms p;; are different from zero, i.e. it fails
to separate the sources. Therefore, this network indeed has ”spurious equilibrium
points”, He, ¢, 5, S0 that one must determine which equilibrium points are stable,
or at least which types of sources can be separated by this network as a result of
some stability properties of its equilibrium points.

four points: F, ., | four points: G, ., | eight points: He, ¢, e,
€1
pii=——Z3a1 |Pu1=0 P11 =
<81 >1/ 4 <s? ><s2
2<s7> 1143
V<st><st>
/4
€2 €2P11 . < 82 >
=0 = —F— = ith R =
P12 P12 < s% S1/4 P12 R’ w (< 31 )
p21 =0 P = =G RS P21 = €1€2P11
_ €2 -0 _ —€épn
D22 < i1/t s% S1/4 Db22 D22 R
yi(t) =pusi(t) | y1(t) = prasa(t) | see (8)
y2(t) = pasa(t) | ya(t) = pusi(t) | see (9)

Table 1: Equilibrium points of the network, consisting of three subsets. Each point
of a subset is defined by €1, €2 (and possibly €3), with: €1, €e2,e3 € {—1,1}.

4 Stability of the equilibrium points

The local stability of any equilibrium point E is analyzed by: i) considering the
mean adaptation algorithm obtained by replacing the right side of (5)-(6) by its



mathematical expectation, and ii) deriving a first-order development of this mean
algorithm at point E [4]. This yields, in matrix form:

dAV

T JAV, (11)
where J is the Jacobian matrix of the system at point E, and AV is the column
vector defined as: AV = (Awyy, Awia, Awsy, Awss)T, where each component Aw;;
is the difference between two values of w;;, resp. at a considered point in the
neighbourhood of E and at point E itself. A necessary and sufficiency condition
for point E to be locally stable is (C1): the real parts of all the eigenvalues of J
are negative [4]. An equivalent condition is (C2): the real parts of all the roots of
Q(A) = det(J — AI) are negative. For the considered network, it may be shown
that Q(A) = r*P()\) with:

A = (12)
U

r = -5 (13)

D = winw —wipwan (14)
PQA) = pd* +psX® +p2A? + pid + po (15)
pa = 1 (16)
p3 = —(’u}11 + ’11]22)(3 < yfy% > +4) (17)
P2 = <yiys > wiwea+ < yiys > 12(wi] + wiy + 2D) + 15w w2o(18)
p = —4(wiy +wy2)D[9 < yiys > +12 < yiys > —1] (19)
po = 16D%[9 <yiy; >* —1]. (20)

where w;; are the weight values at point E. A natural method would then be to
determine the real parts of the roots of P()\) and Q(A), and to study their signs
depending on the considered equilibrium point E and on < y?y3 > (and hence on
the source statistics, due to (8)-(9)). This could be done for the Hérault-Jutten
network, because its associated polynomial P()) is only of order 2 and thus yields
simple computations*. On the contrary, this method is very impractical for the
4th-order polynomial (15)-(20) that we determined for the network considered in
this paper, as the expressions of its roots turn out to be very complicated. To solve
this problem, we developed an original method, by focusing on specific stability
properties that enable us to determine which types of sources this network is able
to separate. The first step of this method is based on the following theorem.

Theorem 1: for any equilibrium point, a necessary stability condition is (C3):
<yjy:>> 1/3.

Proof: if P(0) < 0, P(\) has at least one real positive and one real negative roots
because P()\) is a continuous function of A and P(\) — +o0o when A — £oo. So
has Q(A), whatever the sign of r. Then (C2) is not met. Similarly, if P(0) = 0,
one of the roots of P()\), and therefore of Q(A), is zero. Then (C2) is not met.
In other words, stability requires P(0) > 0, and therefore requires (C3), due to the
expression of P(0) derived from (15)-(20).

“P()) is of order 2 because the Hérault-Jutten network contains 2 adaptive weights
(w11 and wys are fixed to 1).



For any separating equilibrium point F, ¢, or G, c,, if may be shown that (C3) is
equivalent to: < s7 >< 55 > < 9 < s? >2< 52 >2, which is the definition of glob-
ally sub-gaussian sources. Similarly, for any spurious equilibrium point H, c, s,
(C3) is equivalent to: < 57 >< s3 > > 9 < s7 >2< s3 >?, which is the definition
of globally super-gaussian sources. In other words, the network is not able to sepa-
rate globally gaussian or super-gaussian sources (because no separating equilibrium
points are stable in this case). This completes our stability analysis for such sources.
As for globally sub-gaussian sources, the above discussion shows that no spurious
equilibrium points are stable. Moreover, we will show below that at least one sep-
arating equilibrium point is then stable. Therefore, the network can only converge
to such a point®, and thus it does achieve source separation. The above-mentioned
type of stable point is defined as follows: Theorem 2 below shows the existence of
a type of point to be considered, while Theorem 3 shows its stability.

Theorem 2: Among the separating equilibrium points (i.e. Fe, ., and G, ,), at least
one is such that w11 > 0, wea >0 and D > 0.

Proof : This directly results from the expressions of the weight matrix at these points,
i.e. W = PA™', where the terms p;; of P are provided in Table 1 (this uses the
above assumption: all a;; #0).

Theorem 3: For globally sub-gaussian sources, if a separating equilibrium point (i.e.
F,, e, or Ge ;) is such that w11 > 0, wee >0 and D > 0, then it is stable.

Proof : As a first step, consider the specific case w1 = 0 (in addition to w11 > 0,
waz > 0 and D > 0). In this case, the expressions of the roots of P(\) are derived
easily, and Theorem 3 follows directly by using (C2). As a second step, consider
the general case w11 > 0, wae > 0 and D > 0. It is possible to evolve continuously
from the specific case to the corresponding general case by varying wo1, and it may
be shown that the real parts of the roots of P(\) cannot thus reach zero. Therefore,
they have the same sign in the general case as in the specific case. This also applies
to Q(A) because the sign of r thus remains constant. Therefore, the considered
equilibrium point remains stable in the general case.

5 Conclusions and prospects

The Cichocki network has been claimed to have significant advantages over the
previously published Hérault-Jutten network, but up to now its exact conditions of
operation had not been described. In this paper, we have shown that the stationary
independent sources that can be separated by the standard version of this network
are the globally sub-gaussian signals. As the corresponding Hérault-Jutten network
applies to the same sources, we have thus shown that the new features provided by
the Cichocki network are not obtained at the expense of a degradation of the field of
application. From this point of view, this paper confirms the attractiveness of the
Cichocki network on the basis of objective criteria. Our future investigations will
especially concern the convergence properties of a modified version of this network,
targetted at the separation of globally super-gaussian sources.

5This may require an adequate initialization point and a low enough adaptation gain
p for the network to remain in the attraction domain of this point.
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