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ABSTRACT

In this paper, we consider the situation when two linear
instantaneous mixtures of two independent source sig-
nals are available. We aim at determining whether the
source signals are sub- or super-Gaussian, using only
their observed mixtures. To this end, we propose a cri-
terion based on the roots of a specific polynomial, whose
coefficients depend on the estimated cross-cumulants of
the observed signals. The effectiveness of this approach
is demonstrated by means of experimental tests.

1 PROBLEM STATEMENT

Higher-order statistics have been a very active research
field during the last decade. This domain involves non-
Gaussian signals, which may be split in two classes i.e.
sub-Gaussian and super-Gaussian signals. These classes
resp. consist of the signals which have negative and pos-
itive kurtosis (see e.g. [1]-[2]; this parameter is redefined
hereafter in Section 2). This distinction between sub-
and super-Gaussian signals is of utmost importance in
the blind source separation problem, which consists in
estimating a set of sources signals only from a set of
observed signals which are typically linear instantan-
eous mixtures of these source signals (see the surveys
of this field in [3]-[4]). This is due to the fact that a
large number of source separation methods only apply
to one of these classes (e.g. all source signals should
be sub-Gaussian), and others lead to several versions,
depending on the class of each source signal (see e.g.
[5]-[6]). As one seldom knows to which classes the con-
sidered source signals belong in practice, there is a need
for a method that would allow one to determine the sign
of kurtosis of each source only from the available mixed
signals. This would make it possible to determine auto-
matically if the considered source separation algorithm
applies to the signals to be processed, or which version
of this algorithm should be used for these signals. This
paper provides a solution to this problem in the case
when two mixtures of two sources are available.
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2 PROPOSED METHOD

We assume that two observed signals y; () and y(t) are
available and that they are linear instantaneous mixtures
of two unknown source signals z1(¢) and z1(t), i.e:

yl(t) = a11.1‘1(t) +a12x2(t) (1)
ya(t) as1 1 (t) + assxs(t), (2)

where a;; are unknown mixture coefficients. The source
signals are supposedly stationary, statistically independ-
ent and centered for simplicity (non-centered signals are
considered in Section 3). The mixture coefficients are
real, constant and non-zero. They are also assumed to
yield a non-degenerate mixture matrix, i.e. each ob-
served signal i1s not a plain scaled version of the other
one, or in other words:

ai1ass — ar2a21 7 0. (3)

Using only y1 (t) and y2(f), we aim at determining the
sign of the kurtosis of each source a;(t). We recall that
this kurtosis is defined as the zero-lag 4*"-order cumulant
of the considered signal [1]-[2], i.e:

CUM4(z;) = CUM [z;(t), zi(t), zi(2), 2s(2)],  (4)

where the right-hand term of this equation is the cumu-
lant of the considered four random variables, so that

CUM,(z;) = E{z{(t)} = 3(E{z}()})*,  (5)

where E{.} stands for mathematical expectation?.
To reach the above-defined goal, we introduce the
”conceptual” signal

s(t) = yi(t) — cya(t), (6)

where ¢ is a real tunable coefficient. This signal is ”con-
ceptual” in the sense that it is only used as a tool in
our approach, i.e. it will not be explicitly created in our

INote that the approach proposed in this paper also applies to
the normalized kurtosis [1], as the latter parameter has the same
sign as the plain kurtosis considered hereafter.



eventual solution to the considered problem. This signal
may also be expressed as:

s(t) = ar@1(t) + aaws(t), (7)

with:
@ = aj; —caz (8)
a9 = a19 — CA99. (9)

Using cumulant properties [1]-[2] and the independence
of z1(t) and x5(t), (7) yields:

CUMy(s) = afCUMay(x1) + a5CU My(z5).  (10)

This leads to the following properties concerning the
variations of the sign of CU M4(s) vs ¢, when CU My(21)
and CU M4(z2) have given signs:

1. First consider the case when:
CUMy4(z1) >0 and CUMy(zs) > 0. (11)

If there existed a value ¢, of ¢ such that ey = 0 and
as = 0, this value would meet the conditions:

¢, = bl and e, = a12, (12)
agq a9 '
due to (8)-(9). But this requires:
1 _ 02 (13)
ast  ass’
which is not possible, due to (3). Therefore
Ye, al>0 or a3>0. (14)
Combining this with (10) and (11) yields
Ve, CUMa(s)>0. (15)

2. It may be shown in the same way that
CUM4(21) <0 and CUMy(zs) <0  (16)

leads to
Ve, CUMa(s) <O. (17)

3. Now consider the case when CUMa4(2z1) and
CUMa4(x2) have opposite signs. ¢ = ai1/an
and ¢ = aja/asy resp. result in CUMy(s) =
asCUMy(zs) and CUM4(s) = ofCUMa(z1),
which then have opposite signs. Moreover, com-
bining (8)-(9) and (10) shows that CUMa4(s) is a
4t"_order polynomial of ¢, and therefore a continu-
ous function of ¢. Therefore, there exists at least
one value of ¢ such that CUMa(s) = 0 in this case.

The above results define the properties of the kurtosis of
the signal s(¢) with respect to those of the kurtosis of the
source signals. But, conversely, one then easily derives
from them the following properties of the kurtosis of the
source signals vs those of the kurtosis of s(t) %:

2For the sake of brevity, we omit the case when the kurtosis of
either or both sources are zero.

1. If CUMy(s), considered as a polynomial of ¢, has
at least one real-valued root, then CUM,y(z;) and
CU My(24) have opposite signs, i.e. the considered
couple of sources consists of one positive-kurtotic
signal and one negative-kurtotic signal?.

2. Otherwise, CUMy(z1) and CUMy(z3) have the
same sign. Moreover, this sign may be determ-
ined as follows. C'UM,(s) then has the same sign
whatever ¢, and this sign is the same as that of both
CUMa(z;). This sign is e.g. the sign of CU My(s)

obtained when setting ¢ = 0. But in this case

s(t) = n (1), (18)

so that
CUM4(S) = CUM4(y1). (19)

Therefore, in this case the common sign of the kur-
tosis of the sources is obtained as the sign of the
kurtosis of y1(¢), which is an observable quantity.

The above discussion provides a root-based criterion
for determining the signs of the kurtosis of the sources
signals. This criterion is preliminary in the sense that,
at this stage, we have provided no practical means to de-
termine if the polynomial CU M4(s) has real roots (note
that the expression (10) of this polynomial with respect
to the source signals cannot be used to this end, as its
coefficients are unknown in practice). The latter prob-
lem is solved by considering s(¢) and its kurtosis with
respect to the mixed signals, instead of its relationship
with respect to the sources which was considered above.
We then derive CUMy(s) from (6), again using cumu-
lant properties [1]-[2], but now with signals yi(¢) and
y2(t) which are not independent. This yields

CUM4(S) = C4CUM4(y2) —4CSCUM31(y2,y1)
+6¢>CU Mas(y2, y1) — 4cCU M13(y2, y1)
+CU Ma(y1), (20)

where each term CU My (y2, y1) with k+1 = 4 is the cu-
mulant of the following random variables: y»(t) taken k
times and y; (t) taken [ times. C'U M4(s) thus appears as
another 4**-order polynomial of ¢ but, unlike in the pre-
vious case, 1ts coefficients are known, or more precisely
can be estimated, as they are cumulants of observed sig-
nals. This yields the final version of the criterion that
we propose for determining the signs of kurtosis of the
source signals, i.e:

o Consider the 4'"-order polynomial of ¢ defined by
(20) *.

3There is no sense wondering which of these sources has a pos-
itive kurtosis, as the order of the sources in the considered mixed
signals is arbitrary.

4Several other equivalent expressions of a signal s(t) created as
a linear instantaneous combination of the two mixed signals may
be considered instead of (6), leading to corresponding modified
versions of our method and of the polynomial CU M, (s).
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Figure 1: Variations of the imaginary parts of the four
roots of the polynomial (20) vs mixture coefficient a,
when both sources are sub-Gaussian.

e Estimate its coefficients from the available data,
i.e. estimate the cross- and auto-cumulants of the
(centered) mixed signals (auto-cumulants are estim-
ated by the time averages associated to (5); cross-
cumulants may be derived similarly from [1]-[2]).

e Check if this polynomial has at least one real-valued
root. Note that this may be achieved e.g. i) by us-
ing classical numerical methods for determining the
roots of any polynomial or the zeros of arbitrary
functions, or more specifically ii) by means of Fer-
rari’s analytical method for determining the roots of
4th_order polynomials [7].

o Use the above-defined root-based criterion to even-
tually derive the signs of the kurtosis of the
(centered) sources.

3 EXPERIMENTAL RESULTS

We have validated the above approach by means of ex-
perimental tests performed in the following conditions.
Each source is a possibly-non-zero-mean binary-valued
signal X;(¢), which takes the values 41 et -1 resp. with
the probabilities p; et 1 — p;, where p; is a parameter
of the considered source. Two linear instantaneous mix-
tures of these sources are computed by using specific
mixture coefficients a;;. The method proposed in this
paper is then applied to the centered versions of these
mixed signals.

The first series of tests was performed with two sub-
Gaussian sources. More precisely, the parameters p; and
p2 which resp. define the statistics of the centered ver-
sions x1(t) and x5(t) of the sources were both set to %
Our calculations showed that this leads to the following

theoretical source kurtosis values: CUMy(z1) = —2 and
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Figure 2: Variations of the two positive imaginary parts
of the roots of the polynomial (20) vs mixture coefficient
a, when both sources are sub-Gaussian.

CUMy(z3) = —2. We tested the proposed approach in
detail by considering various mixtures of these sources.
More precisely, the mixture coefficients a12 and a1 were
set to the same value a, which was varied in the tests,
whereas both mixture coefficients a1 and asy were kept
constant to 1. For each value of a, we computed the
empirical cumulants of the centered mixed signals and
we derived the four roots of the polynomial (20). Fig. 1
shows the evolution of the imaginary parts of these roots
when @ is varied from 0 to 0.99. These results may be
used as follows for any single value of a. Fig. 1 shows
that all these imaginary parts are non zero, i.e. that
the experimental polynomial has no real roots. Based
on this result, the above-defined criterion leads to the
decision that CU My (z1) and CU My(2z2) have the same
sign, which may then be determined to be negative as
explained above. For any value of a, this experimental
decision is in full agreement with the theoretical kurtosis
values that we provided above for this type of sources,
thus showing the effectiveness of the proposed approach.
It should be noted that this method is successful even for
very highly mixed source signals, as these tests were per-
formed with a varied up to 0.99 and no decision errors
occured. This robustness with respect to high mixture
levels becomes more apparent in Fig. 2, where the two
positive imaginary parts are represented with semilog-
arithm scales: this shows that, even for high values of a,
these imaginary parts remain significantly far from 0 (as
opposed to the imaginary parts equal to 0 obtained in
the other series of tests reported below). Tt should also
be noted that the imaginary-part plots in Fig. 1 form
two couples having symmetrical positions with respect
to the X axis. This results from the fact that the four
roots of the polynomial (20) here consists of two sets of
conjugate roots. This is confirmed by Fig. 3: the real
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Figure 3: Variations of the real parts of the four roots of
the polynomial (20) vs mixture coefficient @, when both
sources are sub-Gaussian.

parts of all four roots are plotted in this figure, but only
two charts are visible because in each set of conjugate
roots both roots have the same real part.

The second series of tests was performed in the
same conditions as above, except that the second source
was super-Gaussian. More precisely, pa was set to
11—0, resulting in the following theoretical kurtosis value:
CUMa(x2) = 0.6624. Fig. 4 shows the variations of the
imaginary parts of the roots of the polynomial (20) vs a.
For any value of @, two of these imaginary parts are zero,
i.e. the experimental polynomial has two real roots. The
above-defined criterion then leads to the decision that
CUMy(z1) and CUM4(z2) have opposite signs, which
again agrees with the above-defined theoretical source
kurtosis values. The semilogarithmic representation of
the only positive imaginary part leads to a plot® situ-
ated between those of Fig. 2 and therefore to the same
conclusion as above.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a method for determ-
ining if two source signals are sub- or super-Gaussian
in the situation when only (two) linear instantaneous
mixtures of these signals are available. We have shown
the effectiveness of the proposed approach by means of
various types of experimental tests. We plan to invest-
igate extensions of this approach to two cases, which are
also of interest from the point of view of their applica-
tion to blind source separation problems, i.e: i) a larger
number of observed and source signals and ii) observed

5Due to space limitations, this chart and the charts associated
to the real parts of the roots are not provided in this paper. Tt
should be mentioned that, unlike in the previous series of tests,
one of the real roots here takes large values for some values of a,
because the highest-order coefficient CU My, (y2) of the polynomial
(20) may here be very small for some values of a.
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Figure 4: Variations of the imaginary parts of the four
roots of the polynomial (20) vs mixture coefficient a, for
1 sub-Gaussian source and 1 super-Gaussian source.

signals which are convolutive mixtures of the considered
sources.
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